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Abstract 

Analysing different future trajectories of technological developments we assess the prospects 

for Nordic carbon-intensive industries to significantly reduce direct CO2 emissions in the 

period 2010–2050. This analysis covers petroleum refining, integrated iron and steel 

production, and cement manufacturing in the four largest Nordic countries of Denmark, 

Finland, Norway, and Sweden. Our results show that the implementation of currently 

available abatement measures will not be enough to meet the ambitious emissions reduction 

targets envisaged for the Year 2050. We show how an extensive deployment of CCS could 

result in emissions reductions that are in line with such targets. However, large-scale 

introduction of CCS would come at a significant price in terms of energy use and the 

associated flows of captured CO2 would place high requirements on timely planning of 

infrastructure for the transportation and storage of CO2. Further the assessment highlights the 

importance of, especially in the absence of successful deployment of CO2 capture, 

encouraging increased use of biomass in the cement and integrated iron and steel industries, 

and of promoting the utilisation of alternative raw materials in cement manufacturing to 

complement efforts to improve energy efficiency. 
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1. Introduction 

The reputation, which is partly self-imposed, of the Nordic countries as front-runners in 

addressing the challenge to mitigate global climate change may be justified but deserves 

closer critical scrutiny. On the one hand, efficient utilisation of natural and energy recourses 

in the region and pro-active policy interventions have resulted in the decoupling of economic 

growth from domestic greenhouse gas (GHG) emissions (Skjelvik et al, 2007; IEA, 2013a; 

Nordic Council, 2014). On the other hand, the GHG emissions associated with Nordic 

consumption (accounting for both domestic and international emissions associated with the 

overall consumption within a country) continue to increase (Davis and Caldeira, 2010; SEPA, 

2013). Of greater relevance to the present study, when it comes to the ‘high-hanging fruits’ 

(e.g., decarbonising the transport and industry sectors), the Nordic countries face the same 

challenges as most of the other countries in the EU – and around the world. 

 

All Nordic countries have presented long-term visions for large reductions in GHG emissions 

up to Year 2050. Achieving these goals would entail a drastic deviation from the historical 

trend and would require profound changes across all sectors of the Nordic economies. While 

there is evidence that the determination to sustain the competitiveness of domestic industry 

will continue to limit the room for manoeuvring for climate policy that targets the industrial 

sectors, both nationally and regionally, there is a clear desire among Nordic legislators to 

identify and enforce strategies that would enable and facilitate decarbonisation (POF, 2009; 

The Swedish Government, 2009; NOU, 2012; The Danish Government, 2013; SEPA, 2012). 

Several studies have explored how such a transition could be realised on a national level in: 

Denmark (e.g., Lund and Mathiesen, 2009; Mathiesen et al., 2009; Lund et al., 2011; 

Richardson et al., 2011; Kwon and Østergaard, 2012; Meibom et al., 2013); Finland (e.g., 



POF, 2009; Heaps et al., 2010; Heinonen and Lauttamäki, 2012; VTT, 2012); Norway (e.g., 

NOU, 2006; NEA, 2010); and Sweden (e.g., Gode et al., 2010; Gustavsson et al. 2011), and 

on the Nordic regional scale (e.g., Benestad et al, 1993; Nordic Council, 2007). While the 

sectoral coverage and the methodological approaches of these studies vary, the treatment of 

the Nordic industry sector is often crude. Yet, the Nordic countries are highly industrialised 

and hold many energy and carbon intensive industries, which are linked to domestic natural 

resources (e.g. iron and steel, oil and gas and cement) and/or rely on the burning of fossil 

fuels (iron and steel and cement). Thus, there is a need to assess how such industries can be 

transformed to comply with the Nordic long-term visions for large reductions in GHG 

emissions up to Year 2050. 

 

This study covers three carbon-intensive industry sectors, petroleum refining, integrated iron 

and steel production, and cement manufacturing in the four largest Nordic countries of 

Denmark, Finland, Norway, and Sweden (i.e. Island not included). In Year 2010, total 

emissions from the 23 industrial plants covered within the scope of the study amounted to 25 

MtCO2 as shown in Table 1 (CITL, 2013; EEA, 2013). This corresponds to approximately 

10% of the total CO2 emissions in the Nordic region. Carbon-intensive industry accounts for 

approximately 20% of the total CO2 emissions in Finland and Sweden, the corresponding 

shares in Denmark and Norway are considerably lower at 6%–7%. 

 

Several studies have assessed the potential for future CO2 emission reductions for global 

industry, as well as for the industrial sectors of selected regions and countries (e.g., Croezen 

and Korteland, 2010; UNIDO, 2010a; Saygin et al. 2013; IEA, 2013b). Similarly, previous 

studies by the authors have explored the prospects for presently available abatement 

technologies (Rootzén and Johnsson, 2013a) and CCS (Rootzén and Johnsson, 2013b) to 



achieve significant reductions in CO2 emissions from carbon-intensive industries in the EU 

(EU-27). As Nordic legislators have gradually intensified efforts to identify workable long-

term climate policy strategies, studies are increasingly focusing on the role of domestic 

industry in the process of decarbonising the Nordic economies (e.g., SINTEF, 2009; Teir et 

al., 2010; Økstad et al., 2010; Åhman et al. 2012; IEA, 2013a). However, there is a scarcity of 

studies that account specifically for the technological heterogeneity of the energy-intensive 

process industry, and that in comprehensive and transparent ways, explore the potential of 

each industrial sector to meet stringent CO2 reduction targets in the long term. By placing 

emphasis on the technological feasibility of achieving significant reductions in CO2 emissions 

from Nordic carbon-intensive industry the present work contributes to defining the scope of 

action for Nordic climate policy. To assess the more radical system changes necessary to 

reach almost zero CO2 emissions our approach has been to combine the traits of both bottom-

up type studies (technology explicitness) and top-down type studies (capturing economy wide 

trends) in one accounting framework (as discussed in e.g. Greening et al., 2007; Algehed et 

al., 2009; Söderholm et al., 2011). This by accounting for the technological heterogeneity 

within and between the studied sectors, while also, considering wider trends relevant to future 

CO2 emissions in each industry. Given the time horizon chosen for the study (2010–2050), the 

future trajectory of technological developments is obviously associated with significant levels 

of uncertainty. To illustrate and analyse how different strategic choices influence the 

prospects for achieving the long-term goals of CO2 emissions reduction in the Nordic carbon-

intensive industry, we have used an exploratory scenario analysis, as described by van Notten 

et al. (2003) and Börjeson et al. (2005). The aims were to: (i) investigate the prospects for 

further CO2 emissions reduction within current production processes; (ii) assess the extent to 

which the implementation of CO2 capture in industrial settings might contribute to reducing 



CO2 emissions; and (iii) evaluate the effects and policy implications of different future 

trajectories of technological developments for the Nordic carbon-intensive industry. 

 

Table 1. Characteristics of the industries covered in the analysis. 
 Number of 

installations 
Capacity Average annual CO2 

emissions 
(2008–2012) 

Average annual allocations of emissions 
allowancesa 

2008–2012 2013–2020 

  Mt crude oil/year MtCO2/year Million EUA/year Million EUA/year 
Petroleum refining 

- Denmark 
- Finland 
- Norway 
- Swedenb 
Total  

 
2 
2 
2 
5 

11 

 
8.7 

13.0 
15.9 
21.8 
59.3 

 
0.9 
3.3 
1.9 
3.0 
9.1 

 
0.9 
3.2 
1.9 
3.2 
9.2 

 
0.8 
2.3 
1.5 
2.6 
7.3 

  Mt crude steel/year MtCO2/year Million EUA/year Million EUA/year 
Integrated iron and steel 

- Finlandc 
- Swedend 
Total  

 
2 
2 
4 

 
3.5 
4.1 
7.6 

 
4.6 
5.0 
9.6 

 
5.7 
7.0 

12.7 

 
4.5 
4.8 
9.4 

  Mt cement/year MtCO2/year Million EUA/year Million EUA/year 
Cement manufacturing 

- Denmark 
- Finland 
- Norway 
- Sweden 
Total  

 

 
1 
2 
2 
3 
8 

 
3.0 
1.5 
1.9 
3.0 
9.4 

 
1.7 
0.8 
1.2 
2.2 
5.8 

 
2.6 
1.2 
1.3 
2.2 
7.5 

 
1.9 
0.9 
1.0 
1.7 
5.6 

 
a EU allowance (EUA) refers to the carbon credits traded under the EU Emissions Trading System (EU ETS). One EUA represents one tonne 
of CO2 that the holder is allowed to emit. All of the industries assessed here belong to the industrial sectors deemed to be exposed to a 
significant risk of carbon leakage under the EU ETS. 
b The two Swedish ‘specialty refineries’ are not included in the analysis. 
c The smallest of the two Finnish integrated steel plants, Koverhar Steel Works, has been mothballed since 2012. With the exception of the 
sintering plant (closed in 2011) the Raahe steel plant is fully integrated with coke ovens, blast furnaces, steel plant, rolling mills and power 
plant (Rautarukki, 2009; Rautarukki, 2011). 
d The reported emissions include CO2 emissions that result from the combustion of energy gases sold by SSAB to Lulekraft AB. With the 
exception of the sintering plant the Oxelösund plant includes the entire production line stretching from raw materials to rolled plate. The 
Luleå plant, have neither sintering plant nor rolling mill, steel slabs is the final product. 

2. Methods 

2.1 Data collection 

A key component of the analysis is the provision of a good representation of the energy, 

material, and CO2 flows at each of the industry plants included in the study. For this purpose, 

the Chalmers Industry Database (Rootzén et al., 2011; Rootzén and Johnsson, 2013a; Rootzén 

and Johnsson, 2013b) has been updated and used. Table 2 outlines the main components of 

the database for the four countries in focus in the present study, and presents the data sources 

used to update the database so as to meet the requirements of the present study and ensure the 

quality of the data. The database has been further complemented and validated with statistics 



from national (Statistics Denmark, 2014; Statistics Finland, 2014; Statistics Norway, 2014; 

Statistics Sweden, 2014) and international (WBCSD, 2011; Cembureu, 2012; Europia, 2012; 

WSA, 2013; Eurostat, 2014; E-PRTR, 2014) sources. 

 

Table 2. Components of the Chalmers Industry Database applied in the current analysis. 
 Scope Data sources 

Petroleum refining - Includes 11 petroleum refineries in Denmark, 
Finland, Norway, and Sweden. The two Swedish 
‘specialty refineries’ are excluded from the 
analysis. 

- Classification of refineries according to 
configuration/complexity 

- Includes installation-level information on crude 
input, main process equipment, and process 
capacities for this equipment. 

- Details regarding internal fuel use and thermal and 
electrical energy usages 

 

General: Oil and Gas Journal, 2013; CITL, 2013 
 
Denmark: Dansk Shell, 2011; Statoil Refining 
Denmark, 2011; Statoil, 2012 
 
Finland: EAF, 2006; EAF, 2007; IFEU, 2006; 
Neste Oil, 2012; Pöyry, 2013; FEA, 2014 
 
Norway: Statoil, 2005; Statoil, 2012; Esso Norge, 
2013a, Esso Norge, 2013b, NEA, 2014 
 
Sweden: Preemraff Göteborg, 2011; Preemraff 
Lysekil, 2011; St1 Refinery, 2012  

Integrated iron and 
steel 

 

- Includes four integrated steel plants in Finland and 
Sweden (six blast furnaces [BF], six basic oxygen 
furnaces [BOF], and three coking plants). The 
Finnish Koverhar Steel Works is excluded from 
the analysis.  

- Details of production routes and production 
capacities 

- Reducing agent/fuel mix and thermal and electrical 
energy usages 

- Information on the age structure of the capital 
stock 

 

General: Steel Institute VDEh, 2009; CITL, 2013 
 
Finland: Rautarukki, 2008; Rautarukki, 2011; 
FEA, 2014 
 
Sweden: Profu, 2008; SSAB Oxelösund, 2012; 
SSAB Luleå, 2013; SSAB, 2013 

Cement 
manufacturing 

- Includes eight cement plants with eighteen cement 
kilns in Denmark, Finland, Norway, and Sweden. 

- Includes installation-level information on kiln-
types (including pre-heaters and pre-calciners), 
main fuel, and production capacities. 

- Clinker to cement ratio, fuel mix and thermal and 
electrical energy usages 

- Information on the age structure of the capital 
stock. 

 

General: GCD, 2009; CITL, 2013 
 
Denmark: Aalborg Portland, 2012; DEPA; 2012 
 
Finland: VTT, 2009; Finnsementti, 2013; FEA, 
2014 
 
Norway: Norcem, 2007; Norcem Kjøpsvik, 2009; 
Norcem Brevik, 2011; NEA, 2014 
 
Sweden: Cementa, 2007; Cementa Degerhamn, 
2012; Cementa Skövde, 2012; Cementa Slite, 2012 

2.2 Scenario generation and quantification approach 

The scenario analysis approach used in this work combines and further develops the 

methodological approaches reported by Rootzén and Johnsson, 2013a and Rootzén and 

Johnsson, 2013b. The improved and more comprehensive approach, described in the 

following sections, in combination with the application of facility-level data for each of the 

industry plants included in the study, as described above, allows for analysing the prospects 

for future CO2 emissions reductions in a comprehensive and transparent way while 



accounting for the technological heterogeneity within and across the respective industry 

sector. 

 

For each of the studied industrial sectors, one scenario that describes the future development 

of overall activity levels, the respective facility’s share of production, fuel, and production 

mixes have been developed. Furthermore, for each sector, three to five cases that describe 

different future trajectories of technological developments have been developed. 

 

For each scenario case, the total annual CO2 emissions (ET) from industry sector i in year t are 

calculated based on the following general relationship: 

 

 𝐸𝑇𝑇𝑇 = 𝐴𝑇𝑇 × (𝐸𝐶𝑇𝑇 + 𝐸𝑃𝑇𝑇) (1) 

 

where Ait denotes the total activity level in industry sector i in year t, ECit is the average 

specific emissions arising from the combustion of fossil fuels from industry sector i in year t, 

and EPit represents the process-related emissions from industry sector i in year t. The 

combustion-related emissions (EC) are calculated as the product of the average specific energy 

use and the weighted emissions factor in industry sector i in year t: 

 
𝐸𝐶𝑇𝑇 = ��𝑎𝑇𝑇𝑖𝑠𝑇𝑇𝑖�

𝑚

𝑖=1

× �(𝑓𝑇𝑇𝑖𝜃𝑖)
𝑛

𝑖=1

 (2) 

 

where aitj is the market share of industrial plant j in industry sector i in year t, sitj is the thermal 

energy use per tonne of product at industrial plant j in industry sector i in year t, m is the total 

number of industrial plants j in industry sector i, fitk is the share of fuel k in the total fuel 

energy mix in industry sector i in year t, θk is the CO2 emission factor for fuel k, and n is the 



total number of fuels used in the fuel mix in industry sector i in year t. The average specific 

energy use (GJ/t output) in industry sector i in year t, hereinafter referred to as Hit, is given by 

the first term in Eq. 2. 

The process-related CO2 emissions (EP) are calculated from: 

 
𝐸𝑃𝑇𝑇 = 𝜀𝑇𝑇�𝑎𝑇𝑇𝑖𝑝𝑇𝑇𝑖

𝑚

𝑖=1

 (3) 

 

where 𝜀it denotes the emissions per unit of output from process p, aitj is the market share of 

industrial plant j in industry sector i in year t, pitj is the output from process p relative to the 

total output industrial plant j in industry sector i in year t, and m is the total number of 

industrial plants j in industry sector i. For the refinery industry p corresponds to the annual 

production of hydrogen from the hydrogen production unit (where applicable) relative the 

total annual throughputs. 𝜀 gives the specific CO2 emissions per normal cubic meter hydrogen 

produced (tCO2/106 Nm3 H2) (API, 2009). For the integrated steel industry, whereas the 

primary purpose of the use of coke (or coal) is to function as reducing agent, all emissions are 

treated as combustion-related emission (i.e. Ep=0). For the cement industry p corresponds to 

the clinker to cement ratio and 𝜀 gives the specific CO2 emissions arising from the calcination 

of limestone per tonne of clinker produced (tCO2/t clinker) (IPCC, 2006). 

 

The current conditions are used as the starting point for all the scenarios. Only direct CO2 

emissions are included in the estimates. Emissions that result from the combustion of biomass 

are excluded from the emission estimates. With a few exceptions, CO2 emissions stemming 

from off-site generation of electricity, steam or heating and cooling but imported by the entity 

are not taken into account. In those cases in which process gases are currently transferred off-



site, the CO2 emissions that arise from the combustion of the same gases are attributed to the 

original source. Any exceptions from these general assumptions are described in Section 2.4. 

2.2.1 Trajectories of technological developments and technology stock turnover 

For each of the studied industrial sectors, three to five cases have been developed in which the 

effects of different future trajectories of technological developments are explored. Thus, the 

following main trajectories are investigated: 

 

• No major changes take place in the present technology stock, i.e., energy efficiency 

improvements are limited to modifications to the remaining current capital stock. 

• The current technology stock is gradually renewed as older process equipment is 

replaced with proven best-available technology (BAT), with similar characteristics, 

albeit with improved energy efficiency and lower specific emissions. The age of 

remaining existing process equipment determines the turnover rate. For the petroleum 

refining industry, no case involving capital stock turnover is applied. 

• Cases with deployment of CO2 capture. For all industries, CO2 capture is assumed to 

be available on a commercial scale from Year 2030. The rate of deployment of CCS 

depends on the rate of turnover of the existing technology stock. Two CCS cases are 

investigated for the petroleum refining industry, one for integrated iron and steel 

manufacturing, and three for the cement industry. 

 

In the Nordic refining industry, new investments are assumed to be directed towards 

conversion or treatment and/or capacity to produce biofuels; no new investments occur in 

primary refining capacity. In this respect, Nordic refineries have been divided into four 

categories (Configurations 1–4) based on level of complexity (Reinaud, 2005; European 



Commission, 2012a; Johansson et al., 2012; Oil and Gas Journal, 2013). The share of the total 

transformation output in the Nordic region from the complex refineries (Configurations 3 and 

4) is assumed to increase at the expense of simpler refineries that are less flexible and have 

lower conversion capacities (Configurations 1 and 2). 

For the Nordic steel and cement industries, the age profile of the remaining capital stock, and 

the typical technical lifetime of key plant equipment (i.e., blast furnaces and cement kilns), set 

at 50 years, determine the rate of stock turnover (cf. Rootzén and Johnsson, 2013a; Rootzén 

and Johnsson, 2013b). Obsolete capacity is assumed to be replaced with new BAT process 

technologies (or to undergo major refurbishment), with improved performance profiles in 

terms of energy efficiency and CO2 intensity. Although the use of technical lifetime and age 

as indicator for the turnover of industrial process equipment has certain drawbacks (Lempert 

et al., 2002; Philibert, 2007; Worrell and Biermans, 2005), it is widely used as the basis for 

describing technology diffusion when modelling the development of industry energy usage 

(see discussions in e.g., Lempert et al., 2002 and Fleiter et al., 2011). 

2.2.2 Sensitivity analysis 

Inputs to the basic scenarios and the cases investigated have been selected to describe a 

development in which the strategies to reduce emissions that are available in each industry 

sector are fully exploited. However, to assess and illustrate how sensitive the estimated CO2 

emissions trajectories are to changes in key scenario inputs basic sensitivity analysis was 

carried out. For each industry and for each scenario case, we re-calculated the CO2 emissions 

estimates for Year 2050 (cf., Eq. 1–5) with low and high values for each parameter, while all 

the other parameters were held constant. The ranges of the input variables were selected so as 

to represent a reasonable variety of alternative development paths. 



2.3 Basic assumptions 

2.3.1 Future activity levels and emission reduction targets 

Table 3 summarises the assumptions made regarding future activity levels, by country and by 

sector of industry. Overall refinery throughput in the Nordic countries are assumed to decline 

throughout the studied period, primarily as a result of changing and declining demand in the 

transport sector (cf. IEA, 2013a). For both integrated iron and steel manufacturing and cement 

production, the assumed average annual output in the period 2020–2050 are in level with 

production levels before the financial and economic crisis of 2008–2009 (WSA, 2013; 

UNFCCC, 2014). 

 

Table 3. Activity levels by country and by sector of industry – scenario assumptions. 
 2010 2030 2050 Specific energy use 

in 2010 (GJ/t output) 
Petroleum refining 

Total transformation throughputa (Mt/year), of 
which (%): 

- Denmark 
- Finland 
- Norway 
- Sweden  

 

 
56.4 

 
13 
23 
29 
34 

 

 
35.9 

 
13 
23 
29 
34 

 

 
20.6 

 
0 

51 
0 

48 

 
 
 

1.8 – 1.9 
2.1 – 3.0 
1.1 – 2.6 
1.7 – 2.5 

Iron and steel industry 

Integrated iron and steel (BF/BOF) (Mt crude 
steel/year), of which (%): 

- Finland 
- Sweden 

 

 
6.1 

 
45 
55 

 
6.6 

 
45 
55 

 
6.6 

 
45 
55 

 
 
 

19.1 
17.2 – 17.6 

Cement manufacturing 

Total cement productionb (Mt cement/year), of 
which (%): 

- Denmark 
- Finland 
- Norway 
- Sweden 

 

 
6.6 

 
23 
18 
24 
35 

 

 
9.4 

 
32 
16 
20 
32 

 
9.4 

 
32 
16 
20 
32 

 
 
 

4.1 – 6.9 
3.5 – 3.6 
3.5 – 3.6 
3.7 – 4.5 

 
a Assuming a decline in demand in all end-use sectors throughout the studied period (cf., Europia, 2011; European Commission, 2011; IEA, 
2013a). The most complex refineries, currently found in Finland and Sweden, are assumed to endure the longest (see also section 2.4.1). 
b Between 5% and 10% of total cement production is currently white cement (the rest is grey cement), and this share is applied throughout the 
studied time period of 2010–2050. From the Year 2020 all Nordic cement plants are assumed to operate at close to full capacity (which was 
not the case in 2010). The total production capacity in each country is assumed to remain largely unchanged throughout the studied period. 
 
The emissions trajectories that define the indicative caps for the period 2010–2050 

corresponds to the total amount of emissions allowances distributed to the industries included 

in this study under the EU ETS for the period 2010–2020 and the proposed reduction targets 

for 2030 and 2050, for the period beyond 2020 (as outlined in the European Commission’s 



“Low-carbon economy roadmap” and “Policy framework for climate and energy in the period 

from 2020 to 2030”; European Commission, 2011; European Commission, 2014). 

2.3.2 CO2 capture options 

In principle, both post-combustion capture (PC) and oxyfuel combustion (OF) can be applied 

in the industrial processes assessed herein (see Rootzén and Johnsson, 2013b and references 

therein for a more thorough discussion). However, in comparison to application of CO2 

capture in the power sector, there is more to gain by carefully adapting the capture process of 

choice to the respective production process (see e.g., Johansson et al., 2012; ULCOS, 2012; 

ECRA, 2012; IEAGHG, 2013). The key characteristics of the CO2 capture options considered 

for each of the three industrial sectors investigated in the present work are further described in 

Section 2.4. 

 

In the three industries analysed in the present work, CO2 capture is assumed to be available on 

a commercial scale from Year 2030. While earlier introduction of CCS appears to be less 

probable given the current rate of development, further delay would limit the prospects for 

CCS to contribute to reducing substantially CO2 emissions up to Year 2050 (cf. Rootzén and 

Johnsson, 2013b). 

 

Where CO2 capture is assumed to be applied, the aggregated annual CO2 emissions (eitj) from 

industry plant j in industry sector i in year t are calculated as: 

 

 
𝑒𝑇𝑇𝑖 = 𝐴𝑇𝑇 × 𝑎𝑇𝑇𝑖 �𝑠𝑇𝑇𝑖 �(𝑓𝑇𝑇𝑖𝜃𝑖)

𝑛

𝑖=1

+ �𝜀𝑇𝑇𝑝𝑇𝑇𝑖�� (1 − 𝜂) (4) 

 



where Ait denotes the total activity level in industrial sector i in year t (cf., Eq. 1), aitj is the 

market share of industrial plant j in industry sector i in year t, sitj is the thermal energy use per 

tonne of product at industrial plant j in industry sector i in year t, fitk is the share of fuel k in 

the total fuel energy mix in industry sector i in year t, θk is the CO2 emission factor for fuel k, 

n is the total number of fuels used in the fuel mix in industry sector i in year t (cf., Eq. 2), 𝜀it 

denotes the emissions per unit of output from process p, and pitj is the output from process p 

relative to the total output from industrial plant j in industry sector i in year t (cf., Eq. 3). The 

average CO2 avoidance rate η yields the emission reductions achieved relative to a reference 

plant without CO2 capture, and can vary from 0 to 1. The CO2 avoidance rate that can be 

achieved, both economically and technically, will ultimately depend on the preconditions set 

at each individual facility, e.g., the number of emission sources at each site, the flue gas flows 

and composition of the flue gases at each emission source. This has been taken into account in 

our estimates of the possible avoidance rates in each industry. 

 

2.4 Sector-specific assumptions 

While the general approach taken is the same for the three industrial sectors, to represent 

accurately the heterogeneity within and between the studied sectors, the specific scenario set-

up is different. Figure 1 outlines the basic scenarios (and scenario assumptions) and cases 

explored for each of the three industrial sectors. 

 



 

Figure 1. Overview of the relationships between the scenarios (basic assumptions numbered 
1–3) and cases investigated for each of the three industrial sectors. 

 

2.4.1 Petroleum refineries 

Three cases that describe different future trajectories of technological developments in the 

Nordic petroleum refining industry are explored, referred to here as Nordic Refining Cases 0, 

2 and 3 (NR0, NR2–NR3). Table 4 summarises the assumptions and input data used in each 

of the cases. The following underlying scenario applies to all cases: (1) a steady decline in 

output from the Nordic refinery industry; (2) the most complex refineries, which are more 

capable of adapting to changing markets, endure the longest; and (3) the internal fuel mix 

remains largely unchanged throughout the studied period (cf., Figure 1).  

 

ü N
R0

Nordic Refining Case 0
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energy efficiency improvements
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As less complex refineries are assumed to be gradually phased out over the period studied, 

CCS deployment in the Nordic refinery industry is assumed be limited to more complex 

refineries and to consist entirely of retrofits. The two following cases for the deployment of 

CO2 capture in the petroleum refining industry are analysed: 

 

• NR2: PC applied to a combination of sources within the refinery (together 

representing approximately 60% of the total CO2 emissions from the refining process), 

e.g., applying capture to the combined stack (collecting flue gases from several 

furnaces, boilers, and/or CHP plant), catalytic cracker and/or hydrogen plant. 

• NR3: CHP plant and/or furnaces and boilers are modified for OF operation with CO2 

capture. 

 

To differentiate the effects of the respective CO2 capture option, the set-up is assumed to be 

similar across all the Nordic refineries that are remaining in 2030–2050, and in each of the 

two cases, the dominant capture technology (post-combustion capture in NR2 and oxyfuel 

combustion in NR3) is assumed to cover the entire market. 

  



 

Table 4. Nordic petroleum refining – scenario summary.  
 2010 2030 2050  
Structure of production (NR0, NR2–NR3) 
 

Share of production (%) 
- Configurations 1 and 2 
- Configurations 3 and 4 

 

 
 
 

45 
55 

 
 
 

13 
87 

 
 
 

0 
100 

 

Specific thermal energy use (NR0) (GJ/t throughput) 
 

- Configurations 1 and 2 
- Configurations 3 and 4 

 

 
 

1.1–2.5 
2.2–3.0 

 

 
 

1.9 
2.2–3.0 

 

 
 
 

2.2–3.0 
 

 

Hydrogen productiona (NR0, NR2–NR3) 
 

- Steam reforming (×106 Nm3 H2/year) 
 

 
 

2110 

 
 

2330 

 
 

2330 

 

    Fuel emission 
factorsb 

(tCO2/GJ) 
Fuel mix (NR0, NR2–NR3) (energy-based %) 
 

- Refinery gas 
- Residual fuel oil 
- Other petroleum products 
- Natural gas 
- Biomassc 

 

 
 

71 
4 

13 
11 

0 

 
 

71 
4 

13 
11 

0 

 
 

71 
4 

13 
11 

0 

 
 

0.058 
0.077 
0.097 
0.056 

0 

 Targeted emission 
source 

CO2 emissions 
avoided (%) 

Thermal energy 
(GJ/t throughput) 

Electricity 
(kWh/t 

throughput) 
Capture optionsd 

 
NR2: Post-combustion (PC) 
 
 
NR3: Oxyfuel combustion (OF) 
 

 
 

Combined stack + 
FCC/Hydrogen plant 

 
Furnaces and boilers 

 
 

70 
 
 

70 

 
 

5.2 – 6.0 
 
 

2.2 – 3.0 

 
 

50 – 110 
 
 

440 – 550 

a Does not include hydrogen produced as a by-product of catalytic reforming. The specific CO2 emissions per normal cubic meter hydrogen 
produced was set to 473.6 tCO2/106 Nm3 H2 (API, 2009). 
b Estimated based on previous report (European Commission, 2012b). 
c The use of biomass as an internal fuel in the refining process has not been considered in any of the cases of NR0 and NR2–NR3. However, 
the effects of an increased share of biomass on the internal fuel mix are explored in the sensitivity analysis (see Section 4.1.1). 
d The authors’ own estimations based on previous reports (van Straelen et al., 2010; Allam et al., 2005; Kuramochi et al., 2012). The category 
‘CO2 emissions avoided’ reflects the emission reductions achieved relative to a plant without CCS. ‘Thermal energy’ is the specific thermal 
energy use, including the energy penalty related to CO2 capture, per tonne of output. ‘Electricity’ denotes the specific electricity usage, 
including the additional electricity usage associated with CO2 capture, per tonne of output. 

2.4.2 Integrated iron and steel manufacturing 

Three cases that describe different future trajectories of technological developments in the 

Nordic primary steel industry are explored, referred to as Nordic Steel Cases 0–2 (NS0–NS2). 

Table 5 summarises the assumptions and input data used in each of the cases. The same basic 

scenario is applied to all cases (cf., Figure 1): (1) integrated iron and steel production in the 

remaining Nordic steel plants return to the levels that existed prior to the financial and 

economic crisis of 2008–2009 and remain constant thereafter; and (2) biomass is reintroduced 



as a source of renewable carbon, partly substituting for coke and coal as the reducing agent 

and fuel. 

 

Here, the top gas recycling blast furnace (TGR-BF) is assumed to hold the greatest promise 

for applying CO2 capture without disrupting the core production processes (IEAGHG, 2013). 

Thus, in the third case: 

 

• NS2: A TGR-BF adapted for CO2 capture is the standard for blast furnaces 

commissioned from Year 2030 (cf. Rootzén and Johnsson, 2013b). As in NS1, the age 

of the existing blast furnaces determines the rate at which the current technology stock 

can be replaced. In this case, however, the replacement of existing blast furnaces is 

assumed to be somewhat delayed in anticipation of further development of the TGR-

BF process. 

  



 

Table 5. The Nordic integrated iron and steel industry – scenario summary.  
 2010 2030 2050  
Structure of production (NS1–NS2) 
 
NS1: Share of production (%) for 

- Existing capacity 
- New capacity (no CCS) 

 
NS2: Share of production (%) for 

- Existing capacity 
- New capacity (TGR-BF + CCS) 

 

 
 
 

100 
0 
 
 

100 
0 

 
 
 

10 
90 

 
 

100 
0 

 
 
 

0 
100 

 
 

0 
100 

 

Specific thermal energy use (NS0-NS1) (GJ/t 
crude steel) for 
 

- Existing capacity 
- New capacitya 

 
 
 

17.2 – 19.1 
16.5 

 

 
 
 

16.7 – 18.7 
16.3 

 
 
 

16.5 – 18.4 
16.0 

 

    Fuel emission 
factorsb 

(tCO2/GJ) 
Reducing agent/fuel mix (NS0-NS2) (energy-
based %) 
 

- Coal 
- Coke (imported) 
- Fuel oil 
- LPG 
- Biomassc 

 
 
 

85 
3 

11 
1 
0 

 
 
 

80 
3 

11 
1 
5 

 
 
 

65 
3 

11 
1 

20 

 
 
 

0.095 
0.107 
0.077 
0.063 

0 
 Targeted 

emission source 
CO2 emissions 
avoided (%) 

Thermal energy 
(GJ/t throughput) 

Electricity (kWh/t 
throughput) 

Capture optionsd 

NS2: Top Gas Recycling Blast Furnaces (TGR-
BF + CCS). 
 

 
Blast furnace 

 
60 

 
16.5 

 
333 

a Energy intensity values for “state-of-the-art” process technologies estimated based on previous studies (Fruehan et al., 2000 and Worrell et 
al., 2008). 
b Estimated based on a previous report (European Commission, 2012b). 
c The potential share of biomass estimated based on previous studies (Norgate et al., 2012; Suopajärvi et al., 2013). 
d The authors’ own estimations based on previous studies (Birat J-P et al., 2008; UNIDO, 2010b; Kuramochi, 2012; ULCOS, 2012; Eurofer, 
2013; IEAGHG, 2013). The category ‘CO2 emissions avoided’ reflects the emission reductions achieved relative to a plant without CCS. 

2.4.3 Cement industry 

In the basic scenario, which forms the basis for all cases for the Nordic cement industry, we 

assume that: (1) all Nordic cement plants return to almost full capacity utilisation by Year 

2020 and that overall cement production remains constant thereafter; (2) the share of 

alternative raw materials in the finished cement continues to increase; and (3) the share of 

biomass-based fuels in the fuel mix increases. Five cases that describe different future 

trajectories of technological developments in the Nordic cement industry are explored, 

referred to herein as Nordic Cement Cases 0–4 (NC0–NC4). Table 6 summarises the 

assumptions and input data used in each of the cases. Three cases for the introduction of CO2 

capture to the Nordic cement industry are analysed (cf. Rootzén and Johnsson, 2013b): 



 

• NC2: Cement kilns with post-combustion capture are the standard for new capacity. 

• NC3: Cement kilns with partial oxy-combustion (targeting the precalciner alone) are 

the standard for new capacity. 

• NC4: Cement kilns adapted for full oxy-combustion (CO2 capture applied to both the 

precalciner and the cement kiln) are the standard for new capacity. 

 

CCS retrofit is not included as an option in any of the cases (NC2–NC4). Thus, as in NC1, the 

rate of CCS deployment will depend on the rate of turnover of existing kiln systems. 

However, in these cases, the process of replacing existing kiln systems is assumed to be 

slightly delayed pending the commercial deployment of the CO2 capture technologies. 

Cement kiln systems that are dedicated to the production of white cement are assumed not to 

apply CCS in any of the cases. 

  



 

Table 6. The Nordic cement industry – scenario summary.  
 2010 2030 2050  
Structure of production (NC1–NC4) 
 
NC1: Share of production (%) for 

- Existing capacity 
- New capacity (no CCS) 

 
NC2-4: Share of production (%) for 

- Existing capacity 
- New capacity (TGR-BF + CCS) 

 

 
 
 

100 
0 
 
 

100 
0 

 
 
 

71 
29 

 
 

96 
4 

 
 
 

20 
80 

 
 

6 
94 

 

Specific thermal energy usea (NC0–NC1) 
(GJ/t cement clinker) for 
 

- Existing capacity 
- New capacityb 

 
 
 

3.6 – 4.6 (7.0) 
3.1 (5.5) 

 

 
 
 

3.3 – 4.4 (6.6) 
3.1 (5.4) 

 
 
 

3.2 – 4.1 (6.2) 
3.0 (5.2) 

 

Clinker to cement ratioc (NC0–NC4) (%) 
 

80 – 90 70 – 80 60 – 70  

    Fuel emission 
factorsd 

(tCO2/GJ) 
Reducing agent/fuel mixe (NC0–NC4) 
(energy-based %) for 
 

- Coal 
- Pet-coke 
- Fuel oil 
- Alternative fuel 
- Biomass 

 
 
 

50 
22 

1 
15 
11 

 
 
 

30 
0 
0 

30 
40 

 
 
 

25 
0 
0 

25 
50 

 
 
 

0.098 
0.098 
0.077 
0.100 

0 
 Targeted emission 

source 
CO2 emissions 
avoided (%) 

Thermal energy 
(GJ/t throughput) 

Electricity (kWh/t 
throughput) 

Capture optionsf 

 
NC2: Post combustion (PC) 
NC3: Partial oxy-combustion (POC) 
NC4: Full oxy-combustion (FOC) 
 

 
 

Kiln + Precalciner 
Precalciner 

Kiln + Precalciner 

 
 

90 
65 
90 

 
 

6.1 
3.5 
3.2 

 
 

180 
200 
220 

a Numbers in parentheses refer to the estimated specific thermal energy usage for white cement production. BAT values estimated based on 
previous reports (WBCSD, 2011; European Commission, 2013). 
b Energy intensity values for “state-of-the-art” cement kiln systems, estimated based on a previous report (European Commission, 2013). 
c The specific CO2 emissions per tonne of clinker produced, arising from the calcination of limestone, was set to 0.51 tCO2/t clinker. The 
default cement clinker is assumed to have a 65% CaO fraction (IPCC, 2006). 
d Estimated based on a previous report (European Commission, 2012b). 
e The shares of alternative and biomass fuels, estimated based on previous reports (ECRA, 2009; Aranda Usón et al., 2013). 
f The authors’ own estimations based on previous studies (IEAGHG, 2008; ECRA, 2009; ECRA, 2012; Kuramochi, 2012). The category 
‘CO2 emissions avoided’ denotes the emission reductions achieved relative to a plant without CCS; ‘Thermal energy’ reflects the specific 
thermal energy usage, including the energy penalty related to CO2 capture, per tonne of output. The category of ‘Electricity’ represents the 
specific electricity use, including the additional electricity usage associated with CO2 capture, per tonne of output. 
 

3. Results 

3.1 Petroleum refining 

Figure 2 shows the estimated annual CO2 emissions and total thermal and electrical energy 

usage levels for Nordic refineries in the period 2010–2050, for the cases without (NR0) and 

with (NR2 and NR3) introduction of CCS. In the base case (NR0) reductions in the levels of 



CO2 emissions and energy usage are primarily a result of the assumed reduction in total 

output from the Nordic refineries, from 56.4 Mt/year in Year 2010 to 20.6 Mt/year in Year 

2050. In NR2 and NR3, in which CO2 capture is introduced from Year 2030, CO2 emissions 

are reduced to target levels by the Year 2050. However, this additional CO2 abatement comes 

at the cost of increased energy usage. In case NR2, where post-combustion capture is assumed 

to be the preferred capture technology, total annual thermal energy use in Year 2050 is just 

10% below the level in Year 2010, despite a 65% reduction in refinery throughputs. In NR3, 

where oxyfuel combustion is assumed to be applied, total electric energy usage in Year 2050, 

is more than double that in Year 2010. Again, this occurs despite the assumed decline in total 

output of petroleum products from Nordic refineries during the same period. 

 

The assumptions that the Nordic refineries with the least flexibility will be phased out and that 

increased processing intensity will offset the effects from energy conservation measures result 

in an increase in specific energy usage (GJ/t throughput) in all cases (NR0–NR3). In NR0, the 

average specific thermal energy usage increases from 2.2 GJ/t throughput in Year 2010 to 2.6 

GJ/t throughput in Year 2050. In NR2 (post-combustion capture) energy penalties, which are 

primarily associated with capture solvent regeneration, result in an increase in specific 

thermal energy usage from 2.2 GJ/t throughput in Year 2010 to 5.6 GJ/t throughput in Year 

2050. Similarly, in case NR3, specific electricity usage increases from 73 kWh/t throughput in 

Year 2010 to 470 kWh/t throughput in Year 2050 as additional energy is required for air 

separation. 

 



 

Figure 2. Estimated levels of CO2 emissions and energy usage from the Nordic petroleum 
refining industry in the period 2010–2050, as obtained in the present work. The base case 
(NR0) assumes a steady decline in output from the Nordic refinery industry without any 
deployment of CCS. Cases NR2 (post-combustion) and NR3 (oxyfuel combustion), in 
addition to the abatement measures in the base case, assume the deployment of CO2 capture 
from Year 2030. (a) Estimated CO2 emissions from Nordic refineries in the period 2010–
2050, with (dashed line) or without (solid line) the introduction of CCS. The emission cap for 
the period 2010–2050 (crosses) corresponds to the total number of emission allowances 
allocated to Nordic refineries for the period 2010–2020 and the proposed reduction targets for 
Year 2030 and Year 2050. (b) Estimated development of thermal (solid/dashed lines) and 
electrical (bars) energy usage with (light brown) or without (brown) the introduction of CCS. 
The chart only display the cases with the lowest and highest thermal (NR0 and NR2) and 
electrical (NR0 and NR3) energy use. 
 

3.1.1 Sensitivity analysis 

Table 7 displays a summary of the selected parameters and the lower and upper bounds 

employed in the sensitivity analysis for the refinery industry (cf., Eq. 1–5, and see Table 2 for 

references). 

 

Table 7. Parameters used in the sensitivity analysis of Nordic Refining Cases 0, 2 and 3 (NR0, 
NR2–NR3). 

 Notation Lower value Base value Upper value 
 
Nordic Refining Case 0 (NR0) 
Activity level (Mt throughput/year) a 

Average thermal energy use (GJ/t throughput)b 
Hydrogen production (×106 Nm3/year) c 

Biomass share of refinery fuel (% energy-based) 
 

 
 

A 
H 
P 
f 

 
 

10.0 
1.7 

1165 
0 

 
 

20.6 
2.6 

2330 
0 

 
 

56.4 
3.7 
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Nordic Refining Case 2 (NR2) 
Activity level (Mt throughput/year) a 

Average thermal energy use (GJ/t throughput) 
CO2 avoidance rate (%) d 

 

 
A 
H 
η 

 
10.0 

4.6 
60 

 
20.6 

5.6 
70 

 
56.4 

6.6 
80 

Nordic Refining Case 3 (NR3) 
Activity level (Mt throughput/year) a 

Average thermal energy use (GJ/t throughput) 
CO2 avoidance rate (%) d 

 

 
A 
H 
η 

 
10.0 

2.2 
60 

 
20.6 

2.6 
70 

 
56.4 

4.6 
80 

a The lower value for the activity levels in corresponds to an 80% reduction in activity levels by Year 2050 relative to Year 2010 (cf., IEA, 
2013a). The higher value implies that the activity levels are the same in Year 2050 as in Year 2010. 
b For the average thermal energy usage of the plant stock the lower and higher boundary correspond to the range of specific energy usage of 
European refineries (European Commission, 2012a). 
c The lower value corresponds to, approximately, a halving of the current capacity utilisation, while the upper boundary implies maximal 
utilisation of the existing hydrogen production units. 
d The CO2 avoidance rate that can be achieved, both economically and technically, will ultimately depend on the preconditions set at the 
individual refineries (Johansson et al., 2012). 
 
 
Figure 3 shows the results of the sensitivity analysis, whereby the horizontal bars represent 

the output ranges of the respective scenario parameters. As discussed more thoroughly below, 

the development of refinery throughput and associated emissions from the Nordic refining 

industry ultimately depend on how demand develops in the transport sector. The use of 

biomass as internal fuel in the refining process has not been considered in any of the above 

cases, NR0–NR3. However, there are indications of increasing interest in the use of biomass, 

both as feedstock and fuel in the Nordic refinery industry. Neste Oil in Finland and Preem AB 

in Sweden have already invested in the production of renewable diesel. Overall, the outcome 

of this part of the analysis suggests that, even in a development where a majority of the 

Nordic refineries are closed, introduction of CO2 capture at the remaining refineries may be 

required to meet stringent CO2 reduction targets in the long term. 
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Figure 3. Tornado diagram showing the sensitivity of the CO2 emissions estimates to changes 
in key scenario inputs. The horizontal bars indicate the ranges of the emissions estimates in 
Year 2050 for high and low values of each of the selected scenario inputs. The black vertical 
lines indicate the base values of the estimated CO2 emissions, in the same year, for cases 
NR0, NR2, and NR3. 
 

3.2 Integrated iron and steel production 

Figure 4 presents the projected CO2 emissions trajectories, together with the aggregated level 

of thermal and electrical energy usage for the Nordic steel industry over the studied period for 

the two cases in which CCS is excluded as an option (NS0 and NS1) and for the scenario case 

with deployment of CCS (NS2). In NS0 and NS1, the emission reductions achieved in Year 

2050 remain limited. Replacing existing process equipment with BAT (NS1) has limited 

effect, since Nordic blast furnaces already operate at close to BAT levels. Thus, in both NS0 

and NS1, reintroduction of biomass as a source of renewable carbon is the main driver of 

reductions in emissions. 

 

In NS2, where existing blast furnaces are gradually replaced with TGR-BFs with CO2 capture 

from Year 2030, CO2 emissions are reduced approximately in line with the target levels. 

TGR-BF consumes less coke than existing conventional blast furnace, thus the introduction of 

CO2 capture in NS2 has limited effect on overall thermal energy usage when comparing to 

present energy use. However, electrical energy use in NS2 (2.2 TWh/year in Year 2050) is 

significantly higher than in NS1 (1.1 TWh/year in Year 2050). This is due to the loss of blast 

furnace gas and investments in air separation, CO2 separation and compression. In NS1 where 

the existing technology stock is replaced with state-of-the-art process equipment, specific 

electricity usage is gradually reduced, from an average level of 313 kWh/t steel in Year 2010 

to 161 kWh/t steel in Year 2050. In case NS2, specific electricity usage in Year 2050, 

approximately 330 kWh/t steel, is above present (Year 2010) levels. 



 

 

Figure 4. Evolution of CO2 emissions and energy usage in the Nordic primary steel industry 
for the period 2010–2050, as obtained from the present work. (a) Estimated cumulative CO2 
emissions from Nordic primary steel production with (blue triangles, NS2) or without 
deployment of CCS (blue circles, NS0; and blue squares, NS1). The emissions trajectory that 
define the emission cap for the period 2010–2050 (crosses) are derived from the emission cap 
for the EU ETS for the period 2010–2020 and the proposed reduction targets for Year 2030 
and Year 2050, for the period beyond Year 2020. (b) Estimated development of thermal 
(solid/dashed lines) and electrical (bars) energy usage with (light blue, NS2) or without (blue, 
NS1) the introduction of CCS. The chart only display the cases with the lowest and highest 
thermal (NS1 and NS2) and electrical (NS1 and NS2) energy use. 
 

3.2.1 Sensitivity analysis 

Table 8 lists the parameters used and the range of values employed in the sensitivity analysis 

of the Nordic steel industry (cf., Eq. 1–5 and Table 2). 

 

Table 8. Parameters subjected to the sensitivity analysis of Nordic Steel Cases 0–2 (NS0–
NS2). 

Scenario case Notation Lower value Base value Upper value 
Nordic Steel Case 0 (NS0) 
Activity level (Mt crude steel/year) a 

Biomass share of fuel/reducing agent (% energy-based) b 

Average thermal energy use (GJ/t crude steel) c 
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f 

H 

 
4.0 

0 
15.0 
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20 

17.5 

 
8.0 
40 

18.2 

Nordic Steel Case 1 (NS1) 
Activity level (Mt crude steel/year) a 

Biomass share of fuel/reducing agent (% energy-based) b 
Average thermal energy use (GJ/t crude steel) c 
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Activity level (Mt crude steel/year) a 

Biomass share of fuel/reducing agent (% energy-based) b 
Average thermal energy use (GJ/t crude steel) 
CO2 avoidance rate (%) d 
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a The lower boundary for the activity level corresponds to a 35% reduction relative to the production level in Year 2010. The higher value 
would entail full capacity utilisation at all existing Nordic integrated steel plants. 
b Biomass could be used to replace coal and coke in different stages of the integrated route (Norgate et al., 2012). As lower and upper 
boundaries for the use of biomass as a substitute for coke and coal, both as reducing agent and fuel, f, we used 0% and 40%, respectively. 
c The lower value for the specific thermal energy usage in Year 2050 is based on estimates of the minimum specific energy usage in the 
integrated steelmaking route (Fruehan et al., 2000). The higher value corresponds to the average specific thermal energy usage in the Nordic 
primary steel industry in Year 2010. 
d The specific application of CO2 capture will be site-specific. Thus, the CO2 avoidance rates that can be achieved practically will vary 
significantly (Ho et al., 2013; IEAGHG, 2013). 

 

Figure 5 shows the lower and upper estimates of the CO2 emission levels in Year 2050 

obtained from the variation of each parameter for all the cases, NS0–NS2. As could be 

expected the sensitivity analysis confirm that the level of production in the Nordic iron ore 

based steel industry will be decisive for the future levels of CO2 emissions. The sensitivity 

analysis also highlights the potential importance of encouraging the use of biomass as a 

substitute for coke and coal. Finally, it is clear from the results that among the measures 

included in this study, apart from considerably reducing the production of iron ore based steel, 

there is no real alternative to CCS if the goal is to radically reduce CO2 emissions from the 

Nordic steel industry up to Year 2050. 

Taken together the results reaffirm that out of the options assessed in the present study, unless 

production levels are significantly reduced, only CCS can deliver the emission reductions 

required to reach long term targets. 
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Figure 5. Tornado graph showing the sensitivity of the CO2 emissions estimates to changes in 
key scenario inputs. The blue horizontal bars indicate the ranges of emissions estimates in the 
end year for the high and low values of each of the selected scenario inputs. The black vertical 
lines indicate the base values of the estimated CO2 emissions in Year 2050 for cases NS0, 
NS1 and NS2. 
 

 

3.3 Cement production 

Figure 6 presents the estimated CO2 emissions trajectories, together with the aggregated 

values for thermal and electrical energy usage in Nordic cement plants in the period 2010–

2050 for the cases without introduction of CCS (NC0 and NC1) and for the cases that assume 

deployment of CCS (NC2–NC4).  

 

Despite a somewhat higher cement output, enhanced thermal efficiency, increased clinker 

substitution and the shift away from coal and pet-coke, result in a reduction in total annual 

emissions from Nordic cement plants in both NC0 and NC1. Whereas the average thermal 

energy use in Year 2050 is significantly lower in NC1 (3.2 GJ/t) than in NC0 (3.7 GJ/t), this 

has little impact on the overall level of emissions. In NC1, gradual improvements and 

replacements of e.g., grinders and fans, lead to a decrease in specific electricity usage, from 

an average level of 131 kWh/t cement in Year 2010 to 102 kWh/t cement in Year 2050. 

 

In NC2 (post-combustion) and NC4 (full oxy-combustion), assuming an average CO2 

avoidance rate of 90% in both cases, the levels of CO2 emissions are reduced in line with the 

targeted levels. Introduction of CO2 capture would in both cases significantly influence 

energy usage. In NC2, increases in specific thermal energy usage, due to energy penalties 

associated primarily with capture solvent regeneration, results in a 35% higher thermal energy 

use in Year 2050 than in the starting year. Correspondingly, in NC4, energy used for air 



separation is the main driver behind the increase in electricity use. In Year 2050, specific 

thermal energy usage in NC2 amounts to 5.8 GJ/t clinker and electricity usage in NC4 is 206 

kWh/t cement. 

 

 

Figure 6. Estimated levels of CO2 emissions and energy usage in the Nordic cement industry 
for the period 2010–2050, as obtained from the present work. (a) Estimated annual CO2 
emissions from Nordic cement manufacturing for the period 2010 – 2050, with (triangles, 
NC4) or without (circles, NC1; and squares, NC1) the introduction of CCS. In all cases, total 
emissions include both fuel-related and process-related emissions. The emissions trajectory 
that defines the emission cap for the period 2010–2050 (crosses) corresponds to the total 
number of emission allowances allocated to Nordic cement plants for the period 2010–2020 
and the proposed reduction targets for Year 2030 and Year 2050. (b) Estimated development 
of thermal (solid/dashed lines) and electrical (bars) energy usage with (light orange) or 
without (orange) the introduction of CCS. The chart only display the cases with the lowest 
and highest thermal (NC1 and NC2) and electrical (NC1 and NC4) energy use. 
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3.3.1 Sensitivity analysis 

Table 9 presents the parameters used and the range of values employed in the sensitivity 

analysis of the Nordic cement industry (cf., Eq. 1–5 and Table 2). 

 

Table 9. Parameters subjected to the sensitivity analysis of Nordic Cement Cases 0–4 (NC0–
NC4). 

a The lower value corresponds to a 25% reduction in activity levels by Year 2050 relative to Year 2010 (i.e., a lower output than in any of the 
years in the period 1990–2010; UNFCCC, 2014). The higher value corresponds approximately to the maximum capacity of existing Nordic 
cement plants. 
b The extent to which clinker substitutes can be used is ultimately limited by for example the availability of alternative materials, material 
characteristics, price, intended use of the finished cement, national standards, and market acceptance (ECRA, 2009; Cembureau, 2012). 
c The relative cost of biomass-based fuels, low calorific value of most organic materials and the occurrence of trace elements may restrict the 
use of biomass in a conventional cement kiln (ECRA, 2009; Aranda Usón et al., 2013). 
d The CO2 avoidance rates that can be achieved, practically, at each individual cement plant will be site-specific (ECRA, 2009; ECRA, 
2012). 
 

Figure 7 shows the lower and upper estimates of the CO2 emissions in Year 2050 obtained 

from the variation of each parameter for all cases, NC0–NC4. The outcome confirms the 

strong connection between future production levels and the development of CO2 emissions. 

The analysis also demonstrates the importance of increasing the market share of blended 

Scenario case Notation Lower value Base value Upper value 
Nordic Cement Case 0 (NC0) 
Activity level (Mt cement/year) a 

Clinker to cement ratio (%) b 

Biomass share of fuel (% energy-based) c 

Average thermal energy use (GJ/t clinker) 
 

 
A 
P 
f 

H 

 
5.0 
50 

37.5 
3.0 

 
9.4 
60 
50 
3.7 

 

 
12.0 

75 
62.5 

4.0 

Nordic Cement Case 1 (NC1) 
Activity level (Mt cement/year) a 
Clinker to cement ratio (%) b 
Biomass share of fuel (% energy-based) c 
Average thermal energy use (GJ/t clinker) 
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3.2 
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Nordic Cement Case 2 (NC2) 
Activity level (Mt cement/year) a 
Clinker to cement ratio (%) b 
Biomass share of fuel (% energy-based) c 
CO2 avoidance rate (%) d 
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Nordic Cement Case 3 (NC3) 
Activity level (Mt cement/year) a 
Clinker to cement ratio (%) b 
Biomass share of fuel (% energy-based) c 
CO2 avoidance rate (%) d 
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cements and of encouraging increased use of biomass based fuels in the cement industry. 

Taken together the results reaffirm that of the options assessed in the present study, unless 

production levels are significantly reduced, only CCS can deliver the emission reductions 

required to reach long term targets. 

 

 

Figure 7. Tornado graph showing the sensitivity of the estimated levels of CO2 emissions in 
the end year (2050) to changes in key scenario inputs. The orange horizontal bars give the 
ranges of the emissions estimates in Year 2050 for the high and low values of each of the 
selected scenario inputs. The black vertical lines give the base values of the estimated CO2 
emissions in Year 2050 for Nordic Cement Cases 0–4 (NC0–NC4). 

 

3.4 Overall emissions reduction potentials and systems effects 

Figure 8 shows the overall potentials for, and implications of, measures to reduce CO2 

emissions from the Nordic carbon-intensive industries. To separate and quantify the effects of 

the respective mitigation measure, we re-calculated the emissions trajectories for each of the 

industrial sectors. By holding constant at Year 2010 levels the variables in Eqs 1–5 relevant to 

each mitigation measure, we estimate their respective contributions to the overall reductions 

in emissions. To assess their contribution over time, we compared annual emissions for the re-
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calculated emissions trajectories, one for each of the studied measures, with an emissions 

baseline. For the baseline, the fuel mix is assumed to remain unchanged in all the sectors over 

the period studied, and only limited improvements in energy efficiency are assumed to occur, 

resulting in CO2 emission intensities that are only slightly lower in Year 2050 than in Year 

2010. To capture the effects of the assumed decline in refinery throughputs, in the baseline, 

the activity levels in the petroleum refining industry are assumed to remain constant at the 

Year 2010 level throughout the studied period. In the integrated iron and steel and cement 

industries, activity levels develop in accordance with the basic assumptions, as described in 

Table 3 above. 

 

Figure 8a reveals the development of emissions over time, relative baseline emissions, given: 

1) the assumed decline in refinery throughputs (Activity change); 2) the shift towards 

increased use of biomass-based fuels in the iron and steel and cement industries (Biomass); 3) 

the increased clinker substitution (c/c ratio); 4) deployment of proven best-available 

technology (BAT), in the iron and steel and cement industries; and 5) the large-scale 

introduction of CO2 capture (CCS). The cap corresponds to an emissions trajectory for the 

period 2010–2050 where total direct CO2 emissions from the industrial plants covered in this 

study are reduced by 30% by 2030, 40% by 2030 and by 85% by 2050, as compared to the 

2010 levels (see Section 2.3.2). In the short term, up to Year 2030, the suggested measures 

would result in a 10% reduction in CO2 emissions relative to the Year 2010 levels. In the 

longer term, up to Year 2050, if restricted to currently available technologies CO2 emissions 

would be 35% lower than at the starting point and 40% below the baseline levels of 

emissions. The reductions are, primarily, a result of the decline in refinery throughputs and 

the increased use of biomass in the iron and steel and cement industries. An ambitious 

introduction of CO2 capture has the potential to reduce significantly the levels of emissions. 



Total emissions in Year 2050 in the cases in which the large-scale deployment of CO2 capture 

is assumed are 80% below the Year 2010 levels. However, as illustrated in Figure 8b, the 

introduction of CCS may come at a high cost in terms of energy usage. The total thermal 

energy usage in the cases where post-combustion capture is assumed to be the dominant 

capture technology (NR2, NS2, and NC2) in Year 2050 is at the same level as thermal energy 

usage in 2010. This is the case despite the assumed decline in total output from Nordic 

refineries during the same period. Total thermal energy usage is considerably lower in the 

cases in which the current capital stocks in the iron and steel and cement industries are 

replaced with “state-of-the-art” process technologies (NS1 and NC1). The aggregate thermal 

energy usage of the industrial plants covered in this study in Year 2050 in these BAT cases is 

30% below the levels in those cases where CO2 capture is assumed to be widely deployed. 

Figure 8c shows how the demand for bioenergy would increase ten-fold over the studied 

period if the full potential of biomass-based fuels would be realised in the iron and steel and 

cement industries. Figure 8d presents the development patterns of total CO2 emissions in each 

of the studied industrial sectors for the cases that assume large-scale introduction of CO2 

capture, as well as the amounts of CO2 captured annually. In Year 2050, the annual flow of 

captured CO2 that will have to be transported and stored amounts to approximately 17 

MtCO2/year. 

 



 

Figure 8. The overall potentials for, and implications of, measures to reduce CO2 emissions 
from Nordic carbon-intensive industry. a) The wedges give the contributions of the respective 
mitigation measures to overall reductions in emissions relative to baseline. In the baseline, the 
fuel mixes and the clinker to cement ratio (c/c ratio) are frozen at Year 2010 levels and 
improvements in energy efficiency are limited. b) Estimated development of thermal energy 
usage with (triangles) or without (circles) the introduction of CCS. c) Process heat levels from 
biomass (i.e., final energy) in the integrated iron and steel and cement industries (cases NS1 
and NC1). d) Development of CO2 emissions from Nordic carbon-intensive industry in the 
cases that assume the most ambitious deployment of CO2, together with the total amount of 
CO2 captured annually. 
 

4. Discussion 

As expected, there is a strong connection between future production levels and the 

development of CO2 emissions in the respective industry sectors (see Figures 3, 5 and 7). In 
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the case of the petroleum refining industry, the fates of individual Nordic refineries are 

strongly linked to the development of demand on their respective home markets. While the 

actual policy measures are yet to emerge, Nordic governments have repeatedly proclaimed 

their commitment to promoting a transport sector that is independent of fossil-fuel 

consumption, which in the case of Sweden is planned for as early as Year 2030. Such a 

development would gradually make obsolete the majority of the Nordic petroleum refineries. 

For the Nordic refining companies, one way to counter this trend would be to use its know-

how and infrastructures to engage in the development and supply of fossil-free fuels. As 

discussed above (see Section 3.1.1), Neste Oil in Finland and Preem AB in Sweden have 

already responded to this development by investing in capacity to produce biodiesel, albeit on 

a modest scale to date. 

 

Cement is a heavy bulk commodity with high transportation costs relative to the production 

costs. Thus, trade is typically limited to national or regional markets. Considerable investment 

and reinvestment needs in the residential sectors and in public infrastructure throughout the 

region indicate that Nordic cement manufacturers are likely to profit from stable outlets for 

their products in the decades to come (GCR, 2013). One of the key challenges will be to 

increase the market share of blended cements (ECRA, 2009; Cembureau, 2012). This will 

require the cement manufacturers to continue their efforts to develop cements with lower 

clinker content than the current standard cements, while maintaining quality standards. Public 

institutions also have important roles to play, both in overseeing the development of new 

cement standards and in driving demand through investments in public infrastructure and 

construction.  

 



Our results show that even with ambitious deployment of “state-of-the-art” process 

technologies, the contribution of improved industry energy efficiency to overall CO2 

emissions reductions is likely to be limited. Thus, if restricted to currently available 

technologies, the increased use of biomass in the iron and steel and cement industries would 

be the single most important strategy to reduce direct fossil CO2 emissions from Nordic 

industry. The suggested biomass substitution rates in the iron and steel and cement industries 

appear to be technically achievable. While low-grade biomass can suffice as a fossil fuel 

substitute at low substitution rates in the cement kiln (and precalciner), higher substitution 

rates would likely require biomass of higher quality (ECRA, 2009; Aranda Usón et al., 2013). 

The same is true if biomass is to be used to replace coal and coke in blast furnaces (Norgate et 

al., 2012; Suopajärvi et al., 2013). The estimated demand for biomass process heat, which is 

approximately 30 PJ/year in Year 2050, is modest compared to current bioenergy usage in 

Nordic industry and in comparison to the available biomass resources (IEA, 2013a). However, 

competition over biomass resources is already high and is likely to increase further if polices 

aimed at reducing CO2 emissions are enforced. 

 

Large-scale deployment of CO2 capture, as suggested in the above analysis, results in an 

estimated total annual CO2 flow of approximately 17 MtCO2/year. However, this aggregate 

estimate conceals several factors with important implications for the prospect of building up a 

transportation and storage infrastructure. As indicated by the range depicted in Figure 8d 

(HIGH/LOW), the volumes of CO2 captured vary significantly depending on the choice of 

CCS technology. Moreover, the timing of the possible introduction of industrial CO2 capture 

on a commercial scale (here set at Year 2030) and the pace at which CCS would subsequently 

be adopted (here linked to the technical life-time of key process equipment) will have impacts 

on the evolution of the captured CO2 flow over time. Furthermore, the geographical spread of 



the industries suitable for CO2 capture will have implications for the potential to coordinate 

transportation and storage. More than half (or approximately 10 MtCO2/year) of the suggested 

CO2 flow in our analysis would come from sources in the Finnish and Swedish parts of the 

Baltic Sea region, although first estimates of the prospects for geological storage of CO2 in 

this region are not encouraging (Teir et al., 2010; SLR, 2014; Elforsk, 2014). Conversely, 

geological surveys of other parts of the Baltic Sea region and of the Norwegian and Danish 

parts of the North Sea have identified several formations with favourable conditions for CO2 

storage (GeoCapacity, 2009; NPD, 2012; Elforsk, 2014). Thus, storage constraints could be 

overcome through regional cooperation provided that CO2 transportation costs can be kept 

low. 

 

Norway has, partly as a way of overcoming the contradiction it faces in combining the roles 

as major oil and gas producer and strong advocate of ambitious climate policies, made a 

commitment to take a leading role in the development and deployment of CCS (Tjernshaugen 

and Langhelle, 2009). The current aim is to realise at least one full-scale carbon capture pilot 

plant by Year 2020 (The Norwegian Government, 2013). The Mongstad refinery is the largest 

source of CO2 emissions in Norway and was intended to host the first large-scale industrial 

CO2 capture project in the world (StatoilHydro, 2009; DNV, 2012). However, due to cost 

overruns and delays, the project was officially terminated in Year 2013 (Bloomberg, 2013). 

Instead, in Year 2013, the Brevik cement plant was singled out as the site for the construction 

of a research facility for the testing of post-combustion CO2 capture technologies (ECRA, 

2012). CCS is now part if the official strategy for the Nordic subsidiaries of 

HeidelbergCement (Norcem (Norway) and Cementa (Sweden)), i.e. they have identified CCS 

as a technology required to reach long term targets on reduction in CO2 emissions. Thus, at 



present different capture technologies are evaluated at the Brevik cement plant using a slip 

stream from the plant (GCCSI, 2014). 

5. Conclusions and policy implications 

The analysis presented in this paper shows that, for Nordic carbon-intensive industry, the 

combined effects of extensive deployment of available measures to reduce CO2 emissions and 

proven best-available process technologies will not suffice to meet targeted reduction in GHG 

emissions in the medium- (up to Year 2030) and long-term (up to Year 2050). This is in line 

with previous studies assessing the potential for future CO2 emission reductions for global 

industry as well as for the industrial sectors of selected regions and countries (e.g. SEPA, 

2012; Rootzén and Johnsson, 2013a; IEA, 2013a; Napp et al., 2014). Our results indicate that 

in the absence of CCS, total annual CO2 emissions from the Nordic carbon-intensive 

industries investigated in Year 2050 could amount to approximately 40% of the total Nordic 

GHG budget. Furthermore, we show how an ambitious deployment of CCS could result in 

emissions reductions that are in line with the targets for Year 2050. However, the analysis 

also illustrates how such a large-scale introduction could come at a high cost in terms of 

energy usage and how the geographical spread of industries that are subject to CO2 capture 

requires careful planning of an infrastructure for the transportation and storage of CO2. 

 

A comparison of the relative contributions of the evaluated abatement measures highlights the 

importance, especially in the absence of successful deployment of CO2 capture, of Nordic 

legislators encouraging the increased use of biomass as a source of renewable carbon in 

carbon-intensive industry and promoting the use of alternative raw materials in cement 

manufacturing, to complement the continuing efforts to improve energy efficiency. 

 



Nordic climate policies that target carbon-intensive industries currently rely heavily on the 

price signal imposed through the EU ETS. However, as long as there is a need to balance 

competitiveness and environmental effectiveness, there is little chance that the trading system 

in its current form will deliver a CO2 price that is sufficiently high to incentivise investments 

in measures to reduce CO2 emissions on the scale assumed in our analysis (for estimates of 

expected abatement costs see e.g NEA, 2010; ECRA, 2012; Kuramochi, 2012; IEAGHG, 

2013). Thus, enabling significant reductions in emissions from Nordic carbon-intensive 

industries in the long term will likely require additional policy interventions. While there is no 

single end-game strategy for achieving the long-term goals of CO2 emissions reduction in the 

Nordic carbon-intensive industry, the discussions presented in this paper suggests several 

areas in which strategic decisions will need to be made by national legislators and companies. 
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