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Abstract

When mass-deformed ABJM theory is considered on S3, the par-
tition function of the theory localises, and is given by a matrix model.
At large N , we solve this model in the decompactification limit, where
the radius of the three-sphere is taken to infinity. In this limit, the
theory exhibits a rich phase structure with an infinite number of third-
order quantum phase transitions, accumulating at strong coupling.
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1 Introduction
In supersymmetric gauge theories, the path integral can sometimes be eval-
uated exactly [1]. An interesting example of particular importance for our
work is the partition function on the sphere for field theories with extended
supersymmetry [2]. The method of localisation allows for observables with
sufficient amount of supersymmetry to be written in terms of matrix in-
tegrals, which are immensely simpler than the original functional integral
expressions and yet carry a lot of information of the vacuum structure and
the non-perturbative dynamics of the underlying field theories.

In the large N (i.e. multicolour or planar) limit, the localisation matrix
integrals can be analyzed by standard tools of random matrix theory [3] and
in some cases even solved exactly at any coupling. These results have many
applications, including providing insights into the strong-coupling behaviour
of field theories with holographic duals. The ability to compute quantities
exactly on the gauge theory side then allows for direct comparisons with
gravity- and string theory calculations for quantities that non-trivially de-
pend on the coupling constant.

Herein, we focus on the mass-deformed ABJM model, a three-dimensional
Chern-Simons theory with two gauge groups and matter in the bi-fundamental
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representation. In the massless case, the ABJM theory enjoys an N = 6 su-
perconformal symmetry and is dual to type IIA string theory on AdS4×CP 3

[4]. Its partition functions on S3 localises to a matrix model [5], exactly solv-
able at large N [6], which makes possible a very detailed comparison between
field theory calculations and geometric analyses in string theory [6, 7, 8].

It is known that mass deformation away from the conformal point may
lead to rather dramatic effects, especially in the decompactification limit
when the radius of the sphere is taken to infinity. For instance, the Chern-
Simons theory coupled to massive fundamental matter then undergoes quan-
tum weak/strong coupling phase transitions at some critical values of the
’t Hooft coupling [9], quite similar to the phase transitions found in the
four-dimensional N = 2 Super-QCD [10].

Drawing further on the analogy with four-dimensional theories, one may
expect that the theory with bi-fundamental matter will have a much richer
phase structure. Such a theory in four dimensions, usually referred to as
N = 2∗ super-Yang-Mills (SYM), undergoes an infinite number of phase tran-
sitions which accumulate at strong coupling [11], where the holographic du-
ality is supposed to operate. What these phase transitions correspond to on
the string theory side remains an open problem, partly because a complete
analytic solution across the whole phase diagram is still missing.

As we shall see, the mass-deformed ABJM theory displays a very sim-
ilar behavior, undergoing infinitely many phase transitions as the coupling
grows from zero to infinity. Moreover, the matrix model of mass-deformed
ABJM becomes exactly solvable in the decompactification limit, allowing us
to completely map the entire phase diagram of this model.

The paper is organized as follows: in section 2 we introduce the matrix
model for mass-deformed ABJM theory, and discuss its decompactification
limit. The saddle-point equations are then solved for two different analytic
continuations of the original model in sec. 3 and sec. 4. The results are
discussed in sec. 5.

2 Massive ABJM
The ABJM model is an N = 6 superconformal Chern-Simons theory with the
gauge group Uk(N) ×U−k(N) and matter in the bi-fundamental representa-
tion, where k as usual denotes the Chern-Simons level. The path integral
of this theory on S3 was shown to localise on constant field configurations
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in [5, 12], but this result actually does not require as high supersymmetry
as N = 6, nor relies on conformal invariance, and thus holds true in a much
wider class of models, conformal or not. Localisation opens an avenue to
study the large N limit of these models by methods of random matrix theory,
a great simplification compared to direct summation of planar diagrams. The
main effort, largely motivated by the AdS/CFT duality, has been directed
towards conformal models (see [13] for a review), while much less is known
about massive theories. In three dimensions, the Chern-Simons theory with
fundamental matter remains the only case studied so far [9]. Herein, we con-
centrate on the mass deformation of the ABJM model obtained by giving
equal masses to all bi-fundamental fields.

We shall actually consider a small generalisation of ABJM theory, in
which the two gauge groups are allowed to have different ranks: Uk(N1) ×

U−k(N2). This generalisation proved useful in the study of the massless
theory [6], as it allows for varying the two ’t Hooft couplings independently.
The localised path integral in this case becomes equivalent to the partition
function of pure Chern-Simons theory on the lens space L(2,1) [14]. The two
matrix models are related through changing the sign of N2, making possible
to exploit the large-N solution of the lense-space matrix model [15] in the
ABJM context.

The localisation locus of ABJM theory consists of spatially homogeneous
auxiliary fields, σ and σ̃, from the vector multiplets of the two gauge groups,
which can be brought to diagonal form by a gauge transformation:

σ = diag (µ1, . . . ,µN1) , σ̃ = diag (ν1, . . . ,νN2) . (1)

The partition function on S3 then takes the form of an eigenvalue integral
[5] (using the normalization convention of [6]):

ZABJM(ζ,m, k) =
1

N1!N2! ∫
N1

∏
i=1

dµi
2π

N2

∏
a=1

dνa
2π (2)

×

∏
i≠j

sinh2 µi−µj
2 ∏

a≠b
sinh2 νa−νb

2

∏
i a

cosh µi−νa+m
2 cosh µi−νa−m

2
e
iζ(∑

i
µi+∑

a
νa)+ ik4π(∑

i
µ2
i−∑

a
ν2
a)

The mass-deformation is here represented by m, the Fayet-Illiopoulos pa-
rameter ζ is included for completeness and is set to zero in the rest of the
paper.
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We will be interested in the ABJM model with N →∞. In the standard
’t Hooft limit, the Chern-Simons level should also be sent to infinity such
that the ’t Hooft coupling is held fixed:

λ =
2πN
k

. (3)

As mentioned above, for solving the model in the massless case it was actually
easier to start with a more general model where the ranks of the gauge groups
are analytically continued to pure imaginary values of the ’t Hooft couplings.
We thus introduce

λ1 =
2πiN1

k
, λ2 = −

2πiN2

k
, (4)

and assume that λ1,2 are real. The physical value of the ’t Hooft coupling
in the original ABJM model is obtained by analytic continuation λ1 → e iϕλ,
λ2 → e −iϕλ with ϕ going from 0 to π/2. The analytic continuation to complex
λ1,2 is however not at all straightforward in the massive theory, which will
be discussed more towards the end of the paper.

In the large N limit, the saddle-point approximation for the eigenvalue
integral (2) becomes exact. The saddle-point equations for the µi’s and νa’s
take the form:

µi =
λ1

N1
∑
j≠i

coth µi − µj2 +
λ2

2N2
∑
a

( tanh µi − νa +m2 + tanh µi − νa −m2 ) (5)

νa =
λ2

N1
∑
b≠a

coth νa − νb2 +
λ1

2N2
∑
i

( tanh νa − µi +m2 + tanh νa − µi −m2 ).

The analytic continuation in λ, however, is not unique. We may as well
start with the equations

µi
α1

=
1
N
∑
j≠i

coth µi − µj2 −
1

2N ∑a
( tanh µi − νa +m2 + tanh µi − νa −m2 ) (6)

νa
α2

=
1
N
∑
b≠a

coth νa − νb2 −
1

2N ∑i
( tanh νa − µi +m2 + tanh νa − µi −m2 ),

where we already assume that the two groups have equal rank. The original
ABJM model is then obtained by analytically continuing in α1,2: α1 → e iϕλ,
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α2 → e −iϕλ. These equations can be regarded as the saddle-point equations
for the matrix model

Z =
1
N !2 ∫

N

∏
i,a=1

dµi dνa
(2π)2

∏
i≠j

sinh2 µi−µj
2 ∏

a≠b
sinh2 νa−νb

2

∏
i a

cosh µi−νa+m
2 cosh µi−νa−m

2
e
−N( 1

2α1
∑
i
µ2
i+

1
2α2
∑
a
ν2
a)
.

(7)

Loosely speaking, the first case, that leads to (5), can be regarded as an-
alytic continuation in the rank of the gauge group, while the second case can
be interpreted as analytic continuation in the Chern-Simons level. In this
paper, we shall investigate both these cases. In neither one, the saddle-point
equations are, to our knowledge, possible to solve analytically, but may be
investigated through numerical methods. Solutions may be found when both
λ1, λ2 ∈ R (or α1, α2 ∈ R ), whereas the solutions quickly become unstable
when the ’t Hooft couplings acquire complex phases. A more thorough dis-
cussion on these features shall be given in the conclusions, and we shall for
the moment not dwell on the analytic continuation any further.

2.1 The decompactification limit
The localisation formulae above are written in units where the radius of the
sphere is set to one. The dependence on R can be reinstated by rescaling all
dimensionful variables:

m→mR, µi → µiR, νa → νaR. (8)

An obviously interesting question is what happens when the radius of the
sphere goes to infinity. Apart from simplifying the saddle-point equations,
this limit brings in new qualitative features. Massive theories in four dimen-
sions, when decompactified, appear to undergo phase transitions at some
critical values of the ’t Hooft coupling [11] (see [16] for a review). Phase
transitions of this type was also observed in the Chern-Simons theory with
fundamental matter [9], in close analogy to N = 2 QCD in four dimensions
[10, 16]. We expect that the phase structure of the mass-deformed ABJM
resembles that of the four-dimensional N = 2∗ theory, (since they both are
theories with matter in the bifundamental representation), which is sub-
stantially more complicated, with an infinite number of phase transitions
accumulating at strong coupling [11, 10]. We will find that the saddle-point
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equations simplify in the decompactification limit to the extent that they
may be studied by analytical means herein.

A quick inspection of the saddle-point equations (5) or (6) demonstrates
that simply rescaling (8) and then taking R → ∞ is not self-consistent. To
circumvent this problem, it was suggested in [9] that the ’t Hooft coupling
should also be rescaled with R. Unlike (8), this rescaling does not follow
from dimensional analysis, and thus introduces a new scale to the problem,
defined as

t =
λ

R
. (9)

This scale is kept fixed as R →∞.
Since we have introduced partial ’t Hooft couplings in the analytically

continued saddle-point equations, there will be two different dimension-one
parameters, t1 and t2 (corresponding to λ1, λ2 respectively). In terms of these,
the saddle-point equations (5) will in the decompactification limit take the
form†:

µi =
t1
N
∑
j≠i

sign(µi − µj) +
t2

2N ∑a
(sign(µi − νa +m) + sign(µi − νa −m))

(10)

νa =
t2
N
∑
b≠a

sign(νa − νb) +
t1

2N ∑i
(sign(νa − µi +m) + sign(νa − µi −m)),

where we used that tanhRz and cothRz becomes step functions as R →∞.
This step-function approximation obviously leads to drastic simplifications,
and is actually familiar from the study of the conformal ABJM model [17,
7, 18], where this approximation corresponds to the extreme strong-coupling
limit.

We should stress that the massless ABJM model with physical couplings
t2 = −t1 ≫ 1 is a very special case since it results in perfect cancellations on
the right-hand side in equation (10), which largely determine the structure of
the solution at strong coupling. In the cases we consider however, the mass
shifts in the argument of the sign-functions, together with the lack of any
imposed conditions on the couplings, will result in a situation where such

†Here we assume that t1 and t2 are real and so are the eigenvalues. For a more general
case of complex couplings and eigenvalues, sign z should be understood as sign Re z. The
appearance of the real part indicates that analyticity is actually lost in the decompactifi-
cation limit.
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cancellations do not occur. The solution for the cases considered herein, as
a result, is thus expected to behave quite differently in comparison to the
massless ABJM case.

After solving the saddle-point equations for real t1, t2, one may try to
rotate these real couplings into the complex plane by giving them phases
of equal magnitude but opposite signs, and then letting these approach ±π2 ,
corresponding to the case of real Chern-Simons level and ranks of the gauge
groups. However, the hyperbolic functions in equation (5) develop poles
at purely imaginary argument, which is an indication that the analytical
continuation back to the physical values of the couplings might not be as
straight-forward as hoped.

3 Exact solution

3.1 Some simple examples
Perhaps the most interesting feature of the model under consideration is the
appearance of phase transitions at finite values of the ’t Hooft coupling. We
first illustrate this phenomenon in the simplest examples, and then solve the
model in full generality for the case of equal couplings (t1 = t2).

It is convenient to introduce the eigenvalue densities for µ and ν:

ρµ(µ) =
1
N1
∑
i

δ(µ − µi), ρν(ν) =
1
N2
∑
a

δ(ν − νa), (11)

which as usual satisfies the normalisation condition

∫ ρµ(µ)dµ = 1 = ∫ ρν(ν)dν. (12)

The saddle-point equations (10) then become integral equations for the den-
sities:

µ =t1∫
Cµ
dµ′ ρµ(µ

′)sign(µ − µ′)

+
t2
2 ∫Cν

dν ρν(ν)(sign(µ − ν +m) + sign(µ − ν −m)) (13)

ν =t2∫
Cν
dν′ ρ(ν′)sign(ν − ν′)

+
t1
2 ∫Cµ

dµρ(µ)(sign(ν − µ +m) + sign(ν − µ −m)), (14)
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-A	   A	  

m	  

B	  -‐B	  

Figure 1: The case when A+B <m and the interval on which the two eigenvalues
are supported. The upper graph represents ρµ and the lower ρν .

where Cµ and Cν denote the intervals on which ρµ and ρν are supported
respectively: Cµ = [−A,A] and similarly Cν = [−B,B].

By differentiating the equations in (13) with respect to µ and ν respec-
tively, these are simplified considerably:

ρµ(µ) =
1

2t1
−
t2
2t1

(ρν(µ +m) + ρν(µ −m)) (15)

ρν(ν) =
1

2t2
−
t1
2t2

(ρµ(ν +m) + ρµ(ν −m)), (16)

where the eigenvalue densities are taken to vanish outside their regions of
support. Since the two equations are symmetric under the exchange of t1
and t2 and µ with ν, we may without loss of generality assume A ≥ B.

The eigenvalue densities thus satisfy a set of coupled finite-difference
equations. As one can see by trial and error, the only sensical solution is
a constant or a piecewise constant density. The precise appearance will dif-
fer depending on the value of m in relation to the interval lengths, and will
undergo abrupt changes when certain resonance conditions are fulfilled. Let
us consider some simple examples:

Decoupled solution: A+B <m. In this case, µ±m and ν±m lie outside
the intervals Cµ, Cν whenever µ ∈ [−A,A], ν ∈ [−B,B]. The saddle-point
equations of (15) and (16) then decouple and the solution is simply

ρµ(µ) =
1

2t1
ρν(ν) =

1
2t2

. (17)

This behavior is easy to understand graphically (fig. 1): the interaction offsets
the intervals by ±m and for A+B <m there is no overlap between the resulting
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-A	   A	  
m	  

B	  -‐B	  

m	  

a	  -‐a	  

-‐b	   b	  

Figure 2: The case when A <m < A +B. a and b are the resonance points.

intervals. The endpoints A and B can be found from the normalisation
condition of (12):

A = t1, B = t2. (18)

The solutions thus holds for

t1 + t2 <m. (19)

It may be noted that this solution corresponds to two decoupled Chern-
Simons theories at large imaginary ’t Hooft coupling.

Solution with resonances: A < m < A +B. As the mass decreases, the
offset intervals move closer to one another and at some point start to overlap.
In the overlap region, the interaction terms in (15), (16) are no longer zero. As
a consequence, the eigenvalue distributions develop two patches with unequal
densities. The density experiences a jump at the resonances, a point distance
m away from an endpoint of the other interval.

In this situation, each one of the intervals will be divided into three re-
gions, but due to reflection symmetry around the origin, there are in practise
only two distinctly different regions of each interval where the values of the
eigenvalue densities differ (fig. 2). Consider, for instance the interval [−A,A].
This is split into two regions: ∣µ∣ ∈ [0,a] and ∣µ∣ ∈ [a,A], where a is given by
the condition a = m − B. Similarly, the interval [−B,B] is split into three
regions [−B,b], [−b,b] and [b,B] with b =m −A

The saddle-point equations of (15) and (16) determine the eigenvalue

10



-A	   A	  
m	  

B	  -‐B	  

a1	   a2	  

b	  

Figure 3: The case when B <m < A. a2 is a secondary resonance.

densities in the different regions as:

ρµ(µ) =

⎧⎪⎪
⎨
⎪⎪⎩

1
2t1 ∣µ∣ ∈ [0, a]
1

3t1 ∣µ∣ ∈ [a,A]
(20)

ρν(ν) =

⎧⎪⎪
⎨
⎪⎪⎩

1
2t2 ∣ν∣ ∈ [0, b]
1

3t2 ∣ν∣ ∈ [b,B]
(21)

Using the normalisation requirements for the eigenvalue densities, we find:

A =t2 + 2t1 −m (22)
B =t1 + 2t2 −m.

The assumption A ≥ B is equivalent to t1 ≥ t2, and so the condition for
A <m < A +B is fulfilled as soon as

t1 + t2 >m, t2 + 2t1 < 2m. (23)

Solution with secondary resonances: max(B,2A/3) < m < A. This
situation is slightly more complicated than the ones previously considered.
The solution of ρν(ν) for ∣ν∣ in the interval [0,B] will have a discontinuity
at the point b = A −m. In the region ∣ν∣ ∈ [b,B], (denoted by red in figure
3), one of the resonance points ν ±m will lie inside [−A,A], (more precisely
in [−a2, − a1] ∪ [a1,a2], where a1 = m −B and a2 = 2m −A ). For ∣ν∣ ∈ [0,b],
(in figure 3 denoted by purple), both resonance points ν ±m will lie inside
[−A,A], with one in [−A, − a2] and the other in [a2,A].

In a similar fashion, the interval [0,A] is divided into three parts: the
region [0,a1] where both resonance points will lie outside [−B,B] (denoted
by pink in figure 3), the region [a1,a2] where one resonance point, µ−m, will

11



A	  
m	  

B	  

a1	   a2	  

b2	  
m	   b1	  

Figure 4: The case when B > 2A/3 & 2A/3 < m < A when both intervals carry
primary and secondary resonances.

lie in [−B, − b] (denoted by red), and finally, there is the region µ ∈ [a2,A]

(denoted by purple), where again one resonance point, µ −m, will lie inside
the support of ρν , but this time rather in [−b,b] than in the previous region
where it would lie in the outermost regions of [−B,B].

Again, by considering the equations (15) and (16) in the different regimes,
one finds:

ρµ(µ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
2t1 ∣µ∣ ∈ [0, a1]
1

3t1 ∣µ∣ ∈ [a1, a2]
1

2t1 ∣µ∣ ∈ [a2,A]

(24)

ρν(ν) =

⎧⎪⎪
⎨
⎪⎪⎩

0 ∣ν∣ ∈ [0, b]
1

3t2 ∣ν∣ ∈ [b,B]
(25)

Once more, equation (12) allows us to relate the interval endpoints to the
couplings:

A = t1 +
t2
2 B = t1 + 2t2 −m. (26)

This solution exists for t2 + 2t1 > 2m and t1 + 2t2 < 2m (when 2A/3 < B <m)
or 2t1 + t2 < 3m (when B < 2A/3 <m).

Solution with a pair of secondary resonances: B > 2A/3 & 2A/3 <m < A.
This situation is similar to the previous case, but herein, both intervals
[0,A] and [0,B] will be divided into three pieces, as illustrated in figure 4.
The eigenvalue densities in the different regions may be found in a straight-
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forward manner, and are given by:

ρµ(µ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 ∣µ∣ ∈ [0,a1]
1

3t1 ∣µ∣ ∈ [a1,a2]
1

2t1 ∣µ∣ ∈ [a2,A]

(27)

ρν(ν) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 ∣µ∣ ∈ [0,b1]
1

3t1 ∣ν∣ ∈ [b1,b2]
1

2t1 ∣ν∣ ∈ [b2,B]

. (28)

The normalisation conditions gives:

A = t1 +
t2
2 B = t2 +

t1
2 . (29)

The upper limit on the mass for the existence of this solution is naturally
given by the lower limit of the previous cases, whereas the lower limit may
be expressed as

t1 +
t2
2 <

3m
2 . (30)

3.2 A general solution for equal couplings
In each case considered above, the solution is obtained by simple algebraic
manipulations, and may as such be generalised to any A and B. We will
find the general solution in the slightly restricted case of equal couplings:
t1 = t2 = t. The two saddle-point equations (15) and (16) then collapse into
one:

2ρ(µ) + ρ(µ +m) + ρ(µ −m) =
1
t
, (31)

since the eigenvalue densities are equal by symmetry reasons: ρ = ρµ = ρν .
Consider a solution on the interval [−A,A]. If 2A ≥ m, the endpoints

will create resonances in the middle of the eigenvalue distribution at ∓A±m,
and those will in turn create secondary resonances, and so the density will
have discontinuities at points ∓A ± lm as long as A − lm ≥ −A. The number
of resonances thus depends on how many times the mass m fits inside the
length of the interval [−A,A] (fig. 5). This number, which we denote by n,
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-A	   A	  m	   m	  

a1	  
ρ(μ)	  

µ	  b1	   a2	   an	   an+1	  bn	  

Figure 5: The structure of resonances in the n-th phase. The eigenvalue density
is constant on the interval between each pair of adjacent resonances.

characterises the different phases of the system. Within each phase, the free
energy of the matrix model changes continuously with the parameters (m
and t), while it at the transition points has singularities, the exact nature of
which is to be determined later. The transition between two phases happens
when the length of the interval [−A,A] is an integer multiple of m, at which
point the purple circles and pink crosses in fig. 5 collide. The fractional part
of 2A/m, which we denote by ∆, governs the proximity to the critical point,
and we thus have:

∆ = {
2A
m

}m ∶ 2A =m +∆, n = [
2A
m

] . (32)

Just as in the examples presented in section 3.1, the eigenvalue density
is constant between the resonance points. This allows us to write down an
Ansatz for ρ(µ):

ρ(µ) =

⎧⎪⎪
⎨
⎪⎪⎩

al for µ ∈ [−A +m(l − 1), −A +m(l − 1) +∆]

bl for µ ∈ [−A +m(l − 1) +∆, −A +ml]
. (33)

Since for any point µ ∈ [−A+m(l−1),−A+m(l−1)+∆], the points µ±m lie
in the interval [−A+m(l−1±1),−A+m(l−1±1)+∆], the equations for the
al and bl’s decouple, so these constants each fulfil the recursion relations:

2al + al−1 + al+1 =
1
t

(34)

2bl + bl−1 + bl+1 =
1
t
,

together with the boundary conditions that the al, bl’s must vanish outside
the support of ρ(µ), or equivalently:

a0 = b0 = 0 = an+2 = bn+1. (35)
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Notice that while the equations satisfied by al and bl are the same, the
boundary conditions for them differ.

The solutions to the equations in (34) is conveniently expressed in terms
of a parameter

ξ ≡ n (mod 2), (36)
which gives us:

al =
1
4t(1 − (−1)l) + (−1)l ξl

2t(n + 2) (37)

bl =
1
4t(1 − (−1)l) + (−1)l (1 − ξ)l

2t(n + 1) .

Here, the constant terms are fixed by the boundary conditions at l = 0 and
the coefficients in front of the linear terms by the boundary conditions at
l = n + 2 and l = n + 1 respectively.

There are consistency requirements on the obtained solutions: the density
must be symmetric around the origin, and positive-definite or zero. It is not
immediately clear that these conditions are satisfied, but they can be readily
verified by a back-of-an-envelope calculation, which we will not present here.

Using the normalisation condition of the eigenvalue density, one may find
an expression for ∆ in terms of the coupling parameter, the mass, and the
integer n. The normalisation condition of ρ(µ) takes the form:

1 = ∫
A

−A
dµρ(µ) = ∆

n+1
∑
l=1
al + (m −∆)

n

∑
l=1
bl (38)

=
n + 2 − ξ

4t [
∆ (n + 2 + ξ)

n + 2 +
(m −∆) (n + ξ)

n + 1 ] ,

which gives:
∆ = 4t n + 1 + ξ

n + 2 − ξ −m(n + 2ξ), (39)

A = 2t n + 1 + ξ
n + 2 − ξ −mξ . (40)

3.2.1 Phase transitions

These expressions, (39) and (40), are not valid for any value of n and t, since
∆ by definition satisfies

0 < ∆ <m, (41)
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which originates from the fact that ∆ was given by the fractional part of
number of times m fits inside the interval [−A,A]. When ∆ approaches zero,
the a-type intervals shrink to zero size (fig. 5). This happens at the critical
point characterized by coupling

tnc =
m (n + 2ξ) (n + 2 − ξ)

4 (n + 1 + ξ) =
m(n + ξ)(n + 2 − ξ)

4(n + 1) . (42)

The solution with a given n thus exists for tnc < t < tn+1
c . When the coupling

approaches the upper critical value, the b-type intervals shrink, leading to
the n → n + 1 transition. The first few critical couplings are shown in table
1. At large n, tc grows linearly with n, such that tnc ≃mn/4.

n 0 1 2 3 4 5 6 7 8 9 10
tnc 0 1

2
2
3 1 6

5
3
2

12
7 2 20

9
5
2

30
11

Table 1: The value of the first few critical coupling parameters and the
corresponding values of n.

To find the eigenvalue density for a given coupling t, we first need to
identify the interval [tnc ,t

n+1
c ] within which t falls. This determines n and

through (40),(33) and (37), also the endpoints of the eigenvalue distribution
as well as the density.

At large coupling, A grows asymptotically linearly with t: A ≃ 2t, but is
however not a continuous function thereof. Rather, it has mild singularities
at all the critical points, whose precise nature will be discussed shortly.

The first three phases in table 1 have already been discussed in sec. 3.1.
Solutions for t = 41/18 and t = 95/18, which correspond to n = 8 and n = 20
respectively, are shown in fig. 3.2.1. The eigenvalue density appears to be
bounded from above by 1

2t and there are always subintervals on which the
density turns to zero. In between, the constant patches align themselves
along a regular, cross-like structure.

We may also compare the analytic results in the decompactification limit
with the direct numerical solutions of the saddle-point equations (5). The
eigenvalue density obtained numerically indeed makes plateaux which pretty
well match the analytic predictions, while the corners of the steps are rounded
up by finite-size effects.
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Figure 6: The eigenvalue density ’t Hooft coupling (a) t = 41/18, corresponding
to n = 8, and (b) t = 95/18, corresponding to n = 20. In both plots m = 100.

3.3 Critical behavior
The ABJM matrix model thus undergoes an infinite series of phase transi-
tions, as a function of the ’t Hooft coupling. An interesting question is of
what order these transitions are. To answer this, we should study how the
free energy,

F = −
1

RN1N2
logZ, (43)

changes across the critical point tnc that separates the (n − 1)-th and n-th
phases. The free energy itself of course is continuous, but its derivatives
should have discontinuities. It is actually easier to compute the heat capac-
ity – a derivative of the free energy with respect to the coupling constant,
directly. For the case where the partial ’t Hooft couplings of the theory are
equal, this is given by‡:

∂tF = −
⟨µ2⟩

t2
= −

1
t2 ∫

A

−A
dµρ(µ)µ2. (44)

Using the explicit form of the eigenvalue density, the heat capacity can
‡Here ∂t should be understood as ∂tF = (∂/∂t1+∂/∂t2)F ∣t1=t2=t. Notice that for unequal

couplings, ∂F /∂t1,2 cannot be expressed as a local integral of the density.
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Figure 7: The numerically obtained eigenvalue density for m = 100 and ’t Hooft
coupling (a) t = 23/18, (corresponding to n = 4) and (b) t = 5/6, (corresponding
to n = 2), compared to the analytically obtained eigenvalue density. Numerical
results are plotted in purple and analytical in yellow.

be written as

−3t2∂tF =
n+1
∑
l=1
al {[−A +m(l − 1) +∆]

3
− [−A +m(l − 1)]3

} (45)

+
n

∑
l=1
bl {(−A +ml)3 − [−A +m(l − 1) +∆]

3
} ,

allowing us to compute the derivatives of the free energy at the critical cou-
pling. Denoting the free energy in the nth phase by Fn, after some algebra
we obtain:

∂t(Fn−1 − Fn)∣tnc = ∂
2
t (Fn−1 − Fn)∣tnc =0, (46)

whereas the third derivative of the free energy experiences a finite jump:

∂3
t (Fn−1 − Fn)∣tnc =

⎧⎪⎪
⎨
⎪⎪⎩

−
512(1+n)5
n4(2+n)4m2 even n
512m

(1+n)3m2 odd n
. (47)

If we do a similar comparison for the endpoint of the interval, with the help of
(40), we find that A itself is continuous, while its first derivative experiences
a jump at the critical point.

Thus we conclude that there is an infinite number of quantum phase tran-
sitions in the mass-deformed ABJM model, all of third order. Furthermore,
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these transitions become weaker and weaker with increasing coupling, which
may be easily seen by noting that the discontinuity in the third derivative of
the free energy scales as 1/n3 for large n.

4 Another analytic continuation
It is interesting to compare the behavior that we have found for the ABJM
matrix model continued in the rank of the gauge group with the model (7),
obtained by analytic continuation in the Chern-Simons level. This will allow
us to study the quantum weak/strong phase transitions which were found in
section 3 from a different perspective. The pattern that we will find in the
decompactification limit turns out to be strikingly similar to the behavior of
the N = 2∗ theory in four dimensions [11, 10, 16]: the eigenvalue density at
strong coupling, as we shall see, has an enveloping limit shape, with a fine
irregular structure on top. As in the previous section, we will be able to
resolve this fine structure analytically at any value of the coupling and thus
map the entire phase diagram of the model.

Again, in the decompactification limit we need to scale the couplings,
α1,2, with R,

α1,2 = Rg1,2, (48)
such that g1,2 remain finite when R → ∞. The saddle-point equations, (6)
after the same steps that led to (15), turn to finite-difference equations:

ρµ(µ) =
1

2g1
+

1
2(ρν(µ +m) + ρν(µ −m)) (49)

ρν(ν) =
1

2g2
−

1
2(ρµ(ν +m) + ρµ(ν −m)). (50)

In the case of equal couplings, g1 = g2 = g, those two equations reduce to one:

2ρ(µ) − ρ(µ +m) − ρ(µ −m) =
1
g
, (51)

which differs from (31) by two signs.
At strong coupling, g ≪ m, the difference operator in (51) becomes dif-

ferential. Then, approximately, −m2ρ′′ = 1/g, which is solved by

ρ∞(µ) =
1

2gm2 (A2
∞ − µ2) , (52)
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supported on the interval [−A∞,A∞], where the interval endpoints are deter-
mined by the normalisation condition:

A∞ = (
3gm2

2 )

1
3

. (53)

The infinite-coupling solution is a smooth envelope of a rigged, irregular
structure on small scales [11, 10]. Below, we will find an analytic solution
that describes this fine structure of the density.

The solution largely follows the analysis in sec. 3.2. Parametrising the
density as in (33), we find two sets of identical recursion relations for the
constants al and bl:

2al − al+1 − al−1 =
1
g
, 2bl − bl+1 − bl−1 =

1
g
, (54)

supplemented by the boundary conditions (34). The solution to these equa-
tions is

al =
1
2g

[(n + 2) l2 − l2] , l = 1 . . . n + 1 (55)

bl =
1
2g

[(n + 1) l2 − l2] , l = 1 . . . n. (56)

The normalization condition, in the form (38), fixes ∆ and hence A:

∆ =
4g

(n + 1) (n + 2) −
nm

3 , A =
nm

3 +
2g

(n + 1) (n + 2) . (57)

Just as in the previous case, the two types of resonances, (those associated
with the right end of the eigenvalue distribution and those associated with
the left end), collide when ∆ → 0 or ∆ → 1. The a or b cuts then shrink,
and the system undergoes a transition to a new phase with different n. From
(57), we find that this transition happens at

gnc =
mn (n + 1) (n + 2)

12 . (58)

At g1
c =m/2, the first two resonances appear near the endpoints of the distri-

bution, signalling a transition to the n = 1 phase where the density has three
patches. As the coupling parameter increases further, the resonances move
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Figure 8: Comparison of the infinite-volume density (blue lines) with the solution
of the finite-volume saddle-point equations (6) (green dots) for sufficiently big m.

into the interior of the eigenvalue distribution, and at g2
c = 2m, these reso-

nances collide, while two new resonances are nucleated near the endpoints,
and so on.

The solution can be compared with numerical results for the finite-volume
model, fig. 8. It is also possible to see that at large coupling, (g → ∞), the
exact eigenvalue density approaches the limiting parabolic shape (52), fig. 9.

One can, once more, compute the heat capacity, using the formula:

⟨µ2⟩ =
4g2

3 (n + 1)2
(n + 2)2 +

n (n + 3)m2

18

−
n (n + 1) (n + 2) (n + 3) (2n + 3)m3

1620g . (59)

It is then straight-forward to show that the third derivative of the free energy
exhibits a discontinuity at g = gnc , whereas all lower-order derivatives are
continuous at all values of the coupling. Consequently all of the transitions
are of third order with zero critical indices, as in the previous case.
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Figure 9: The exact solution at sufficiently large coupling (blue lines) vs. the
limiting shape (52).

5 Discussion
We have herein studied two analytically continued versions of the mass-
deformed ABJM theory at large N , whose partition function on the sphere
can be computed with the help of localisation. Due to the simplicity of the
saddle-point equations, the phase structure of the model can be completely
mapped out at any coupling. In both analytic continuations of the model,
an infinite series of phase transitions, located at some critical values of the
coupling, is found. Furthermore, these phase transitions accumulate as the
coupling becomes infinite, which raises the question of what can be a holo-
graphic dual of this fractal structure.

As in many papers on localisation in three dimensions, we solved the
model with the couplings (either the rank of the gauge group of the Chern-
Simons level) analytically continued into the complex plane. In contrast to
conformal theories, where analytic continuation back to the physical cou-
plings is straightforward, here such an analytic continuation actually poses
a problem. This, in part, is due to the fact that the hyperbolic functions in
the saddle-point equations (5) and (6) develop poles as the arguments obtain
imaginary parts.

Problems with analytic continuation are readily visible in the saddle-
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point equations (6). Suppose that we are interested in the regime when
the mass is big, and all eigenvalues are big. We know that for real α1,
α2, the eigenvalue density forms a number of steps of different hight along
the real axis. We now want to rotate α1,2 into the complex plane. The
eigenvalues will also become complex, but the hyperbolic tanh and coth are to
first approximations real-valued step-functions irrespectively of whether their
argument is real or complex. The right hand side of (6) is thus approximately
real-valued, and so should be the left-hand-side, which means that all the µ
(respectively, ν) eigenvalues have the same complex phase. But this is clearly
inconsistent with the density taking different values on different patches of
the eigenvalue distribution. Our preliminary numerical analysis shows that
the solution becomes very unstable for complex couplings, and does not form
one-dimensional lines on the complex plane, as in the usual matrix model [19],
but rather resembles a random scatter plot. This is true for both types of
analytic continuation we have considered. The way to transfer the results
obtained herein back to the original theory in a satisfactory fashion remains
a mystery and would be an interesting area for future work.

It would furthermore be interesting to understand if the models that we
considered here have hologrpahic duals. The holographic dual of the mass-
deformed ABJM theory is not known. In principle, it can be constructed by
switching on a constant source for the supergravity field dual to the mass op-
erator, and following the flow triggered by this source. A related construction
was studied in [20].
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