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Abstract— When controlling the energy flow among multiple
power sources in electrified powertrains, the typically non-
convex set of the original formulation is relaxed to a convex
super-set, and the problem is then approached by the means of
convex optimization. In this paper we show that when using the
backward simulation approach, where vehicle velocity is equal
to the reference velocity, the global optimum of the original non-
convex problem can be obtained by solving a relaxed convex
problem. When vehicle velocity is kept as a state in the problem,
in the so called forward simulation approach, we provide a
condition for which, when satisfied, the solution of the relaxed
problem will provide the solution of the non-relaxed problem.

I. INTRODUCTION

The usage of convex optimization in vehicular technology
is being spread to several applications. In [1], [2] convex
optimization is used for minimum time optimal control,
while partial convexification for predictive cruise control
of conventional vehicles has been employed by [3]. In
the context of hybrid electric vehicles (HEV) [4], convex
optimization is being used for performance assessment [5],
[6], [7], optimal energy management [8], [9], [10], [11], and
powertrain sizing [12], [13], [14], [15], [16], [17], [18], [19].
Main motivations for the penetration of convex optimization
are the short computational time, the certificate for optimality
and the availability of publicly accessible solvers, such as
ECOS [20], SeDuMi [21] and SDPT3 [22].

Many of these problems, however, are not convex in
their original settings. The typical convexification step is to
perform relaxations, such that the non-convex set is replaced
by a convex superset. The goal is to obtain the solution of the
original non-convex problem by efficiently solving a relaxed
convex problem.

A typical example of convex relaxations, in the scope of
HEVs, is letting the relaxed problem throw away energy.
When using a backward simulation approach, where vehicle
speed is assumed equal to the reference, it is logically argued
that the solution of the non-convex problem can be obtained
by solving the relaxed problem, since the algorithm will
make sure that energy is not wasted at the optimum [12],
[13]. A more rigorous proof that the relaxations are tight at
the optimum has been provided by [16].

Complementing the work of [16], this paper provides a
more detailed proof that the global optimum of the non-
convex backward simulation problem can be obtained by

This work was supported in part by the Swedish Energy Agency.
The authors are with the Department of Signals and Systems,

Chalmers University of Technology, Gothenburg, Sweden. L.
Johannesson is also with Viktoria Swedish ICT, Gothenburg, Sweden.
nikolce.murgovski@chalmers.se, larsjo@chalmers.se,
xiaosong@chalmers.se, bo.egardt@chalmers.se,
jonas.sjoberg@chalmers.se

solving a relaxed convex problem. We show that a special
case exists where wasting energy is unavoidable and the
relaxation may not be tight, although the global optimum
can still be obtained by solving the relaxed problem.

In addition, this paper investigates the forward simulation
approach, where vehicle speed is kept as an optimization
variable in the problem. We show that for the forward
simulation approach, relaxations should be considered with
care, since it is not always possible to retrieve the solution
of the non-relaxed problem by solving a relaxed convex
problem. However, we provide a condition, which if satisfied,
will guarantee that the global optimum of the non-relaxed
problem can be obtained from the solution of the relaxed
problem.

II. VEHICLE MODELING AND OPTIMIZATION OBJECTIVE

We consider an optimal vehicle controller that manages
energy flow between powertrain components, such that the
amount of fuel needed to drive a certain road segment is
minimized. The driving segment is here referred to as driving
cycle, described by a desired reference velocity vr and a road
gradient α.

Maintaining the desired velocity requires a certain lon-
gitudinal force that overcomes dissipative forces due to
aerodynamic drag and rolling resistance

FVd(·) =
ρacdAf

2
v2 +mgcr cosα (1)

where ρa is air density, cd is drag coefficient, Af is vehicle’s
frontal area, m is vehicle’s mass, v is longitudinal vehicle
velocity, cr is rolling resistance coefficient and g is gravity.
The longitudinal power

PV(·) =
(
m
dv

dt
+mg sinα+ FVd(·)

)
v (2)

could be provided in several ways, depending on the power-
train configuration. For this study we have chosen a hybrid
electric vehicle in a series powertrain configuration [4], de-
picted in Fig. 1. It is straight forward, however, to extend the
forthcoming strategies to other types of electrified vehicles,
and even conventional vehicles.

The series HEV powertrain provides the longitudinal
power by an electric machine (EM), mechanically connected
to the wheels without a transmission. Denoting the mechan-
ical EM power by PM, the following relation holds

PM = PV(·) + Pbrk (3)

where Pbrk is power applied to the braking pads. Note that, in
an electrified vehicle it is preferable to use the EM to brake
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Fig. 1. Series HEV powertrain model. The vehicle is propelled by an
electric machine (EM), which obtains electrical energy from an engine
generator unit (EGU), or a battery. When EM operates as a generator,
braking energy is converted to (and stored as) electrical energy in the battery.

the vehicle by recuperating braking energy, which is stored in
the battery for a later use. When operated in motoring mode,
the EM obtains electrical energy from an engine generator
unit (EGU) and the battery, which can be described by the
following equation

PG + PB = PBd(·) + PM + PMd(·) + PA (4)

where PG is electrical power generated by the EGU, PB
is internal battery power, PA ≥ 0 is power consumed by
auxiliary devices, and PBd(·), PMd(·) are dissipative powers
of the battery and the EM. The losses of the inverter and the
final differential gear are included within PMd(·).

Taking into account the relations (1)-(4) and the objective
of minimizing fuel energy, the optimization problem can be
formulated as

min J(·) =
∫ tf

0

(PG + PGd(·))dt (5a)

s.t. (∀t ∈ [0, tf ])
PM = PV(·) + Pbrk (5b)
PG + PB = PBd(·) + PM + PMd(·) + PA (5c)
dEB

dt
= −PB (5d)

tf ≤ tmax (5e)
v(0) = v(tf ) = v0 (5f)
v ∈ [vmin, vmax] (5g)
EB(0) = EB(tf ) = EB0 (5h)
EB ∈ [EBmin, EBmax] (5i)
PB ∈ [PBmin(·), PBmax(·)] (5j)
PG ∈ [0, σGPGmax] (5k)
PM ∈ [PMmin(·), PMmax(·)] (5l)
Pbrk ≥ 0. (5m)

where EB is energy in the battery, PGd(·) is EGU dissipative
power and σG is a binary signal that governs the engine
on/off state. Initial and final battery energy and vehicle’s
kinetic energy are conserved by (5f) and (5h), and travel

time is restrained below tmax. Constraints are imposed on
the control and state variables.

The notation (·) indicates a function of decision variables.
The formulation (5) considers many decision variables, EB,
PB, PG, PM, Pbrk, v, tf , although alternative formulations
exist with fewer variables. An example of such formulation
is discussed later, in Section III-A. The terms PA, EBmin,
EBmax, PGmax and tmax are known scalar values, while the
signals denoting energy, power, force, speed, engine on/off
and road gradient are functions of time. Thus, the constraints
in (5) are imposed at each time instant along the driving
cycle.

The longitudinal vehicle power has been defined in (2),
where it is evident that PV(·) = PV(v) is nonlinear and
non-convex in v. A description of the remaining functions
in problem (5) will be given later, in Section IV-A. These
function, however, are known to have the following proper-
ties:

1) PGd(·) = PGd(PG, σG) is convex and monotonically
increasing in PG.

2) PBd(·) = PBd(PB, EB) is nonlinear and convex in PB
and EB.

3) PBmin(·) = PBmin(EB) is convex in EB; PBmax(·) =
PBmax(EB) is concave in EB.

4) PMd(·) = PMd(PM, v) is convex in PM and v, and
nonlinear, in general.

More details on the convexity of these functions can be
found in [12], [23], [24], [4], [13], [15]. A convex and
nondecreasing EGU model has been proposed by [12], based
on the EGU models of [25]. The convexity of buffer losses
and power limits have been established by [23], [16] and hold
both for supercapacitors and batteries modeled with linear
relationship between open circuit voltage and state of charge.
Quadratic EM model, convex in PM, has been widely used in
literature; see, e.g., [4] and references therein. The convexity
of PMd(·) with respect to v is here a mild requirement, as for
example, an optimization approach is discussed in Section
III where convexity in v is not required. Nevertheless, more
details on the EM convexity, in both power and speed, can
be found in [15]. The engine on/off state σG is regarded as
an external signal, since obtaining its optimal value is not
in the context of this study. Interested readers are referred
to [26], [27] for optimization of σG by iteratively solving
convex problems.

The optimization problems discussed in the rest of the
paper are to be solved by approximating derivatives and
integrals by affine relations.

III. CONVEX RELAXATION FOR BACKWARD SIMULATION

In order to reduce computational complexity and simulta-
neously eliminate the non-convex function PV(·), the prob-
lem of optimal energy management of electrified powertrains
is typically optimized in the so called backward simulation
approach [28]. The approach assumes that the vehicle follows
exactly the reference velocity, i.e. v = vr, which reduces the
computational complexity in optimization by removing the
state variable v from the problem. However, it requires an



additional preprocessing step that ensures that the problem
is feasible, which can be achieved by, e.g., pre-filtering the
reference velocity [29], [7].

The resulting optimization problem is similar to (5), with
the difference that tf is fixed and v, PV, PMmin become
known signals of time. Thus, the constraints (5e), (5g) are
removed from the problem, while convexity of PMd(·) with
respect to v is not required. Similarly, the upper bound PMmax
can be removed from the problem, since the pre-filtering
step ensures that this constraint is not violated. However,
the feasible set of the resulting optimization problem is not
convex. It is well known that an equality constraint between
two functions defines a convex set only if the functions are
affine [30], which is not the case with (5c) where the right-
hand side is nonlinear. In fact, two nonlinear functions, one
convex and the other concave, define a convex set if they are
bound by the inequality

fconvex(·) ≤ fconcave(·). (6)

Next, we show that a simple reformulation of problem
(5), with removed equality constraints that contain nonlinear
terms, does not necessarily yield a convex problem.

A. Compact form reformulation

Problem (5) can be written in a compact form, with fewer
optimization variables, by expressing variables from equality
constraints and replacing their occurrences in the problem.
Hence, PM and PG can be expressed from (5b) and (5c),
leading to a problem with just two optimization variables

min
EB,Pbrk

L(·) =
∫ tf

0

(Pd(·) + Pbrk)dt (7a)

s.t.
EB(0) = EB(tf ) = EB0 (7b)
EB ∈ [EBmin, EBmax] (7c)

− dEB

dt
∈ [PBmin(·), PBmax(·)] (7d)

dEB

dt
+ PBd(·) + PMd(·) + Pbrk + PV + PA

∈ [0, σGPGmax]
(7e)

Pbrk ≥ max{0, PMmin − PV} (7f)

where the dissipative terms have been gathered in

Pd(·) = PGd(·) + PBd(·) + PMd(·) + vFVd + PA. (8)

The function PGd(PG(·), σG) is convex, since PGd(·) is
convex and nondecreasing in PG(·) and the input argument
PG(·) is a convex function, as expressed from (5c). It
follows that the objective L(·) is a convex function, although
reformulated to minimize dissipative energy instead of fuel
energy. This function is obtained by removing the difference
in potential energy

L(·) = J(·)−mg(h(tf )− h(0)) (9)

which does not affect the results. Here, h is the road altitude.
It is evident that the optimization outcome will not change

even if PA and vFVd are removed from Pd(·). However, these
are kept in the problem for resemblance with the strategy
discussed later, in Section IV.

Yet, the problem (7) is still not convex, due to the non-
convex set (7e) that does not satisfy the convexity require-
ment (6).

B. Convex relaxation

The idea of convex relaxation is to create a convex superset
of the non-convex set, such that the minimum of the relaxed
convex problem is the global minimum of the original non-
convex problem. A straightforward way is to introduce two
additional optimization variables, xB, xM, that replace the
nonlinear terms in (7e), yielding

min
EB,Pbrk,xB,xM

L(·) =
∫ tf

0

(Pd(·) + Pbrk)dt (10a)

s.t. (7b), (7c), (7d), (7f),
xB ≥ PBd(·) (10b)
xM ≥ PMd(·) (10c)
dEB

dt
+ xB + xM + Pbrk + PV + PA ∈ [0, σGPGmax] (10d)

with

Pd(·) = PGd(·) + xB + xM + vFVd + PA.

It has been logically reasoned in [12], [13] that the
optimal solution of the relaxed convex problem (10) yields
the optimal solution of the original non-convex problem,
as any other solution wastes energy, and therefore, cannot
be optimal. A more rigorous proof has been provided by
[16] for slightly different problem formulation and stricter
monotonicity conditions.

Proposition 1. Given the conditions 1) - 4) listed in Section
II, the global minimum of problem (7) can be obtained
by solving the relaxed problem (10). Thereby, a sufficient
condition for obtaining the minimum of problem (7) is that
the inequality constraints (10b) and (10c) of the relaxed
problem (10) hold with equality at the optimum.

Proof. Suppose that an optimal solution of problem (10) is
found that can be expressed as

x∗B = P ∗Bd(·) + δB

x∗M = P ∗Md(·) + δM

where δB ≥ 0, δM ≥ 0,∀t ∈ [0, tf ] are slack variables. Then,
it is possible to construct an alternative suboptimal solution
with the same battery energy and braking trajectory, ẼB =
E∗B, P̃brk = P ∗brk, but with tight constraints (10b) and (10c),

x̃B = x∗B − δB

x̃M = x∗M − δM.

A new slack variable is introduced

δG = max{0, δB + δM − P ∗G(·)}



where

P ∗G(·) =
dE∗B
dt

+ x∗B + x∗M + P ∗brk + PV + PA,

which ensures a feasible solution

P̃G(·) =
dE∗B
dt

+ x̃B + x̃M + P ∗brk + PV + PA + δG ≥ 0.

It follows that

P̃G(·)− P ∗G(·) = δB + δM −max{0, δB + δM − P ∗G(·)} ≤ 0

for any P ∗G(·) ≥ 0.
1) Time instances with strictly positive EGU power:

Consider the sets

T0 = {t ∈ [0, tf ]|P ∗G(·) = 0} (11)
T1 = {t ∈ [0, tf ]\T0} (12)

where T0 is the set of time instances where the engine is
off or idling, and T1 gathers the remaining time instances.
It follows that ∀t ∈ T1, P̃G(·) < P ∗G(·), which due to the
monotonicity of PGd(PG, ·) implies that L̃(·) < L∗(·). Hence,
L∗(·), rather than L̃(·), is suboptimal, while minimum of
L̃(·) is obtained for δB = δM = 0,∀t ∈ T1, which
consequently gives δG = 0,∀t ∈ T1.

2) Time instances under electrical operation: Minimizing
the cost for t ∈ T0 does not bring direct incentive that
necessitates δB = δM = 0, since in this interval L̃(·) = L∗(·)
regardless of the slack variables’ values. To investigate the
effect of the slack variables, the cost function is reformulated
by splitting the integral in parts

L∗(·) =
∫
t∈T0

(
dE∗B
dt

+ P ∗d (·) + P ∗brk

)
dt

+

∫
t∈T1

(
dE∗B
dt

+ P ∗d (·) + P ∗brk

)
dt

(13)

where battery energy is conserved according to (7b), i.e.∫ tf

0

dE∗B =

∫
t∈T0

dE∗B +

∫
t∈T1

dE∗B = 0. (14)

Since the first integral in (13) corresponds to purely electrical
propulsion that does not affect optimization cost directly, it is
beneficial to maximize the term

∫
t∈T0 dE

∗
B, which according

to (14) yields decreased value
∫
t∈T1 dE

∗
B, and thus decreased

optimization cost L∗(·). In practise, this means that battery
energy is maximized by recuperating braking energy as much
as possible. Solving

max
δB≥0,δM≥0

∫
T0
dE∗B = −

∫
T0

(x̃B + x̃M + PV + PA) dt

−
∫
T0

(δB + δM + P ∗brk) dt (15a)

s.t. E∗B ≤ EBmax,
dE∗B
dt
≤ −PBmin(·) (15b)

implies that optimum is obtained when δB = δM = 0,∀t ∈
T0. Hence, a sufficient condition for obtaining the solution of
problem (7) is δB = δM = 0,∀t ∈ [0, tf ], although it is not
necessary that the slack variables are zero when a constraint

in (15b) is activated and wasting away braking energy is
unavoidable. Then, dissipating the braking energy on the
braking pads or on the slack variables is interchangeable
in the view of problem (15). At these time instances, the
solution of the relaxed problem (10) may give the optimal
battery energy trajectory of problem (7), but with δB + δM >
0. Thereafter, the optimal braking power can be computed
as

P̃brk = δB + δM + P ∗brk (16)

after the optimization is finished, which consequently is the
optimal solution of problem (7), obtained by solving the
relaxed problem (10).

Similar convex relaxations have been undertaken in [12],
[13], [24], [6], [15], [16], [17], [18] for problems of com-
bined sizing and control of electrified powertrains. Common
in these studies is that braking power is removed from the
problem. Instead, the mechanical EM power or torque is kept
as optimization variable. Should braking power be needed
after the optimization is finished, it would be computed
according to (16).

IV. CONVEX RELAXATION FOR FORWARD SIMULATION

In the forward simulation approach, the vehicle speed
remains a decision variable. The resulting optimization prob-
lem is inherently more complex and, therefore, researchers
have taken several steps to reduce the computational burden.
A typical approach is to sample in space, rather than time,
wherein the number of samples is kept low by, e.g., using
a shorter receding horizon, which is a common strategy for
control of conventional vehicles [31], [32], [33], [34], [3].
For electrified vehicles it is of interest to employ longer
prediction horizon, while the computational burden is instead
relaxed by simplifying the powertrain model. Batteries and
electric machines are commonly approximated by constant
efficiencies and engine losses are described by affine rela-
tions [10], [35].

A. Component models

Data for the EGU and EM model is obtained by perform-
ing measurements under stationary conditions. The original
data, together with fitted models, affine for the EGU losses
and piecewise affine for the EM losses,

PGd(·) = a0σG + (a1 − 1)PG (17)

PMd(·) =

{
b11v + b12PM, PM < 0

b21v + b22PM, PM ≥ 0
(18)

are depicted in Fig. 2.
The battery losses are modeled by a quadratic function of

the internal battery power

PBd(·) =
R

U2
P 2

B =
R

U2

(
dEB

ds
v

)2

(19)

where the open circuit voltage U and inner resistance R
are known scalar values. Thus, the battery power limits
PBmin, PBmax also become known scalar values.
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Fig. 2. Original and fitted models of the EGU (left) and EM (right). The
EM electrical power is plotted vs. produced longitudinal vehicle force, for
several values of vehicle speed.

The battery dynamics are expressed as

dEB

ds
v = −PB (20)

where sampling in space is used instead of sampling in time.

B. Convex modeling

The first convex modeling step is to perform variable
changes. As suggested by [7], vehicle kinetic energy is used
instead of longitudinal speed and forces are used instead of
powers

EV =
mv2

2
, Fbrk =

Pbrk

v
, FV(·) =

PV(·)
v

,

FMd(·) =
PMd(·)
v

, yB =
xB

v
, yM =

xM

v
.

(21)

Accordingly, the power limits of the components will
translate to force limits. The force limits are linearized about
the reference kinetic energy EVr,

FXlim(·) =
PXlim(vr)

2vr

(
3− EV

EVr

)
, X ∈ {B,M,G}

yielding affine functions FXlim(·) with lim = {min,max}.
The error due to these approximations is generally small,
since powertrain components are often not operated at peak
power. Nevertheless, the error can be further decreased by
iterating the optimization and using the optimal velocity as
a reference in the succeeding iteration.

The optimization problem, applicable strictly to vehicles
in motion, i.e. vmin > 0, can now be summarized as

min
EV,EB,Fbrk,yB,yM

L(·) =
∫ sf

0

(Fd(·) + a1Fbrk) ds (22a)

s.t. (7b), (7c),

yB ≥
R

U2

(
dEB

ds

)2
√

2EV

m
(22b)

yM ≥ FMd(·) (22c)√
m

2

∫ sf

0

ds√
EV
≤ tmax (22d)

EV(0) = EV(sf ) = mv20/2 (22e)

EV ∈
[
mv2min/2,mv

2
max/2

]
(22f)

− dEB

ds
∈ [FBmin(·), FBmax(·)] (22g)

dEB

ds
+ yB + yM + Fbrk + FV(·) + PA

√
m

2EV

∈ [0, σGFGmax(·)]
(22h)

Fbrk ≥ max {0, FMmin(·)− FV(·)} (22i)
Fbrk ≤ FMmax(·)− FV(·) (22j)

where the longitudinal vehicle force

FV(·) =
dEV

ds
+mg sinα+ FVd(·) (23)

FVd(·) =
ρacdAf
m

EV +mgcr cosα (24)

is affine in EV. The dissipative forces

Fd(·) = (a0σG + a1PA)

√
m

2EV
+ a1(yB + yM + FVd(·))

FMd(·) =
PMd(·)
v

=

max {b11 + b12(FV(·) + Fbrk), b21 + b22(FV(·) + Fbrk)}
are convex in yB, yM, EV, respectively. The optimization
objective (23a) is also convex, but the problem is not convex
due to the non-convex right hand side of (23b) and the
constraint (23h) that does not satisfy the requirement (6).

C. Convex relaxation

The problem (23) can be made convex by introducing a
new variable yt, function of distance,

yt =
1

v
=

√
m

2EV
(25)

which depicts the time needed to drive one meter of distance.
Since the right hand side of (26) is nonlinear, the constraint
is relaxed, yielding the convex optimization problem

min
EV,EB,Fbrk,yB,yM,yt

L(·) =
∫ sf

0

(Fd(·) + a1Fbrk) ds (26a)

s.t. (7b), (7c), (23c)-(23g), (23i), (23j),

yt ≥
√

m

2EV
(26b)

yB ≥
R

U2

(
dEB

ds

)2
1

yt
(26c)

dEB

ds
+ yB + yM + Fbrk + FV(·) + PAyt ∈ [0, σGFGmax(·)]

where

Fd(·) = yt(a0σG + a1PA) + a1(yB + yM + FVd(·)).

However, it is not obvious that the solution of the relaxed
problem (27) returns the global optimum of problem (23).
Indeed, there is an incentive for (27b) to hold with inequality,
since larger yt may decrease battery losses in (27c).

Proposition 2. The global minimum of problem (23) can be
obtained by solving the relaxed problem (27), if the optimal
battery power trajectory P ∗B obtained by solving problem
(27) satisfies

PBd(P
∗
B ) ≤ σG

a0
a1

+ PA, ∀s ∈ [0, sf ]. (27)



Thereby, a sufficient condition for obtaining the solution of
(23) by solving (27) is

PBd(PBlim) ≤ σG
a0
a1

+ PA, lim = {min,max} (28)

for a given engine on/off sequence σE,∀s ∈ [0, sf ].

Proof. Disagreement between the optimums of the relaxed
and non-relaxed problems may occur, if there exists a posi-
tive slack variable δt > 0 that satisfies (27b) with equality,
for which the cost of the relaxed problem is lower than the
cost of the non-relaxed problem. Denoting with y∗t = ỹt+δt
the solution of the relaxed problem (27), the undesirable
scenario takes place when

(ỹt + δt)(a0σG + a1PA) +
R

U2

(
dE∗B
ds

)2
a1

ỹt + δt

< ỹt(a0σG + a1PA) +
R

U2

(
dE∗B
ds

)2
a1
ỹt

or equivalently, when there exists δt such that

0 < δt ≤ yt

 a1R
(
dE∗

B
ds

)2
U2y2t (a0σG + a1PA)

− 1


= yt

(
a1PBd(·)

a0σG + a1PA
− 1

)
.

(29)

A positive slack variable δt will not exist if the last term in
parentheses in (30) is less than or equal to zero. Thus, if (28)
is satisfied, the solution of the non-relaxed problem can be
obtained by solving the relaxed problem.

Using yt instead of EV in (23d) gives a milder condition
than (28). However, investigation of this scenario is not
pursued in this paper.

V. NUMERICAL EXAMPLE

The backward and forward simulation approaches are
applied here to a predictive cruise control of a hybrid electric
bus with a prediction horizon of 21 km. The EGU and
EM model have been given in Fig. 2, while the remaining
vehicle parameters are listed in Table I. In the backward
simulation approach it is assumed that the vehicle velocity
is equal to the reference velocity set by the driver, vr =
70 km/h,∀t ∈ [0, tf ]. In the forward simulation approach
the vehicle velocity is allowed to vary within vr± 10 km/h,
but the initial and final velocity are enforced to be equal
to the reference, v(0) = v(sf ) = vr, and the total travel
time is not allowed to exceed the driving time in backward
simulation, tmax = 21/70 = 0.3 h.

The problem is written in CVX modeling language [36],
[37] and solved with ECOS [20]. First order Euler dis-
cretization is used with sampling interval of 100m for the
forward simulation approach and 5.14 s for the backward
simulation approach (giving equal number of samples in both
approaches).

The optimization is carried on with σG = 1,∀s ∈ [0, sf ],
with which condition (29) is satisfied ∀s ∈ [0, sf ]. The

TABLE I
VEHICLE SPECIFICATIONS.

Af = 7.54 m2 R = 0.091 Ω a0 = 19 kW
cd = 0.7 U = 330 V a1 = 2.52
cr = 0.007 PBmax = 92.4 kW b11 = 2.13 N
ρa = 1.184 kg/m3 PBmin = −92.4 kW b12 = −0.113
PA = 7 kW EBmin = 2.1 kWh b21 = 5.63 N
m = 15.95 t EBmax = 6.3 kWh b22 = 0.123

TABLE II
OPTIMIZATION RESULTS.

Optimization approach: Forward sim. Backward sim.
Fuel consumption 23.98 l/100km 24.35 l/100km
Drag and rolling dissipation 13.49 kWh 13.34 kWh
Available braking energy 5.51 kWh 6.27 kWh
Recuperated braking energy 100 % 98.24 %
Max. battery dissipative power 3.35 kW 2.96 kW
Average optimization timea 0.4 s 0.2 s
aPC with 2.67 GHz dual-core processor and 4 GB RAM.
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Fig. 3. Optimal control and state trajectories for the backward and forward
simulation approach. Road altitude is depicted on the right axes.

optimization results are depicted in Fig. 3, and summarized
in Table II. The results indicate that when speed is optimally
controlled the vehicle accelerates in the downhill segment,
thus accumulating kinetic energy, which is later used to
drive the vehicle in the uphill segment. Consequently, the
available braking energy is decreased by 12% (compared
to the backward simulation), and the vehicle is capable of
recuperating all the energy, which is stored in the battery for
a later use. The optimization time is less than 1 s, but could
be further decreased by using a dedicated solver and feeding
the problem directly to the solver, in a sparse matrix form.

The top plot of Fig. 3 indicates that there is no need to
idle the engine when PG ≈ 0. Re-optimizing with the engine
turned off should be performed with care. The sufficient
condition (29) will not be satisfied when engine is turned
off, although it could be expected, as depicted in Table II,
that the necessary condition (28) would still be satisfied.

VI. CONCLUSION

This paper provides convex relaxation techniques for the
optimal power-split control of an HEV. Two optimization



approaches are considered, first, a backward simulation ap-
proach, where vehicle speed is equal to the reference, and
second, a forward simulation approach, where vehicle speed
is a decision variable. It is shown that in the first case the
global optimum can be obtained by solving a relaxed convex
problem, while in the second case a condition is provided,
which when satisfied, guarantees that the solution of the non-
relaxed problem can be obtained by solving a relaxed convex
problem.

Although this paper considered an HEV in a series
powertrain configuration, it is straightforward to extend the
strategy to energy management of hybrid vehicles in other
powertrain configurations, as well as to conventional and
electric vehicles. Furthermore, it is straightforward to extend
the strategy to problems with simultaneous powertrain design
and control of vehicles [24]. Detailed investigation of these
alternatives will be pursued in future studies.
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