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Abstract—In this paper we propose the set of target trajecto-
ries as a state variable for target tracking. We argue that target
tracking is fundamentally about computing the posterior distribu-
tion of the target trajectories, which all existing filtering solutions
fail to produce. The new state variable enables us to solve the
tracking problem in a principled and straightforward manner,
without involving non-physical parameters such as an ordering
or labels. We develop all the theoretical tools needed to use the set
of trajectories as the state variable in a filtering framework; we
adapt standard motion and measurement to random finite sets
of trajectories and we also discuss general filtering recursions as
well as the involved integrals. Another important component is
that we present the exact filtering recursions using a conjugate
family of distributions, which ensures that all future predicted
and updated filtering distributions belong to the same family
of distributions. The paper includes a small numerical example
where we illustrate the properties of the proposed approach to
trajectory estimation.

I. INTRODUCTION
The goal of tracking is to estimate the parameters, usually

the kinematics, of objects over time, thus building a sequence
of estimates for each object. Such sequences are called trajec-
tories or tracks. We will use the two terms interchangeably. A
focus on the filtering problem, i.e., estimating the parameters at
the current time given the available measurements [1]–[3], has
tended to somewhat obscure the goal of trajectory formation.
The focus on filtering is understandable since smoothing,
i.e, estimating the parameters at times preceding the current
time, inevitably involves an increase in computational expense.
However, as will be discussed below, computing only filtering
densities creates difficulties when it is desired to form tracks.
This is particularly so when targets move in close proximity
and the available measurements are not informative about
the identity of the targets under observation. Then, the usual
approach is to apply a post-processing step in which estimates
obtained at different times are linked over time to form
trajectories. Such methods are generally ad hoc and provide
no guarantee of satisfactory performance under all conditions.

Recently there has been increased interest in principled
ways of forming trajectories. By far the most popular approach
has been to add labels to the usual state vector [4]–[9]. Labels
are unique and static quantities which identify a target over
its life time. Tracks can then be formed simply by linking
state estimates with the same label. While this seems like a
reasonable idea, it becomes apparent on further contemplation
that track formation using a sequence of labelled filtering
posterior densities poses a number of practical and theoretical

issues. The source of these difficulties can be traced to the
use of a mathematical model which is not appropriate for
the problem under consideration. As argued in [10, p. 405],
the mathematical model used for tracking should match the
physical reality as closely as possible. Attempting to perform
track formation using labelled filtering posterior densities
departs from this ideal in two ways. First, using filtering
posterior densities effectively treats as the object of interest
the individual target states, collected in a vector or a set,
at a particular time. This is at odds with the actual aim of
estimating sequences of states. Second, in order to compensate
for the lack of trajectory information in the filtering densities,
labels which have no physical significance are added to the
state. The ramifications are explored in more detail in Section
II.

We therefore require a different mathematical representa-
tion to perform track formation. In particular, if it is indeed
desired to estimate target trajectories, we contend that the
state variable used for tracking should 1) have a one-to-one
correspondence with the physical state and 2) directly provide
estimates of target trajectories. We discuss the construction of
such a representation satisfying these two requirements below.

In the most common approach to multiple target tracking
individual target states are concatenated in a multi-target state
vector [1]. When this is done an arbitrary decision is made
as to the ordering of the individual target states within the
multi-target state vector. This is because there is no one-to-one
relationship between the mathematical model and the physical
reality: any ordering of target states would reflect the same
physical reality. From this point-of-view the random finite
set (RFS) approach proposed by Mahler is preferable as it
avoids imposing an order on the target states [10]. Aside from
being theoretically appealing, the RFS approach also removes
uncertainty in the posterior induced by the ordering imposed
in a vector-based approach. This has practical benefits, as
can be seen by the set JPDAF which exploits the removal
of ordering in a set representation to provide better Gaussian
approximation of the posterior [11].

Tracking in the RFS framework has been performed only
with a state variable which is a set containing individual target
states at a given time. This applies to both RFS filters [12],
[13] and smoothers [14], [15]. Computing filtering posterior
densities in the RFS framework does not directly provide
the information required for track formation, even if labels
are added. This is because the dependencies between state
estimates obtained at different times are not available and so



must be inferred using the target dynamics. However, track
formation could be performed with the joint posterior density
of the labelled target states at each time. This approach, which
does not seem to have been pursued, would directly provide the
desired target trajectory estimates, but the presence of labels
means there is not a unique link between the mathematical
representation and the physical state. As such, using the joint
posterior of the RFSs of labelled states satisfies our second
requirement but not our first. The problem is that, when the
states of a particular target at different times belong to different
sets, labels are needed to link estimates over time. This need
can be avoided by using as a state variable a single set
containing sequences of target states at all times. Note that this
differs from a sequence of sets containing target states. The
latter can include time links only through the addition of labels
to the state vector. This is not necessary in the former. An RFS
of trajectories therefore satisfies both of our requirements for
a state variable suitable for trajectory estimation.

The purpose of this paper is to introduce the notion of
tracking using an RFS of trajectories and to develop the neces-
sary mathematical tools for defining and manipulating densities
over the space of sets of trajectories. Our state variable is a
set in which each element is a vector containing the start and
end times of the trajectory and the trajectory of target states
at each time. We define a set trajectory integral, analogous
to Mahler’s set integral, and develop motion and measurement
models which extend those of Mahler. These developments are
used to construct a conjugate filtering recursion, in the spirit
of [8], for computing the posterior of the set of trajectories.

It is not intended to suggest that no techniques currently
exist for trajectory estimation. For instance, the multiple hy-
pothesis tracker (MHT) [3], [16] can provide trajectories of
state estimates as can dynamic programming approaches [17],
[18], although the latter are usually restricted to single targets.
However, these do not represent formal approaches to per-
forming inference over trajectories of target states. Invariably,
there is no explicit definition of what the state variable is
so that trajectory estimation is essentially an implementation
step. Further, the notion of a distribution over collections of
trajectories does not exist. The accumulated density approach
of [19] computes the joint posterior density of the target state
at each time, but has been developed only for a single target. In
contrast, we provide a representation suitable for an unknown
and varying number of targets.

The paper is organised as follows. In Section II we present
an analysis of track formation using a sequence of labelled
filtering posterior densities. This motivates an approach to
tracking based on estimating an RFS of trajectories, described
in Section III. Standard motion and measurement models
which extend those of Mahler are given in Section IV and
then used to establish a filtering recursion in Section V. In the
final paper a numerical example will be given in Section VI.

II. MOTIVATION FOR SETS OF TRAJECTORIES
As mentioned previously, the most popular approach to

forming trajectories is based on computing, or approximating,
the filtering posterior of a labelled target state [4]–[8]. This
idea has been applied in a conventional vector-based frame-
work as well as the RFS framework [8]. As shown in [4],
labelled estimation in these frameworks is equivalent. Tracks
are formed by linking filtered estimates with the same labels
over time. In this section we will discuss the disadvantages of

this methodology which lead us to propose a different approach
to forming trajectories.

In a Bayesian context, labels are effectively additional
parameters which are estimated along with the usual target
states. To accommodate these parameters, the tracking model
must be extended in such a way that the labels are unique
and fixed over time. Aside from the inconvenience of having
to specify an expanded tracking model, labelling introduces
some undesirable side-effects. The underlying problem seems
to be that labels have no direct and unambiguous connection
to the physical phenomena under observation. A multitude
of labelling schemes can be developed satisfying the basic
requirements of fixity and distinctness. Although some such
schemes would be obviously poor there is no general way of
distinguishing the merits of a given scheme. This contravenes
the usual notion of there being “a one-to-one correspondence
between physical states and their mathematical representa-
tions” [10, p. 405]. We explore some of the ramifications of
this via some simple examples.

Example 1: The addition of extra parameters to the state
vector introduces artificial uncertainty into the estimation prob-
lem. Depending on how labels are defined, the amount of
additional uncertainty can be significant. To see this consider
a simple example in which two static targets located on
the real line are observed. The targets appear at locations
1 and −1 at time k = 5 and are detected with probability
one with zero measurement noise. Thus, from k = 5 the
posterior has its entire mass located at [−1, 1]′. According
to the Poisson labelling scheme of [8], the targets would be
assigned the labels (1,5) and (2,5) with equal probability. The
labelled state posterior would then have half its mass located at
[−1, (1, 5), 1, (2, 5)]′ and half at [1, (1, 5),−1, (2, 5)]′. In other
words, labelling has produced a bi-modal posterior from a uni-
modal posterior. In this simple example it is not difficult to
envisage ways of handling this complication. However, such ad
hoc operations are inelegant from a theoretical perspective and
would conceivably fail in other, more complicated examples.

Example 2: Apart from post-processing, the concerns
raised in Example 1 could be addressed by assigning labels in
a different manner. Even then difficulties occur when labelling
uncertainty arises, for example, after targets have moved in
proximity. Consider an example in which two targets moving
on the real line approach the same point, remain close for
eight time steps and then separate. Assume that the targets are
unambiguously labelled as 1 and 2 prior to their approach and,
for convenience, that the measurement noise is zero. In this
case the target identities become completely confused when
the targets reach the meeting point and remain so afterwards.
This means that, if the targets have position x1 and x2 at a
particular time, the filtering posterior will have half its mass at
[[x1, 1], [x2, 2]]′ and half at [[x1, 2], [x2, 1]]′. Two possible ways
in which these filtering posteriors could be used to construct
tracks are shown in Fig. 1. Each of these scenarios is equally
likely given the filtering posterior densities. This situation
can only be resolved by recourse to the dynamical equation
which would rule out swapping once the targets are sufficiently
well-separated. However, the need for a post-processing, using
dynamical prior information which has already been used, is
problematic and suggests a deficiency in the methodology.

In summary, we argue that the focus on computing filtering
posteriors has led to the practice of adding labels to the state
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Fig. 1. Possible trajectories obtained from the sequence of filtering posteriors
for Example 2.

vector in order to construct tracks. While this approach can
yield acceptable results in many situations it is not entirely
satisfactory because:

• a labelled state vector does not uniquely represent an
underlying physical reality;

• adding labels to the state artificially increases the
uncertainty in the tracking problem, significantly so
in some cases (see Example 1);

• the sequence of filtering posterior densities does not
contain sufficient information to construct tracks, even
with labels appended to the state vector.

With these concerns in mind we advocate an approach in
which trajectories are formed without the use of labels. We
do this by considering the object of interest to be a set of
sequences of target states, i.e, a random finite set (RFS) of
trajectories. The reasoning behind this approach is as follows.
In the single target case, it is clear that a sequence of target
states directly gives the required target trajectory. If multiple
targets can be present then no preference should be given to
any particular ordering of the trajectories. Thus, in general,
we should consider RFSs of trajectories. Such a quantity
elegantly encapsulates what we would like to obtain from the
measurements without the problematic aspects of labels.

The scenario of Example 2 involving two targets approach-
ing on the real line, pausing and then separating illustrates the
appeal of using a RFS of trajectories. We add measurement
noise with standard deviation 1/100 and compute the RFS
trajectory posterior. This is a mixture with each component
corresponding to a different association of measurements to
targets. Fig. 2 shows the estimated sets of trajectories for
the hypotheses with the four highest posterior probabilities.
The first hypothesis contains the correct trajectories. The next
three hypotheses have trajectories which include swaps when
the targets meet or as they separate. These swaps have non-
negligible posterior probability because of process noise in
the transition model which is required to accommodate the
sudden stopping and starting of the targets. Together, the
top four sets of trajectories have a posterior probability of
0.991. Trajectories with multiple swaps more than one time
step before or after the meeting point, as shown in Fig. 1(b),
have negligible posterior probability. Here, we have obtained
this information directly from the filter. This differs from the
conventional approach of using a sequence of labelled filtering
posterior densities where such trajectories are ruled out only
through a post-processing step.

Realisation of our proposed representation requires a slight
extension of the mathematical machinery developed for per-
forming inference of RFSs of individual target states. This is
the topic of the following sections.
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Fig. 2. The sets of estimated trajectories for the hypotheses with the four
highest posterior probabilities for the scenario of Example 2. Subfigures (a)-(d)
show the estimated trajectories in order of descending posterior probability.

III. RANDOM FINITE SETS OF TRAJECTORIES
In this section we introduce a representation for the sets

of trajectories and present fundamental theoretical tools such
as general filtering recursions and define an integral over the
space of finite sets of trajectories. The mathematical proofs,
including the measure theoretic details that underlie the set
trajectory integral, have been omitted for the sake of brevity.

A. State space representation
We propose the set of all trajectories as state variable

Xk = {X1
k , . . . , X

nk
k }, (1)

where nk is the number of trajectories that have existed until
time k. The state variable is therefore a random finite set that
contains all the variables of interest and we argue that this
is the best available representation in order to compute the
posterior distribution of the target trajectories, see Section II
for a discussion on other alternatives.

In this paper, we represent the individual trajectories as

Xi
k =

t
i
k

τ ik
xik

 , (2)

where tik and τ ik denote the start and minimum end times
of trajectory i, whereas xik is a vector that contains the
target states in the time interval [tik, τ

i
k]. It is assumed that

0 ≤ tik ≤ τ ik ≤ k and that the time of birth, tik, does not change
over time. Both the minimum end time and the state sequence
change whenever trajectory i persists from time k to k+1, and
it then holds that τ ik = k, τ ik+1 = k+1 and that xik+1 contains
one more state vector than xik. A simple illustration of a set of
trajectories is given in Fig. 3, where n5 = 2, X5 = {X1

5 , X
2
5}

and the two trajectories are described by

X1
5 = [1, 3, [1, 1.5, 2]]

T

X2
5 = [2, 5, [2.4, 2.6, 2.8, 3]]

T
, (3)

or vice versa. That is, since the trajectory numbers are arbitrary
we could also have X1

5 = [2, 5, [2.4, 2.6, 2.8, 3]]
T and X2

5 =
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Fig. 3. An illustration of X5 in an example where n5 = 2 and the single
object states are scalar.

[1, 3, [1, 1.5, 2]]
T . It is clear that one of the trajectories ended

at time 3 whereas the other trajectories is still present at time
5; whether or not it will persist until time 6 remains to be seen.

The remainder of this paper contains a description of how
the set trajectory representation can be used to perform target
tracking, including integration theory, models and a conjugate
prior for the filtering recursions of the standard model. As a
first step, we will look at the general filtering recursions.

B. General filtering recursions
The objective in Bayesian filtering is to compute the

posterior distribution, pk|k(Xk|z1:k)), of the state variable,
Xk, given all the measurements up to and including time k,
z1:k

4
= {z1, z2, . . . , zk}. We wish to perform filtering using

the prediction equation

pk|k−1(Xk|z1:k−1)

=

∫
fk|k−1(Xk|X)pk−1|k−1(X|z1:k−1) δX (4)

and the update equation

pk|k(Xk|z1:k)

=
gk(zk|Xk)pk|k−1(Xk|z1:k−1)∫
gk(zk|X)pk|k−1(X|z1:k−1) δX

, (5)

which are analogous to the conventional filtering equations
[10], [20] often known as the Chapman-Kolmogorov equation
and Bayes’ rule, respectively.

We assume that the posterior distribution is (a slightly
generalized version of) a multiobject density in the FISST
sense, and it is therefore equivalent to a probability den-
sity [10], [13]. To perform the prediction and update steps,
we need a motion model fk|k−1(Xk|Xk−1), a measurement
model gk(zk|Xk) and a suitable definition of the set integral∫
f(X) δX, when the elements of X are trajectories. In the

remainder of this section we introduce the set integral for RFSs
of trajectories and discuss the link between multi-object and
ordered densities.

C. Integrals
The most commonly used RFSs, x, contain elements that

are vectors in Rr and the set integral for such RFSs is given

by∫
f(x)δx =

∞∑
n=0

1

n!

∫
xi∈Rd
i=1,...,n

f({x1, . . . , xn})
n∏
i=1

dxi, (6)

where f(x) is a real-valued function of a finite-set variable x,
i.e., f : F(Rr) → R, where F(Rr) denotes the collection of
finite subsets of Rr. The theory of FISST also describes set
integrals for sets of hybrid vectors that contain both discrete
and continuous elements [21]. What differentiates the RFSs
considered here from those in previous work is that the
dimensionality of the elements in the set is not fixed, but
depends on the length of the trajectory. The two trajectories in
Fig. 3 illustrate this since X1

5 and X2
5 have different lengths.

We assume that the single target states belong to D = Rr,
such that the RFS X contain elements (trajectories) X in

E =


tτ
x

 :

tτ
x

 ∈ N2
0 ×Dτ−t+1, 0 ≤ τ − t <∞

 (7)

i.e., the first two elements are natural numbers and the third
element is a vector whose dimensionality matches the values
of the two discrete elements. For technical reasons, we further
assume that τ−t is finite; more specifically to ensure that E is
locally compact. Using this notation, the elements of x belong
to D whereas the elements of X belong to E.

The set integral in (6) can be extended to RFSs of trajec-
tories in a natural fashion:∫

f(X)δX

=

∞∑
n=0

1

n!

∑
τ i≥ti≥0
i=1,...,n

∫
xi∈Dτ

i−ti+1

i=1,...,n

f


t1τ1

x1

, . . . ,
tnτn
xn


 n∏
i=1

dxi,

(8)

where f(X) now denotes a real-valued function of X, i.e.,
f : F(E) → R, where F(E) is the collection of finite
subsets of E. For each cardinality n, the original set integral
in (6) integrates over Dn = Rrn and in an analogous fashion,
the integral in (8) computes the corresponding combined
summation and integral over En. In Section V we use (4),
(5) and (8) to derive exact filter recursions for a conjugate
prior and the models described in Section IV.

D. Multi-object densities vs ordered densities
The posterior densities of the set of trajectories are multi-

object densities, but in order to express these using the conju-
gate family in Section V we make use of ordered densities. A
multi-object density is a mapping p : F(E)→ R, where F(E)
is the collection of finite subsets of E, whereas an ordered
density is a mapping po : ∪∞n=0E

n → R. That is, p describes
the distribution of a set of trajectories, whereas po describes the
distribution of an ordered list of trajectories. One can compute
p from po using

p({X1, . . . , Xn}) =
∑
σ

po(Xσ(1), . . . , Xσ(n)), (9)

where we sum over all permutations σ of the numbers
{1, 2, . . . , n}.



The ordered list of trajectories, (X1, . . . , Xn), is in fact an-
other possible state representation which would be sufficiently
informative in order for us to solve the complete tracking
problem. However, similar to the labeled RFSs it has a non-
physical part, namely the ordering, which is not generally given
even if we know all the trajectories. Considering that we would
like to have a one-to-one correspondence between physical
states and their mathematical representations, the ordered list
of trajectories is not entirely suitable.

A related aspect, which can be observed from (9), is that
there are many ordered densities that represent the same multi-
object density. In principle, any ordered density that represents
the correct multi-object density is equally valid and we could
therefore select the ordered density that best fits our purposes;
such a strategy was explored in [11] to perform accurate
merging, in a setting without birth and death events. Though
this may be a useful property, we do not explore it in this
paper.

IV. STANDARD MOTION AND MEASUREMENT MODELS
In this section we develop standard motion and measure-

ment models for the case when the state variable is an RFS
of trajectories. The intention is not to propose new model
assumptions, but to express the standard model [10] in terms
of sets of trajectories instead of sets of targets.

A. The motion model
To perform the prediction step in (4), we express the

standard motion model in target tracking in terms of the set tra-
jectory density, fk|k−1(X+|X), where X+ = {X1

+, . . . , X
n+

+ }
and X = {X1, . . . , Xn} are sets of trajectories. The usual
motion model in target tracking assumes that targets move
independently, that a target with state x̃ survives until the next
time instant with probability ps (or more generally ps(x̃)) and
then moves to a new state x̃+ ∼ N (φ(x̃), Q). Appearing
targets are commonly modelled as a Poisson process with
expected value µ0, and with a physical distribution b(x).

By construction, trajectories are never removed from the set
and it therefore holds that fk|k−1(X+

∣∣∣X) = 0 when n+ < n.
For n+ ≥ n we can express this model as

fk|k−1(X+

∣∣∣X) =

∑
σ+

n∏
i=1

fsk|k−1(X
σ+(i)
+ |Xi)

fBk

({
X
σ+(n+1:n+)
+

})
(n+ − n)!

(10)

where fsk|k−1(X+|X) denotes the single trajectory motion
model and we sum over all permutations, σ+, of the numbers
{1, 2, . . . , n+}. The birth process is described by the Poisson
model

fBk (B) = e−µ0

∏
[t, τ, x]

T∈B

µ0b(x)δ[t− k]δ[τ − k], (11)

under the additional assumption that new targets have the time
indexes t = τ = k. For brevity, we have introduced the
notation {Xσ(n+1:n+)

+ } 4= {Xσ(n+1)
+ , . . . , X

σ(n+)
+ }. The factor

1/(n+ − n)! appears because there are (n+ − n)! terms with
the same set of new targets {Xσ(n+1:n+)

+ }.
Let us now work out the details for the single trajectory

motion model, fsk|k−1(X+|X). The probability that the target

that corresponds to a trajectory X survives until time k is

Ps,k(X) = psδ[τ − k + 1], (12)

i.e., it can only survive if it was still present at time k−1. For
notational convenience, we use x| to denote the last subvector
and x\| to denote all but the last subvector of a vector x, such
that

x =

[
x\|
x|

]
.

Under the assumption that a trajectory X+ survives, it must
satisfy t+ = t, τ+ = τ + 1 = k, x+,\| = x and x+,| ∼
N (φ(x|), Q). That is, the trajectory still starts at the same
time, t, and the state sequence until time k, denoted x, has not
changed, but the trajectory now contains one more element,
x+,|, at time τ+ = k. The transition density for trajectory X
therefore has two parts, related to the events that it has survived
or died before time k:

fsk|k−1(X+|X) = (1−Ps,k(X)) δ[t+− t]δ[τ+− τ ]δ(x+−x)

+Ps,k(X)δ[t+− t]δ[τ+−k]δ(x+,\| − x)N (x+,|;φ(x|), Q).
(13)

The above equations jointly define the motion model.
Remark 1: One can view the summation in (10) as a version

of the convolution formula in FISST.
Remark 2: The above transition density cannot be derived

using the usual set derivatives of belief mass functions, since
it contains Dirac delta functions. One can instead verify the
expression using the closely related Choquet theorem [22, p.
30], [23, p. 10], [10, p. 713], but it is beyond the scope of this
paper to present the details of that derivation.

B. The measurement model
In target tracking, the most commonly used measurement

model assumes that we observe a set of measurements

zk = ψk(Xk) ∪ ck, (14)

where ψk(Xk) is the set of target detections and ck is the set
of false (clutter) detections, all at time k. The false detections
are modeled by a Poisson RFS [10], with mean value λ and
spatial distribution c(z), such that the multi-target density of
ck is

fC(ck) = e−λ
∏
z∈ck

λ c(z). (15)

It is important to note that zk, ψk(Xk) and ck are all
conventional RFSs, in the sense that the elements in these sets
all belong to Rrz .

The set of target detections, ψk(Xk), is an RFS that only
depends on the current set of targets, xk = {x1

k, . . . , x
n′

k },
since only the current targets can be detected. Every target
x ∈ xk is either detected with probability pD(x), and then
generates a measurement z ∼ f(z|x), or missed with proba-
bility 1− pD(x); in this paper we consider the case when the
probability of detection is constant, pD(x) = pD. It is further
assumed that target detections from different targets make up
RFSs which are independent of each other as well as of ck.

In terms of trajectories, this means that X ∈ Xk is detected
with probability

PD,k(X) = pD δ[τ − k], (16)



and then generates a measurement z ∼ f(z|x|), or missed with
probability 1 − PD,k(X). Note that x| is the current single
target state when τ = k, and that PD,k(X) = 0 when τ < k
since an ended trajectory can no longer be detected. We can
now decompose the target detections into independent RFSs

ψk({X1
k , . . . , X

n
k }) = ψk(X1

k) ∪ · · · ∪ ψk(Xn
k ), (17)

where ψ(Xi
k) is the detection set for trajectory Xi

k, and use
this to derive the multitarget likelihood function by means
of standard FISST techniques [10]. The resulting multi-target
density of zk is:

gk(zk|Xk) =fC(zk)
∏

X∈Xk

(1− PD,k(X))

∑
θ

∏
i:θ(i)>0

pD δ[τ
i − k]f(z

θ(i)
k |xik,|)

(1− pD δ[τ i − k])λ c(z
θ(i)
k )

, (18)

where θ : {1, 2, . . . , n} → {0, 1, . . . ,mk}, defines the associ-
ation between the n trajectories and the mk detections1. The
interpretation of θ(i) = j > 0 is that xik generated zjk and since
a detection can not be generated by more than one target it
must hold that θ(i) = θ(i′) > 0 implies that i = i′.

V. EXACT FILTERING RECURSIONS USING A CONJUGATE
PRIOR

In order to perform filtering (tracking) using the state
variable Xk and the models in Section IV, it is essential to have
a representation of its distribution. In this section we present a
family of conjugate distributions for which the prediction and
update steps are easy to describe. The fact that it is conjugate
means that as long as the prior distribution belongs to the
conjugate family the predicted and updated distributions also
belong to the same family.

Conjugacy is an important property and the literature
contains examples like the Gaussian distribution in the linear-
Gaussian filtering problem (computed using the Kalman filter),
Gaussian mixture distributions in the single target MHT setting
and the generalized labeled multi-Bernoulli [8] for general
labeled target tracking. Note that we use the term conjugate
in same relaxed sense as in [8]. It does not imply that a
fixed and finite number of parameters can be used to describe
the posterior at all times. Instead the number of hypotheses
grows exponentially, a property inherent in problems with
data association uncertainties, and approximations involving
pruning and merging are required in practice.

A. A conjugate family of distributions
We represent our posterior distribution at time k, given data

up to time l, on the form

pk|l({X1, . . . , Xn}|z1:l) =
∑
σ

pok|l(X
σ(1), . . . , Xσ(n)|z1:l)

(19)

where

pok|l(X
1, . . . , Xn

∣∣∣z1:l)

=
∑

t∈Tn,k

∑
ξ∈Ξl(t)

wt,ξ
k|l

n∏
i=1

p̃(Xi
∣∣∣ai, bi, ξi, z1:l), (20)

1We implicitly assume a certain ordering of the elements of zk , informally
denoted zk = {z1k, . . . , z

mk
k }, such that z1k, . . . , z

mk
k are uniquely defined

by zk .

which is a conjugate family for our filtering problem. Let
us now introduce the components in (20). The variables t
and ξ represent existence and data association hypotheses,
respectively, and the weight wt,ξ

k|l denotes the probability of
hypothesis (t, ξ) at time k, conditioned on z1:l. The set Tn,k
contains all matrices

t =

[
a1 a2 . . . an

b1 b2 . . . bn

]
, (21)

that satisfy 0 ≤ ai ≤ bi ≤ k for i = 1, . . . , n, and the variables
ai and bi define the values of ti and τ i according to hypothesis
(t, ξ), see (22).

The variable ξ = (ξ1, . . . , ξn) contains discrete valued
vectors ξi that define a time sequence of associations between
trajectory i and detections at different times. Clearly, a target
cannot be detected when it does not exist and we do not
wish to define data associations at times when we have not
observed any measurements, i.e., after time l. The vector
ξi is therefore empty if l < ai and otherwise it has the
length min(bi, l)−ai+ 1 and defines the associations at times
ai, ai+1, . . . ,min(bi, l). The interpretation of ξi(j) = s > 0 is
that trajectory i generated detection s at time ai+j−1. The set
Ξl(t) contains all variables ξ that match l and t and that take
possible values; ξi(j) must take values in {0, 1, . . . ,mai+j−1}
and ξi(j) = ξi

′
(j) > 0 must imply that i = i′.

Finally, p̃ is a distribution on the single trajectory space:

p̃(X|a, b, ξ, z1:l) = δ[t− a]δ[τ − b]p̆(x|a, b, ξ, z1:l) (22)

where x is a vector that contains the target states at times,
a, a + 1, . . . , b, where it is assumed to exist. The density
p̆(x|a, b, ξ, z1:l) is the posterior distribution of x given z1:l and
known data associations, which is straightforward to compute
recursively using prediction and update steps, see e.g. [19] for
a detailed description of such calculations.

B. Chapman-Kolmogorov prediction
In the prediction step, we assume that we know

pk−1|k−1({X1, . . . , Xn}
∣∣∣z1:k−1), i.e., that we are given

pok−1|k−1(X1, . . . , Xn
∣∣∣z1:k−1) (23)

=
∑

t∈Tn,k−1

∑
ξ∈Ξk−1(t)

wt,ξ
k−1|k−1

n∏
i=1

p̃(Xi
∣∣∣ai, bi, ξi, z1:k−1).

The objective is to find pk|k−1(Xk|z1:k−1) and express it using
our conjugate family, i.e., by means of a density

pok|k−1(X1
k , . . . , X

nk
k

∣∣∣z1:k−1) (24)

=
∑

t+∈Tnk,k

∑
ξ+∈Ξk−1(t+)

w
t+,ξ+
k|k−1

nk∏
i=1

p̃(Xi
k

∣∣∣ai+, bi+, ξi+, z1:k−1).

By combining (23), with the Chapman-Kolmogorov equation
(4), the definition of the integral (8) and the motion model
(10), one can find the predicted density pk|k−1(Xk|z1:k−1).

One ordered density that represents pk|k−1(Xk|z1:k−1)
exactly corresponds to what one may expect to obtain by
performing prediction on the ordered density directly: the
distribution of Xi

+ is obtained from the distribution of Xi,
for i = 1, . . . , n, and the new trajectories are given the indices



n + 1, . . . , n+. To describe this ordered density in detail, we
relate every hypothesis t+ ∈ Tnk,k to n and t ∈ Tn,k−1 as
follows:

n = max
i:ai+<k

i

ai = ai+ i = 1, 2, . . . , n (25)
bi = bi+ − δ[bi+ − k] i = 1, 2, . . . , n,

which can be understood from the fact that ai+ = k for new
trajectories and bi+ = k, ai+ < k for persisting trajectories.

It is possible to show that the weights in (24) can be
expressed as

w
t+,ξ+

k|k−1 =

w
t,ξ1:n

+

k−1|k−1

n∏
i=1

(1− psδ[bi+ − k + 1] + (ps − 1)δ[bi+ − k])

∆(ξn+1:n+

+ )
e−µ0µ0

(n+ − n)!

n+∏
i=n+1

δ[ai+ − k]δ[bi+ − k] (26)

where n and t can be determined from t+, and where we
have introduced the notation: ξ1:n

+
4
= (ξ1

+, . . . , ξ
n
+), ξn+1:n+

+
4
=

(ξn+1
+ , . . . , ξ

n+

+ ) and

∆(ξ
n+1:n+

+ )
4
=

{
1 if ξn+1

+ = · · · = ξ
n+

+ = [ ]

0 otherwise.
(27)

The second line of (26) describes the probability of the events
related to the trajectories that were present at time k−1 and the
last line of (26) computes the probability of the independent
events that trajectory number n + 1, n + 2, . . . , n+ are all
new trajectories. With these equations we are able to compute
the predicted distribution and represent it using the proposed
conjugate family.

C. Measurement update equations
In the update step, we combine the predicted den-

sity pk|k−1(X
∣∣∣z1:k−1), described using (24), with the

likelihood, gk(zk|X), to obtain the posterior distribution
pk|k(X|z1:k). A useful observation is that gk(zk|X) =
gk(zk|{Xσ(1), . . . , Xσ(n)}), for all σ, which implies that an
unnormalized version of (5) is

pk|k({X1, . . . , Xn}|z1:k)

∝
∑
σ

(
pok|k−1(Xσ(1), . . . , Xσ(n)|z1:k−1) (28)

gk(zk|{Xσ(1), . . . , Xσ(n)})
)
.

One density pok|k that represents the multiobject posterior
distribution correctly is hence given by

pok|k(X1, . . . , Xn|z1:k)

∝ pok|k−1(X1, . . . , Xn|z1:k−1)gk(zk|{X1, . . . , Xn}),
(29)

and we would now like to express this density on the conjugate
prior form

pok|k(X1, . . . , Xn
∣∣∣z1:k)

=
∑

t∈Tn,k

∑
ξ∈Ξk(t)

wt,ξ
k|k

n∏
i=1

p̃(Xi
∣∣∣ai, bi, ξi, z1:k).

(30)

To compute the weights wt,ξ
k|k in pok|k, we need to relate

every hypothesis ξ ∈ Ξk(t) to the corresponding hypotheses
ξ+ ∈ Ξk−1(t), which appear in pok|k−1, and θ, which is part
of the likelihood gk. We can find (ξ+, θ) from ξ by setting

ξi+ = ξi, θ(i) = 0 if τ i < k

ξi+ = ξi\|, θ(i) = ξi| if τ i = k
(31)

for i = 1, 2, . . . , n. To express the updated weights, we make
use of a function

wa,b,ξk

4
= (32)

1 if b < k

1− pD if b = k, ξ| = 0

pD

λ c
(
z
ξ|
k

)∫ f(zξ|k |x|)p̆(x∣∣∣a, b, ξ, z1:k−1)dx if b = k, ξ| > 0

which is related to the probability that ξ| correctly describes
which detection was generated by a trajectory. One can show
that the unnormalized weights can be expressed as

wt,ξ
k|k ∝ w̃

t,ξ
k|k = wt,ξ+

k|k−1

n∏
i=1

wa
i,bi,ξi

k , (33)

and the normalized weights are thus given by

wt,ξ
k|k =

w̃t,ξ
k|k∑

t′∈Tn,k
∑

ξ′∈Ξk(t) w̃
t′,ξ′

k|k

. (34)

We have now provided a complete description of how one may
perform the filtering recursions.

VI. A NUMERICAL EXAMPLE
We revisit Example 2 of Section II and extend it to allow

for birth and death of targets using the model described in
Section IV-A. Recall that Example 2 involves two targets
approaching on the real line, pausing and then separating.
Both targets are detected with probability one and no clutter
is present, i.e., pD = 1 and λ = 0. The target position is
observed with measurement noise standard deviation 1/100.
Targets persist with probability ps = 0.95 and the birth target
density is µ0 = 0.1. The target state contains position and
velocity and transitions according to x+ ∼ N (φ(x), Q) where

φ(x) =

[
1 1

0 1

]
x, Q = 1/20

[
1/3 1/2

1/2 1

]
. (35)

For this model the RFS trajectory posterior, found as
described in Section V, is a mixture with each component hy-
pothesising a different association between the measurements
and the targets and different start and end times for the existing
targets. Note that exactly two targets always exist because of
the unity detection probability and zero clutter density.

We consider two scenarios. In the first scenario the targets
approach and depart with velocities of 1/5 and in the second
the target velocities are 1. The aim is to see how the RFS
trajectory posterior is affected by the target behaviour. A
typical measurement realisation in the first scenario produces
results like those shown in Fig. 2. Here, unbroken trajectories
have the highest posterior probability. Typical results for the
second scenario, in which the targets move with velocity 1, are
given in Fig. 4. In this figure, circles and crosses indicate the



start and end of trajectories, respectively, and different colours
are used for each hypothesised trajectory. Note that the y-axis
is expanded in Fig. 4 compared to Fig. 2 because of the higher
target velocities. The minimum target separation is the same in
both scenarios. The faster target motion produces more severe
manoeuvres which are not fully accommodated by the process
noise. As a result hypotheses in which trajectories are broken at
the starting and stopping times have non-negligible posterior
probability. The increased speed of the targets also prevents
the correct hypothesis having significant posterior probability
as the targets tend to “overshoot” the stopping points.
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Fig. 4. The sets of estimated trajectories for the hypotheses with the four
highest posterior probabilities for the scenario of Example 2 with target
velocities of 1. Subfigures (a)-(d) show the estimated trajectories in order
of descending posterior probability.

VII. CONCLUSION
In this paper we have assumed that, as its name suggests,

the aim of target tracking is to estimate the trajectories of
target states across time. With this goal in mind we have
proposed a new approach to target tracking in which the state
variable is a random finite set (RFS) of trajectories. In order
to perform inference on this state variable we have developed
set trajectory analogues to the tools developed by Mahler. Our
approach is general and can be applied in scenarios with an
unknown and varying number of targets. It is expected that
this novel approach to tracking proposed here will provide a
number of avenues for future work. For example, the metrics
usually adopted for assessing performance, such as the mean
squared error, do not apply to a state variable which is an
RFS of trajectories. One possibility is to modify the optimal
subpattern assignment (OSPA) metric. Also, the in-principle
solution developed here for computing the RFS trajectory
posterior is not practically implementable so approximations
are required. With slight modifications, we expect it to be
possible to develop set trajectory versions of many well
established tracking algorithms such as the MHT algorithm
and the probability hypothesis density (PHD) filter.
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