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Modeling of Nonlinear Signal Distortion
in Fiber-Optic Networks

Pontus Johannisson and Erik Agrell

Abstract—A low-complexity model for signal quality prediction
in a nonlinear fiber-optic network is developed. The model,
which builds on the Gaussian noise model, takes into account
the signal degradation caused by a combination of chromatic
dispersion, nonlinear signal distortion, and amplifier noise. The
center frequencies, bandwidths, and transmit powers can be
chosen independently for each channel, which makes the model
suitable for analysis and optimization of resource allocation and
routing in large-scale optical networks applying flexible-grid
wavelength-division multiplexing.

Index Terms—Optical fiber communication, Optical fiber net-
works, Fiber nonlinear optics, Wavelength division multiplexing.

I. INTRODUCTION

F IBER-OPTIC long-haul communication research has dur-
ing the latest decade mainly been focused on coherent

transmission. The data throughput has been increased by better
utilization of the available bandwidth and receiver digital
signal processing (DSP) has allowed many signal impairments
to be compensated for. Further significant increase of the
data rate is expected through the use of multicore/multimode
fibers [1], but while this development is exciting, there are
also significant challenges, e.g., the need for deployment of
new fibers.

It is desirable to use available resources to the greatest
possible extent and the increase in spectral efficiency enabled
by coherent communication is a good example of this. For
example, using a channel spacing of 50 GHz, it is now possible
to transmit 100 Gb/s using polarization-multiplexed quadra-
ture phase-shift keying. Comparing this with the traditional
10 Gb/s using on–off keying, the data throughput is increased
by a factor of ten. In this work, the focus is on optical
networking. By developing routing algorithms with awareness
of the nonlinear physical properties of the channel, it would
be possible to operate optical links closer to the optimum
performance, and this would further increase the throughput
in optical communication networks.

Optical networks are not as flexible as their electronic
counterparts, but there are several efforts that aim at im-
proving the situation by investigating, e.g., cognitive [2] and
elastic [3] optical networks. An increased flexibility requires,
e.g., hardware routing of channels in the optical domain and
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a monitoring system responsible for the resource allocation. It
is also desirable that the coherent transmission and detection
can be done using a number of different modulation formats
and symbol rates, chosen dynamically in response to time-
varying traffic demands and network load. Hence, the tradi-
tional wavelength-division multiplexing (WDM) paradigm, in
which the available spectrum is divided into a fixed grid of
equal-bandwidth channels, is being replaced by the concept of
flexible-grid WDM [4].

A planning tool for allocation of resources such as routes,
wavelengths, and bandwidth requires a model that quantifies
the nonlinear signal distortion in the physical layer. While
the problem of linear routing and wavelength assignment
is well investigated, see, e.g., [5]–[8], the effort to find
a nonlinear model that combines reasonable accuracy and
low computational complexity is ongoing. Both these prop-
erties are necessary in order to be able to find a close-to-
optimal solution and this excludes simulations of the nonlinear
Schrödinger equation as an alternative. One approach is to
build the performance estimation on a semi-analytical model
and precalculate the necessary system parameters [9]. This
allows accurate performance prediction and can take the
correlation of nonlinear distortion generated in different fibers
into account. However, such an approach relies on system-
dependent numerical simulations and it is therefore desirable
to complement this model with another one that has no free
parameters and gives the performance estimate in an explicit
way.

In this paper, we start from the Gaussian noise (GN)
model [10]–[12] and derive a model that quantifies the non-
linear signal distortion in optical networks. The aim is to
find a model that is useful both in real-time optimization,
where demands for communication are added dynamically,
and in offline mode, where a number of connections are to
be optimized with respect to, e.g., bandwidth requirement
or signal quality. It should be noticed that optimal usage of
this model will require knowledge of all communication links
within a given network, implying that centralized network
planning will be required. However, in this paper, focus is
on quantifying the nonlinear effects and we plan to study
the design and implementation of planning algorithms in later
work.

The GN model provides a tool to approach the question of
how to find a nonlinear optical network model. This model has
no free parameters that need precalculation but unfortunately,
the GN model is also too computationally complex. The very
recently suggested improved GN model, called the enhanced
GN model [13], is even more accurate but also more complex
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and we will therefore not attempt to use it here. Instead, in
this paper, we start from a description of how a model suitable
for network optimization can be formulated and derive such a
model from the GN model.

Prior to the GN model, a model for OFDM-based com-
munication was published [14]. These two models share
many features and, in fact, become identical under certain
assumptions. The original model has been generalized [15]
and modified to allow prediction of signal distortion in a
networking context [16], and we will refer to this network
model as the OFDM model. We compare the OFDM model
with the one suggested here, and find that the OFDM model
is less general due to a number of assumptions that can be
relaxed.

The organization of this paper is as follows. In Sec. II, the
problem is formulated and the approach is outlined. The main
assumptions and approximations are given in Sec. III. The
model for a multichannel fiber span is derived in Sec. IV,
and it is expanded into a network model in Sec. V. After
a discussion about the validity of the model assumptions in
Sec. VI, an analytical and numerical comparison is made with
the previously published OFDM model [16] in Sec. VII. Then,
the paper is concluded.

II. PROBLEM STATEMENT

A. Network Topology and Terminology

A network consists of a number of nodes, each containing
transceivers and/or routing hardware components, connected
by optical communication links. Each link consists of N
concatenated fiber spans, which each consists of an optical
fiber followed by an erbium-doped fiber amplifier (EDFA)1.
Each link can transmit M simultaneous channels using WDM.

In such a network, a large number of connections are
established between transceivers. For each connection there
is a route, i.e., a set of fiber links that connect the transmitting
and receiving nodes via a number of intermediate nodes. We
consider an all-optical network, implying that the signal is
in the optical domain throughout the path. The intermediate
nodes typically consist of reconfigurable add/drop multiplexers
and may, in principle, include optical wavelength conversion.
However, it is assumed that the OSNR penalty from this
operation is then negligible.

B. Signal Degrading Mechanisms

For any connection through the network, there will be signal
degradation caused by a number of mechanisms. The two most
fundamental ones are amplifier noise and nonlinear signal
distortion due to the Kerr nonlinearity. While the amplified
spontaneous emission from optical amplifiers is easy to model,
the latter presents a big challenge. Additional degrading effects
include the finite signal-to-noise ratio (SNR) already at the
transmitter, which may be important for large quadrature
amplitude modulation constellations, and the crosstalk be-
tween different WDM channels in routing components and

1While Raman amplification can be described within the GN model [12,
Sec. X], it leads to the introduction of new system parameters and complicates
the analytical expressions. It is outside the scope of the work presented here.

in the receiver. However, the efforts to increase the spectral
efficiency have led to sophisticated shaping of the optical
spectrum. Techniques such as orthogonal frequency-division
multiplexing and Nyquist WDM have demonstrated optical
signal spectra that are very close to rectangular [17]. Using a
DSP filter, the channel crosstalk can then be very small in the
receiver. Optical routing components, such as reconfigurable
optical add-drop multiplexers, are more difficult to realize as
the filter function is implemented in optical hardware, but the
lack of WDM channel spectral overlap reduces the crosstalk
also here. Signal degradation due to, e.g., polarization-mode
dispersion is neglected as it is compensated for by the receiver
equalizer. Thus, we here choose to focus on the nonlinear
effects generated as the interplay between the Kerr nonlin-
earity and the chromatic dispersion, known as the nonlinear
interference (NLI) within the GN model [12].

C. Modeling Aim

The aim of the modeling effort is to find an approximate
quantitative model for the NLI for a large number of connec-
tions between network transceivers. For each connection there
is a route, i.e., a set of fiber links that connect the transmitting
and the receiving nodes via a number of intermediate nodes.
Each link can transmit M WDM channels and for each chan-
nel m = 1, . . . ,M , the center frequency fm, the bandwidth
∆fm, and the power Pm are chosen. This is summarized as
the set of channel parameters Cm = {fm,∆fm, Pm}. For
a given link, the WDM channels can then be written as the
set W = {C1, . . . ,CM}. The physical parameters of a link
are the power attenuation α(z), the group-velocity dispersion
(GVD) β2(z), and the nonlinearity γ(z). Here z ∈ [0, L]
denotes the distance from the beginning of the first fiber, where
L is the total length of the link (possibly including several
fiber spans). The link parameters are summarized in the set
L(z) = {α(z), β2(z), γ(z), L}.

Assume that there are a number of planned connections.
To make sure that each transmission can succeed, the corre-
sponding connection must satisfy the SNR requirement for the
selected modulation format at the receiving node. The purpose
of the proposed model is to calculate the SNR for a number
of simultaneous connections in a network, given the network
topology and the parameter sets W and L for every link in the
network.

The total noise variance is the sum of all noise sources.
We view amplifier noise as being added after the power gain
in each optical amplifier with a variance related to the power
gain and the amplifier noise figure [18]. The NLI is generated
during the propagation through the fibers, but within the GN
model, we view it as being added after the gain in the amplifier,
i.e., at the same location and at the same power level as the
amplifier noise.

D. Modeling Approach: The GN Model

We assume there is no periodic (hardware) compensation
for chromatic dispersion, which seems to be a likely scenario
for the future, and that no DSP compensation of nonlinear
effects is carried out. Under these assumptions, the GN model
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provides both accurate predictions and the potential to obtain
a sufficiently low-complexity model. While there is still work
in progress [13], [19] about the range of validity of the signal
model used in the GN model [10, Eq. (3)], the agreement
with simulations of the full model equations has been shown
to be very good [11]. We discuss some known facts about the
validity of the GN model in Sec. VI. Starting from the GN
model, assumptions and approximations needed to obtain a
network model are introduced in the following.

III. NETWORK MODEL DERIVATION

A. General NLI Expression

The derivation is started from the GN model as stated
in [20], where the model equation, [20, Eq. (1)], assumes
polarization-multiplexed transmission. We point out that differ-
ent conventions exist in the literature and the model equation
used here [21, Eq. (1)] is identical to the one used for the
OFDM model [22, Eq. (4)] but differs from [23, Eq. (71)]
in the definition2 of α and γ. As coherent systems typically
transmit and receive the two polarization-multiplexed channels
simultaneously, these are viewed as a unit. Assuming that
the signal power spectral density (PSD) is equal in both
polarizations, i.e., Gx(f) = Gy(f) ≡ G(f), we use [20,
Eqs. (26) and (27)] to obtain the NLI PSD

Gx1(f) = 3

∫∫
|C(ν, ν′, ν + ν′ − f)|2

×G(ν)G(ν′)G(ν + ν′ − f) dνdν′, (1)

where

C(ν, ν′, ν + ν′ − f) =∫ L

0

γ(z)p(z)e−i4π
2(ν−f)(ν′−f)B2(z) dz. (2)

Here, Gx1 is the NLI PSD3 in the x polarization but Gx(f) =
Gy(f) implies that Gx1(f) = Gy1(f) ≡ GNLI(f). The def-
initions for the normalized power evolution function, p(z),
and the accumulated dispersion, B2(z), are given in [20,
Sec. II-B]. Notice that the channel parameter Pm is the
power corresponding to Gx, i.e., the power per polarization.
The third-order dispersion has been neglected as it has very
small impact on the NLI [20]. Finding the NLI PSD at a
given frequency involves evaluating three nested integrals. The
numerical complexity of this is high, which motivates our
search for analytical simplifications of this expression.

B. NLI Accumulation

The GN model was originally derived for a single link where
all WDM channels propagate together from the transmitter to
the receiver, but in the network model we need the capability

2To convert the expressions given here to the ones given (for polarization-
multiplexed transmission) in [12], the following must be carried out: The
attenuation is defined in [12] using the amplitude, not the power, implying
that α must be replaced by 2α. The nonlinear parameter in [12] does not
contain the factor 8/9 [11, Appendix D], implying that γ must be replaced
by 8γ/9.

3The subscript “1” in the NLI PSD indicates that the result comes from a
first-order perturbation analysis.

of WDM channel switching/routing. The GN model builds
on a certain signal model [10, Eq. (3)], where a fundamental
assumption is that the launched signal can be written on (or, at
least, quickly approaches) this form. Then, during propagation,
the changes of the launched signal are accounted for by
a linearized propagation equation. As the signal leaves one
fiber span and enters the next, the phase relation between
different frequency components is conserved and this leads
to a coherent accumulation of the complex amplitude of the
signal perturbation corresponding to the NLI. In a network,
channels can be added or dropped, which is incompatible with
the original GN model.

Poggiolini et al. have investigated the consequences from
assuming that the NLI generated in different fiber spans can
be added incoherently, i.e., that the NLI PSDs are summed
instead of the corresponding complex amplitudes [12]. This
assumption results in a significant analytical (and numerical)
simplification, and numerical simulations have shown that the
difference compared with the exact result is small. From the
discussion above it is clear that in a network, the situation
is neither fully coherent nor fully incoherent, but we will
use the assumption that the NLI accumulates incoherently. It
then becomes possible to calculate the NLI PSD generated
in each channel in each fiber span separately and then sum
these contributions along the entire route. Unfortunately, this
assumption seems to slightly underestimate the NLI [12,
Sec. IX].

For a given link, the NLI PSD GNLI
link (f) is a function

of L and W. The dependence on the link is static since
the hardware does not change, but GNLI

link must be easy to
evaluate as a function of W. The assumption of incoherent
NLI accumulation implies that we can split each link L into
N spans Ln, n = 1, . . . , N , calculate the NLI independently
for each span, and obtain the total NLI for a link from the
NLI contributions from each span. In the special case that all
spans are identical, it is obtained that GNLI

link = NGNLI
span [12,

Eq. (18)].
We assume that the loss of each fiber span is exactly

compensated for by an EDFA placed at the end of the span.
The received power is thus equal to the transmitted power P .
Furthermore, since the link parameters Ln are assumed to be
constant within a fiber span, the z dependence is dropped from
now on. Without loss of generality, we will therefore calculate
the NLI generated in a single fiber span in Sec. IV and then
in Sec. V extend these results to the network layer.

IV. NLI FOR A SINGLE FIBER SPAN

In this section, the NLI is derived for all channels in a single
fiber span. The inputs are the channel parameters, W, and the
link parameters, Ln. The output is the NLI PSD GNLI

span(fm) for
m = 1, . . . ,M . Although this case has been discussed in the
literature [12], [24], we study it in detail for two reasons. First,
most results in the literature are for the center channel in fixed-
grid WDM transmission. However, flexible-grid WDM with
flexible bandwidths and power levels [23], [25] is essential
for a complete network model. Second, we find it useful to
summarize all calculations in a consistent notation to make
this document self-contained.
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Fig. 1. The PSD of a flexible-grid example WDM system, representing a
set of M = 5 channels with different center frequencies, bandwidths, and
powers.

As seen from (1), the signal PSD for each individual WDM
channel must be known. The exact shape depends on the
transmitter, but as mentioned, much effort is currently spent
on making the optical signal spectra close to rectangular [17].
Since this shape leads to improved spectral efficiency and also
creates minimal channel crosstalk, it is likely that signals in
future systems will approximate this shape. Thus, we assume
that each channel spectrum is rectangular, which implies
that the channel PSD is completely specified by Cm as
G(fm) = Pm/∆fm. The channel PSDs may have different
center frequencies, bandwidths, and powers, as exemplified in
Fig. 1.

From (1) and (2), the NLI is

GNLI
span(f) =

∫∫
3γ2G(ν)G(ν′)G(ν + ν′ − f)

α2 + 16π4β2
2(ν − f)2(ν′ − f)2

dνdν′, (3)

where 1 − e−(α+i4π2β2(ν−f)(ν′−f))L ≈ 1 was used. This
approximation is accurate for a fiber loss of 7 dB or more [12,
Sec. XI-A]. The NLI is frequency-dependent and the chan-
nel Cm is affected by the amount of NLI that passes the
corresponding receiver filter. Due to the assumption about
the signal PSD shape, the matched filter has a rectangular
frequency response. As it is difficult to analytically account
for the variation of GNLI

span(f) within a channel, we assume
that the NLI variance for channel Cm can be approximated
as GNLI

span(fm) ∆fm, i.e., that it can be based on the value
at the center frequency of each channel. This is a good
approximation, as the NLI varies slowly within a given channel
see, e.g., [12, Fig. 5] and [20, Fig. 1]. Furthermore, this
assumption is conservative in the sense that it typically leads
to a slight overestimation of the NLI.

A. Approximate Integration

The next step is to find an approximate value for GNLI
span(fm)

for channel m. This is done by generalizing the approach

previously used for the center channel [12], [26]. Calculations
using a similar approach can be found in [23, Sec. V] and have
also been applied to network modeling very recently [25].
As seen in (3), the integration is over the entire ν × ν′

plane, but the integrand is nonzero only within distinct regions
determined by the product of the PSDs. To exemplify, we
consider channel m = 2 in the set of WDM channels in Fig. 1.
The PSD product in (3) is a piecewise constant function that is
illustrated in the ν×ν′ plane in Fig. 2 by the dark gray regions.
The vertical, horizontal, and diagonal regions illustrate G(ν),
G(ν′), and G(ν + ν′ − fm), respectively. The product of the
PSDs is nonzero only where three regions overlap. It is seen
that this corresponds to polygons of different shapes, making
exact integration difficult. The integrand weight function

wm(ν, ν′) =
3γ2

α2 + 16π4β2
2(ν − fm)2(ν′ − fm)2

(4)

is illustrated by the colored contours and in order to discuss
its properties we introduce

ηm =
w(fm + ∆fm/2, fm + ∆fm/2)

w(fm, fm)

=

(
1 +

π4β2
2∆f4

m

α2

)−1

. (5)

In this way, ηm is the fraction of the weight function eval-
uated at the edge of the mth channel spectrum relative to
its channel center frequency. Using a dispersion parameter
D = 16 ps/(nm km) and power attenuation α = 0.2 dB/km,
we find ηm ≈ 0.84 for a 10 GHz channel and ηm ≈ 0.078 for
a 28 GHz channel. When the values of |ν−fm| and |ν′−fm|
are increased, wm decreases rapidly.

We proceed by assuming that (i) only the polygons con-
taining ν = fm or ν′ = fm need to be included and
(ii) each polygon can be approximated by a rectangle of
minimal area that contains the polygon. The first of these
assumptions is equivalent to including self-channel interfer-
ence (SCI), represented by the single polygon that surrounds
(ν, ν′) = (fm, fm), and cross-channel interference (XCI). A
similar approximation was discussed and illustrated in [12,
Fig. 3] for the center channel when the channels have equal
bandwidths and spacing. This approximation typically leads
to a very small error, since wm is negligible elsewhere. The
second assumption leads to an overestimation of the NLI. For
example, in the SCI case, the polygon area is extended by a
factor 4/3, but the effect from this is reduced since wm is
highest in the center. As shown above, this has some impact
on the result for narrow-band channels. Improvements of this
approximation are possible, for example following [26], but
here the simple and conservative assumption above is used.

Inspection of (3) shows that the result is unchanged if ν and
ν′ are substituted for each other, which in Fig. 2 corresponds
to mirroring the entire integration domain in the line ν = ν′.
Thus, evaluating the NLI for channel m, the total NLI can be
written as

GNLI
span(fm) = GSCI

m +

M∑
m′=1
m′ 6=m

GXCI
mm′ , (6)
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Fig. 2. In this visual representation of (3), the vertical, horizontal, and
diagonal shaded regions correspond to G(ν), G(ν′), and G(ν + ν′ − f),
respectively, where we choose f = f2. This illustrates the qualitative behavior
of the numerator in (3) for the example WDM channels in Fig. 1. Only the
intersections of these regions contribute to the integral. The contours show
the weight function from (4), supporting the notion of considering only the
regions containing ν = fm or ν′ = fm.

where

GSCI
m =

∫∫
Ωmm

wm(ν, ν′)G3(fm) dνdν′, (7)

GXCI
mm′ = 2

∫∫
Ωmm′

wm(ν, ν′)G(fm)G2(fm′) dνdν′, (8)

and the integration domain Ωmm′ is the rectangle ν ∈ [fm −
∆fm/2, fm + ∆fm/2], ν′ ∈ [fm′ −∆fm′/2, fm′ + ∆fm′/2].
By introducing

ξ =
4π2|β2|
α

(9)

and

F 2
mm′ =

∫∫
Ωmm′

1

1 + ξ2(ν − fm)2(ν′ − fm′)2
dνdν′, (10)

it follows that

GNLI
span(fm) =

3γ2

α2
F 2
mmG

3(fm)

+

M∑
m′=1
m′ 6=m

6γ2

α2
F 2
mm′G(fm)G2(fm′). (11)

Unfortunately, the exact result for F 2
mm′ has to be expressed

in terms of the dilog function, which is defined in terms of
a power series as Li2(z) =

∑∞
n=1 z

n/n2. (Outside the unit
circle, i.e., at |z| > 1, analytic continuation is used to extend

the definition.) For notational convenience, we introduce

x1 =
∆fm

2

(
fm − fm′ +

∆fm′

2

)
ξ, (12)

x2 =
∆fm

2

(
fm′ − fm +

∆fm′

2

)
ξ (13)

to write (10) as

F 2
mm′ =

i

ξ
[Li2(−ix1)− Li2(ix1)

+ Li2(−ix2)− Li2(ix2)]. (14)

From this expression, it is not obvious that F 2
mm′ is a real

quantity. However, Li2(z∗) = [Li2(z)]∗, where ∗ denotes
complex conjugation and z is an arbitrary complex number,
and this allows us to obtain

F 2
mm′ =

2

ξ
{Im[Li2(ix1)] + Im[Li2(ix2)]}, (15)

where Im(·) denotes the imaginary part. Using (15) together
with (11), the model is complete.

B. Further Simplification

The result above has been presented in terms of the spe-
cial function Li2. In order to obtain a simple and intuitive
expression, we approximate one step further. This is done
using an asymptotic expansion of the dilog function, but an
alternative way is to use the inverse hyperbolic sine function,
see, e.g., [12, Eq. (40)]. The asymptotic expansion leads to the
simplest expression, but if maximum accuracy is the objective,
we suggest using (15). Using the result from Appendix A, (11)
can be written as

GNLI
span(fm) =

3γ2G(fm)

2πα|β2|

[
G2(fm) ln

∣∣∣∣π2β2(∆fm)2

α

∣∣∣∣
+

M∑
m′=1
m′ 6=m

G2(fm′) ln

(
fmm′ + ∆fm′/2

fmm′ −∆fm′/2

)]
, (16)

where we introduced fmm′ ≡ |fm − fm′ |. As shown in
Appendix A, the asymptotic expansion is not accurate for
channels with a bandwidth below 28 GHz. Further information
about the GN model when using rectangular channel spectra
can be found in [24], where a similar XCI expression is given
in Eq. (20).4

V. SUMMARY OF THE NETWORK MODEL

We are now ready to summarize the model and extend it
to a network of multiple spans and links. The description
in this section is intended to be self-contained and can be
implemented without studying the details of the derivation in
previous sections. It is evaluated in two stages; first to evaluate
the channel quality of every link in the network, and second,
to evaluate the quality of every connection.

The first stage utilizes the following inputs for a given link,
denoted by l, in the network:

4There is a typographical error in [24, Eq. (20)]: “ln” is missing before the
square bracket.
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• The link parameters Ln of every fiber span n = 1, . . . , N .
These are assumed to be the same for all channels.

• The (constant) PSD GASE of the amplifier noise. It is
equal to the sum of the noise PSDs added by the amplifier
in each span, which are given by the amplifier gains and
noise figures [18].

• The channel parameters Cm for m = 1, . . . ,M . These
are assumed to be constant through all fiber spans.

Given these quantities, the model is evaluated as follows:
1) Calculate G(fm) = Pm/∆fm for m = 1, . . . ,M .
2) For n = 1, . . . , N and m = 1, . . . ,M , use Ln to

evaluate (11), where F 2
mm′ is given by (15). Denote the

PSD GNLI
span(fm) returned by (11) by GNLI

mn.
3) For m = 1, . . . ,M , calculate the SNR as SNRlm =

Pm/σ
2
m, where

σ2
m = ∆fm

(
GASE +

N∑
n=1

GNLI
mn

)
(17)

represents the total linear and nonlinear noise contribu-
tions.

This is repeated for every link l in the network. Alternatively,
(11) and (15) may be replaced by (16).

In the second stage, the SNR of an arbitrary connection
in the network is calculated. The network is all-optical and
assuming no format conversion, the bandwidth ∆fm is con-
stant for all links in the connection. The center frequency fm
may change if optical wavelength conversion is performed,
but any performance penalty from this has been neglected.
The power Pm is constant, as we have assumed the gains
to balance the losses. However, our model holds also if Pm
changes between the links in a route, if the noise added in this
process is negligible compared to the total GASE.

The input to the second stage can be represented as follows.
• The route of the connection, represented as K link

assignments l = l1, . . . , lK and channel assignments
m = m1, . . . ,mK .

• The link and channel SNRs SNRlm obtained from the
first stage above.

Based on this input, the SNR of the connection under consid-
eration is finally obtained as

SNR =

(
K∑
k=1

1

SNRlkmk

)−1

. (18)

VI. DISCUSSION

The described model is simple enough to allow optimization
of optical networks operating in the nonlinear regime. As has
been made clear in the derivation, a number of assumptions
and approximations have been introduced. We will here dis-
cuss the model accuracy.

First, the model obviously relies on the GN model and
already (1) and (2) are approximate expressions relying on the
perturbation approach and the signal model assumption [27].
A fundamental assumption is that the dispersive effects are
strong and the GN model should not be used in systems with
periodic dispersion compensation. Nevertheless, the initial part

of a system, where the accumulated dispersion is still small,
has some impact on the accuracy [28]. Furthermore, the
signal bandwidth should be sufficiently large and this means
that single-channel transmission is less accurately modeled.
While these assumptions are likely to be compatible with
future optical networks, there are some further questions about
the model validity. For example, it is a surprising fact that
the model has no dependence on the choice of modulation
format [13], [19]. The discussion about the validity of the GN
model is ongoing.

The assumption about incoherent noise accumulation has
been investigated in the literature and it is known that the
special case expression from Sec. III-B is more accurately
written as GNLI

link = N1+εGNLI
span, where ε ∈ [0, 1] depends on

both the signal and the system [12, Sec. IX]. The drawback
of this approach is that spans in the links are then assumed to
be identical. However, in many practical cases, ε � 1. This
has been found theoretically [29, Sec. III-C], but there are
also experimental investigations that indicate a higher value
of ε [30].

Finally, approximations were introduced in the integration
of (3). As seen, the value of wm is quickly reduced as the
frequency separation is increased. Thus we expect the choice
to include only SCI and XCI to lead to a small error, as
long as not too narrow channel bandwidths are considered,
but this is, as discussed above, also an inherent assumption of
the GN model. For the same reason, the error introduced by
approximating the integration polygons by rectangles is small.

In summary, the network model presented here is not
universally applicable due to the various assumptions specified
above. Nevertheless, the model combines low computational
complexity with reasonable accuracy and, as will be showed
in the next Section, constitutes a considerable step forward in
terms of accuracy compared to the OFDM model [16]. Further
accuracy improvements may be possible, e.g., by using a more
accurate model [13] and/or more accurate approximations.
Another path is to exploit semi-analytical methods, e.g., as
suggested in [9]. We will leave such improvements for later
study.

VII. COMPARISON WITH THE OFDM MODEL

The expression in [16, Eq. (3)] is somewhat similar to the
simplified expression given in (16) above. However, there are
a number of differences and the network model reported here
is more general. To see this, the relation between the two
underlying models is first discussed and then the two network
models are compared numerically for a number of selected
signal PSDs.

A. Assumptions in the Two Models

The derivation of the OFDM model in [16] is found in [16,
Appendix A] and starts from the first five equations in [15].
This expression is already similar to the corresponding one
for the GN model, see, e.g., [20, Eq. (31)]. However, it is
directly seen that the PSD of the NLI of [16], which is denoted
by INL, has no frequency dependence. Instead, it refers to a
special case of the GN model obtained by setting f = 0, i.e.,
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evaluating at the center frequency of the optical spectrum. The
OFDM model further assumes that the loss in each fiber is
sufficiently large, just as described after (3) above. Finally,
the OFDM model assumes that the signal PSD is equal in all
channels, which has the effect that the signal PSD, denoted
by I , is outside the sums in [16, Eq. (3)]. In order to compare
the models, we modify [20, Eq. (31)] by evaluating at f = 0
and setting all PSDs to be equal. The algebraic manipulations
are very simple and will not be given here. We also rewrite
the OFDM-based expression in [16, Appendix A] by inserting
the definitions of fPA and fw [16, p. 3045].

The resulting expressions for INL and GNLI now differ in
three ways. First, INL = 2GNLI/3, which is due to the assump-
tion of single-polarization transmission in [15, Sec. II].5 While
this is easy to adjust, there is also the second assumption that
the spectrum is symmetric around f = 0. Thus, the sum in [16,
Eq. (3)] is only for n = 1, 2, . . . , N , although there are 2N+1
channels. This reduces the generality of the result. Third, the
integration domains for the two integrals are different; GNLI

results from integration over a polygon-shaped domain, while
INL is obtained by integrating over a quadratic area in the
f × f1-plane. The approximation of the integration domain
for GNLI in Sec. IV-A however makes the integration domains
identical, but the assumption of a symmetric spectrum is never
done for GNLI.

There is one further important comment that must be made
about the two underlying expressions. As pointed out in
[20, Sec. V], the “phase-array factor”, i.e., the ratio between
two sinusoidal functions, e.g., in [15, Eq. (5)] requires the
assumption that all fibers have identical parameters, including
the length. This may not be the case in practice and this
assumption has not been made in the model presented here.
Instead, the assumption has been made that there is no correla-
tion between the NLI generated in different fibers. It is known
that this is a good approximation, see, e.g., the comprehensive
discussion about coherent/incoherent accumulation of NLI
in [12]. At any rate, accounting for a general phase-array factor
analytically is difficult and it may be unavoidable to resort to
numerical approaches if this is necessary to include, see, e.g.,
[9]. For this reason, we have compared the two models for a
single span of fiber below.

B. Numerical Comparison of the Two Models

Since the two models share the underlying theory, we here
compare the model results with numerical simulations of the
exact expression that the two models strive to approximate.

In the first case, we have selected a WDM signal with
M = 21 channels placed symmetrically around f = 0.
The symbol rate is 28 GBd for each channel and channel
separations equal to 28 GHz (Nyquist WDM), 50 GHz, and
100 GHz have been investigated. The link parameters used
in Figs. 3 and 4 are: power attenuation α = 0.2 dB/km,
GVD parameter β2 calculated from the dispersion parameter
D = 16 ps/(nm km), nonlinear parameter γ = 1.3 W−1km−1,

5Polarization-multiplexed transmission has been investigated in [22] using
exactly the same modeling equation as in [20].
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Fig. 3. The NLI PSD calculated at the channel center frequencies of each
of the 21 WDM channels. Black thin solid line: Numerical integration. Green
thick solid line: dilog results. Red circles: log results. Blue thin dashed line:
OFDM model.

and fiber length L = 80 km. The power per channel and
polarization is Pm = 0 dBm.

The results for this case are seen in Fig. 3. The horizontal
axes show the channel index, m, which runs from 1 to 21.
The vertical axes show the NLI PSD in the center of each
channel and the three plots in Fig. 3 are for different channel
separations. The black thin solid lines (partially obscured) are
the results from numerical integration of (3). As expected,
the channels closer to the edge of the WDM spectrum are
less affected, i.e., the NLI decreases with increasing separation
from the center channel. The green thick solid lines and the
red circles show the results from (11) when using (14) and
(25), respectively. For convenience, these are called the “dilog
results” and “log results”. As long as MCI can be neglected,
the dilog results consistently overestimate the NLI. This is
due to the conservative approach above to approximate the
polygons by rectangles. As a matter of fact, the log results
are consistently more accurate in Fig. 3, which is because the
logarithmic asymptotic expansion consistently underestimates
the dilog function. The overestimation in the dilog result is
everywhere below 0.5 dB in Fig. 3.

The blue dashed lines show the OFDM model for compari-
son. The ceiling function, d·e, is used in [16, Eq. (3)] and this
introduces a problem. As 2πf2

PA ≈ 1020 GHz2, the numerator
and denominator will evaluate to the same value and INL = 0.
We have solved this by using the exact expression from [15,
Eq. (14)], which is applicable in the case selected here. It is
seen that the result is very accurate for the center channel in
the Nyquist WDM case. However, the OFDM model does not
account for the differences in NLI in the different channels and
the estimate is less accurate for the edge channels. For the
non-Nyquist WDM cases, the OFDM model underestimates
the center channel NLI. As the underestimation is significant,
we have investigated the OFDM expression for the case with
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100 GHz channel separation. The main difference comes from
the term (1 − ∆G/∆B) in [15, Eq. (14)], where ∆G is the
guard band and ∆B is the channel separation. This evaluates
to 0.28, or −5.5 dB. In the last factor in [15, Eq. (14)], B,
i.e., the total bandwidth, increases but the net effect is a further
decrease of the estimate due to the second term. We conclude
that the 6.2 dB decrease in NLI seen in Fig. 3 when changing
the channel spacing from 28 GHz to 100 GHz is the prediction
given by [15].

We have further investigated a case where the WDM chan-
nel spectrum is not symmetric around the center channel. This
is incompatible with one of the assumptions of the OFDM
model, which implies that we cannot perform a comparison in
this case. The numerical and analytical results are indicated in
Fig. 4, where the three different plots are again for different
channel separations. In this figure, all NLI PSD values are
for the channel with m = 1, i.e., at the edge of the WDM
spectrum, and the horizontal axes show the total number of
channels. Thus, the leftmost value is for a single channel and
the rightmost value is for 21 channels as in Fig. 3. (This
implies that the rightmost values are included also in Fig. 3.)
The upper set of curves is obtained by filling the WDM
spectrum by introducing channels directly neighboring to the
channel under study, i.e., the channels with m = 2, 3, 4, . . .
in Fig. 3. The lower curve corresponds to filling the WDM
spectrum in the opposite direction, introducing the channels
with m = 21, 20, 19, . . . in Fig. 3. As an example, three
channels would then mean including the channel under study
and two channels in the frequency slots with the largest
possible frequency separation.

In this way, the separation between the two sets of curves
gives an indication of the difference in impact from close and
distant neighboring WDM channels. Again it is seen that the

dilog result consistently overestimates the NLI, in some cases
with 100 GHz channel separation up to 0.7 dB. However,
the log results are again more accurate due to the partial
cancellation from two different error sources. From the result
we conclude that, in particular for small channel spacing,
the difference in NLI can be substantial depending on the
placement of the neighboring channels. This effect is neglected
in the OFDM model.

VIII. CONCLUSION

Starting from the Gaussian noise model, a low-complexity
model for signal quality prediction in a nonlinear fiber-
optic network has been presented. Comparing the model
with numerical results we find that the NLI is estimated in
a conservative way, i.e., the NLI is slightly overestimated.
Comparing with a previously suggested OFDM-based model
we conclude that the model presented here is more general.
The center frequencies, bandwidths, and transmit powers can
be chosen independently for each WDM channel, and the here
presented model accurately accounts for that fact that the NLI
is different for different channels in the WDM spectrum.

APPENDIX A
ASYMPTOTIC EXPANSION

For |z| � 1, the dilog function has the asymptotic expansion

Li2(z) =

∞∑
k=0

(−1)k(1− 21−2k)(2π)2k B2k

(2k)!

[ln(−z)]2−2k

Γ(3− 2k)
,

(19)

where B2k are the Bernoulli numbers. As the Γ(z) function
is not defined for negative integers, there are only two terms
in the expansion, giving asymptotically

Li2(z) = −π
2

6
− 1

2
ln2(−z). (20)

However, assuming x ∈ R, we have

ln(ix) = ln |x|+ i arg(ix) = ln |x|+ sxi
π

2
, (21)

ln(−ix) = ln |x|+ i arg(−ix) = ln |x| − sxi
π

2
, (22)

where sx is the sign of x. We get

Li2(ix) = −π
2

6
− 1

2

(
ln |x| − sxi

π

2

)2

= −1

2
ln2 |x|+ sxi

π

2
ln |x| − π2

24
(23)

and

Li2(−ix) = −1

2
ln2 |x| − sxi

π

2
ln |x| − π2

24
, (24)

which gives

F 2
mm′ =

π

ξ
(sx1 ln |x1|+ sx2 ln |x2|). (25)

The condition |z| � 1 is most critical for the SCI term, where
|z| = |x1| = |x2| = |(∆fm)2ξ/4| = π2(∆fm)2|β2|/α. Using
the same parameters as in Sec. IV-A, this evaluates to 3.4 for
a 28 GHz channel. At this value the asymptotic expansion
is 13 % below the exact value, showing that the asymptotic
expansion should not be used for more narrow channels.
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