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ScienceDirect
African trypanosomes cause devastating diseases in humans

and domestic animals. The parasites evolved early in the

eukaryotic lineage and have numerous biochemical

peculiarities that distinguish them from other systems. These

include unconventional mechanisms for expressing nuclear

and mitochondrial genes as well as unusual subcellular

localizations for a variety of enzymes. Systems biology has

arisen partly to allow contextualization of the massive datasets

that describe individual chemical parts of biological systems.

Here we describe recent efforts to collect and analyse data

pertaining to all aspects of the trypanosome’s biochemical

physiology that go some way to describing the parasite as an

integrated system.
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Human African trypanosomiasis
African trypanosomes of the Trypanosoma brucei group

cause human African trypanosomiasis, a disease of sub-

Saharan Africa whose distribution is limited by the eco-

logical range of the tsetse fly vectors that transmit these

parasites [1].

T. brucei gambiense and T. b. rhodesiense cause chronic and

acute forms of the disease, respectively. After a tsetse bite,

trypanosomes enter the blood and lymphatic system. When

non human-infectious African trypanosomes enter the

bloodstream, lipoprotein particles enter through endocyto-

sis after binding a haptoglobin like receptor, then lyse due to

trypanosome lytic factors (TLFs) including Apolipoprotein
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L1 [2]. T. b. rhodesiense avoids lysis through its serum

resistance associated (SRA) protein, a mutated version of

a variant surface glycoprotein (VSG), that binds and neutral-

ises ApoL1 [2]. T. b. gambiense express reduced levels of the

haptoglobin-like receptor [3] and also express TgsGP [4�,5],

another VSG derivative that protects against lysis by mod-

ifying membrane fluidity. People carrying rare mutations in

ApoL1 become susceptible to other species of trypano-

some, such as Trypanosoma evansi [6,7].

In humans, trypanosomes establish chronic infections by

varying expression of the thousand or so genes that

encode different coat glycoproteins [8]. These shroud

the parasite and exclude immune effectors from the cell

surface. Antibodies against these coat proteins eventually

induce complement mediated lysis of parasites. However,

cells expressing other coat variants escape and proliferate

until new antibodies are generated. Eventually, parasites

invade the central nervous system triggering stage 2

disease, characterized by progressive deterioration of

brain function leading to death. Metacyclic forms injected

by the tsetse fly are non-proliferative and these differen-

tiate into slender bloodstream forms, adapted to live in the

haemolymphatic system and later cerebrospinal fluid

(CSF). A quorum-sensing pathway [9�] triggers differen-

tiation of slender forms into a non-proliferative stumpy

form whose biochemistry is pre-adapted for survival in the

tsetse midgut. Here, stumpy forms differentiate into repli-

cative procyclic forms that eventually, after transforming

through several other forms, become the metacyclic forms

pre-adapted biochemically for the mammalian host.

The parasite
Trypanosomes belong to the order Kinetoplastida, named

after the kinetoplast, a dense intercatenated network of

circular mitochondrial DNA molecules (kDNA). The

genetic code of kDNA is perturbed such that genes are

transcribed into RNA molecules that must be edited into

translatable mRNA through the addition or removal of U-

residues [10]. The expression of nuclear genes is also

unconventional (see later).

Other unusual cellular phenomena in trypanosomes in-

clude a sub-pellicular microtubule array that maintains

cell morphology. Various organelles include acidocalci-

somes, involved in ion and pH homeostasis. Peroxisomes

of trypanosomes are highly adapted containing the first

seven enzymes of glycolysis, hence their being named

‘glycosomes’. Redox balance involves two glutathione

molecules complexed to spermidine to create the signa-

ture metabolite, trypanothione (N1,N8-bis(glutathionyl)-

spermidine). Much effort has focused on attempting to
www.sciencedirect.com
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target these unusual features with chemicals that could

become new drugs.

The trypanosome’s nuclear genome and gene
expression
T. brucei is diploid, possessing around 10,000 nuclear,

protein-coding genes across 11 pairs of classical chromo-

somes in the megabase range (0.9–5.7 Mb) [11]. They

also contain variable numbers of intermediate (0.3–
0.9 Mb) and mini chromosomes (0.05–0.1 Mb) as VSG

gene repositories [12]. Other genes are present in single or

multiple copies, often in tandem arrays. Some correlation

exists between gene copy number and transcription level.

Next Generation Sequencing technologies have allowed

comparison between different species [13], subspecies and

strains and efforts are underway to compare trypanosomes

that are, for example, responsible for different pathologies,

host-range specificity and other phenotypic traits.

VSG gene transcription involves an RNA polymerase 1-

containing extranucleolar expression site body (ESB) that

ensures the monoallelic expression of VSGs, since only one

vsg gene can be associated with the ESB at a time [14].

Elsewhere, large parts of the genome are transcribed

constitutively and expression is regulated primarily at

the level of RNA stability and translational control.

The transcription of genes encoding the main surface

proteins of procyclic forms, called procyclins, is also PolI

dependent. Transcription of other protein coding genes is

dependent on polymerase II, although PolII promoters

have not been found.

Different genes give rise to transcripts and proteins of

different abundance throughout the life cycle. For example,

the bloodstream form specific glucose transporter gene,

THT1, is found only in bloodstream form (BSF) and this

is also reflected in steady-state RNA levels [15]. Conversely,

the pentose phosphate pathway enzyme transketolase is

procyclic specific [16]. Several genome-wide transcription

studies have been performed [17–20]. Meta-analysis of this

data identified co-expression networks of genes and some

overlap with similar networks from the related parasite

Leishmania infantum, providing clues on functional assign-

ment by association [19]. Expression analysis also revealed

the mechanistic pathways involved in differentiation, for

example the transcription of a phosphatase encoding gene,

whose expression is pivotal in transformation to stumpy

forms, was markedly upregulated [21]. Carboxylic acid

transporters associated with the stumpy to procyclic trans-

formation [22] were also identified through differentiation-

linked transcription of these genes.

As transcription is constitutive, large polycistronic tran-

scripts must be processed by the combined action of

polyadenylation at the 30 end of individual genes and
www.sciencedirect.com 
addition of a spliced leader sequence at the 50 end [23]

(Figure 1A).

Regulatory elements within the 30 untranslated region

(30UTR) of transcripts can determine stability of the

message or translation efficiency. RNA-binding proteins

of different classes (RRM, ALBA, CCCH and puf

families) [24] have all been characterized. One member,

RBP10, was shown to be key in controlling bloodstream

form specific gene expression [25] and its phosphorylation

seems to associate with its control function. Another

protein, RBP6, was found to be highly expressed in

parasites within the tsetse fly proventiculus [26��].
Expressing RBP6 in procyclics was sufficient to stimulate

their transformation to mammal-infective metacyclics

expressing VSG [26��]. RNA binding proteins are pivotal,

therefore, in determining expression of families of genes

in pre-programmed pathways.

Other genes and pathways are under environmental con-

trol. For example, proline is the usual substrate for energy

metabolism in tsetse flies, but procyclic trypanosomes

prefer glucose if available [27]. Threonine’s use in acetate

production is also regulated based on glucose availability

[28].

Polyamine homeostasis is of particular importance. Tight

regulation occurs and the metabolite, decarboxylated S-

adenosylmethionine (dcSAM) plays a central role. S-ade-

nosylmethionine decarboxylase (SAMDC), which con-

verts SAM to dcSAM [29], is activated over 100 fold

when bound to a catalytically dead homologue called

prozyme [30��]. Prozyme’s RNA has a region within its

3’UTR that is proposed to bind to dcSAM (Figure 1B).

When that metabolite is abundant, translation of the

message arrests. As dcSAM levels fall, the unbound

message is translated, creating more prozyme. dcSAM

then rises, binds to the mRNA and represses translation

again. Such feedback systems involving metabolite,

protein and message offer exquisite balance of metab-

olism and understanding such regulation is the essence of

modern systems biology. The discovery that a weakly

active deoxyhypusine synthase also associates with an

inactivate paralogue, encoded by a separate gene, to

create a highly active heterodimer [31�], points to our

only just beginning to unravel much of the complexity of

the trypanosome system.

Genome-wide functional genomics using RNA
interference
T. brucei possesses the machinery for RNA interference.

Initially the technique was used to knockdown individual

genes through creation of double stranded RNA and

several efforts have been taken to assess whole classes

of genes e.g. the kinome [32]. It has become possible to

systematically knockdown expression of all genes using

genome-wide libraries of fragments expressed as dsRNA
Current Opinion in Microbiology 2014, 20:162–169
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Figure 1
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Regulation of polyamine biosynthesis through a putative decarboxylated S-adenosylmethionine riboswitch. (a) Adjacent genes encode S-

adenosylmethionine decarboxylase (SAMDC) and an enzymatically dead paralogue, termed prozyme. Note the trans-splicing and polyadenylation that

process individual trypanosome mRNAs from large polycistronic precursors. (b) Enzyme activity is high when prozyme binds to SAMDC. Prozyme

translation from its mRNA, however, seems to depend upon the cellular abundance of dcSAM (depicted as red circles here). If abundant, the

metabolite binds to a region of the 30UTR of the transcript and blocks translation. This reduces the level of prozyme, thus reducing activity of SAMDC

and ultimately reducing the levels of dcSAM. As the metabolite levels fall, the 30UTR region of prozyme transcript loses bound metabolite. This allows

translation to start again, providing a typical metabolic feedback loop.
in Sca1 meganuclease expressing T. brucei lines (which

have greatly improved transfection efficiency). Initially

by transfecting parasites with the library which was

sequenced before and after propagation in trypanosomes,

hundreds of genes whose loss affected growth rates across

their life cycle were detected [33]. The technique was

then adapted for positive selection for any genes whose

loss of function rendered parasites less susceptible to

trypanocidal drugs [34��]. Most recently genes whose
Current Opinion in Microbiology 2014, 20:162–169 
loss of function prevent parasites differentiating in

response to non-metabolisable cAMP analogues into

growth-arrested stumpy forms have been determined

too [9�].

Proteomics
Proteins provide both the structural cornerstone defining

cellular form and also the catalytic capability defining

function. Proteomics allows quantification of individual
www.sciencedirect.com
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protein levels within the system and the relative pro-

teomes of different trypanosome life cycle stages have

been assessed [35]. Methods also exist to locate proteins

in different organelles, and several studies have aimed to

catalogue the glycosomal sub-proteome [36,37], which

has multiple pathways beyond glycolysis including the

pentose phosphate pathway, nucleotide salvage, pyrimi-

dine biosynthesis, arginine kinase, a succinate shunt and

several aspects of lipid metabolism among others. Assem-

bly of proteins into complexes with different partners is

also crucial to cellular function — and delineation of the

trypanosome’s protein complexes is underway. A multi-

enzyme complex specific to the trypanosome system is

the mitochondrial editosome, the complex machinery

driving RNA editing [10].

Mass spectrometry is also able to identify post-transla-

tional modifications to proteins and the phosphopro-

teomes of bloodstream form and procyclic forms were

compared [38,39]. More finely tuned alterations in real

time signalling cascades might also be possible.

Metabolomics
Mass spectrometry (MS), or nuclear magnetic resonance

(NMR), based methods now allow quantification of the

small molecule component of cells and systems. Metabolo-

mics has recently been applied to T. brucei [40]. For example,

experiments where drugs were applied to trypanosomes

have lead to identification of their targets. Eflornithine

provoked a dramatic increase in the abundance of cellular

ornithine and corresponding decrease in putrescine, the

substrate and product, respectively, of the drug’s target,

ornithine decarboxylase [41��]. Metabolomics also revealed

that trypanosomes use few nutrients present in rich media

used in their cultivation [42]. Heavy atom labeled substrates

allow the tracing of molecules throughout the metabolic

network and increasingly studies of this type are being

applied to different systems including trypanosomes and

other parasites. These types of analysis will revolutionise

our understanding of the small molecule composition of

living systems and greatly facilitate our ability to follow the

transformations that underlie the building of organisms. For

example, the apicomplexan parasites Toxoplasma gondii [43]

and Plasmodium falciparum [44] were shown to produce

g-aminobutyric acid (GABA) from glutamine by following

the fate of the 13C-heavy atom labeled carbon from

U-13C-glutamine. It was subsequently possible to

demonstrate genes encoding enzymes of GABA shunt

in these parasites. In T. brucei using glucose of which half

was the U-13C-glucose derivative showed how this sub-

strate partitioned into many parts of metabolism including a

glycosomal succinate shunt (since succinate, fumarate and

malate could all be identified [45] with three of their four

carbons labeled, whilst TCA cycle derived versions of these

metabolites would be expected to have either two or four

labeled carbons being derived from acetate). Unusual

metabolites such as octuolse 8-phosphate derived from
www.sciencedirect.com 
the pentose phosphate pathway were also identified. Recent

data indicates that bloodstream forms too might have a more

extensive glucose metabolism than previously considered.

In addition to labeling in the steady state, tracer exper-

iments can also be used to determine fluxes through the

system and, increasingly, these approaches will be used to

learn about the pathways involved in creating the trypa-

nosomal system. Metabolomics has also been used to

determine how trypanosomes affect the host plasma

and urine metabolomes [46].

Mathematical modelling of the trypanosomal
system
Computational models of various aspects of the trypano-

somal system have been developed. Ambitious efforts to

model growth of parasites in the mammalian bloodstream

have been employed [47,48] where parasite intrinsic fac-

tors (antigenic variation and quorum sensing growth arrest)

work along with host factors including immune response to

create the characteristic undulating parasitaemia.

Metabolism has also been modelled. Coarse-grained sta-

tic models of metabolism have been generated based on

pathways inferred from genome-wide analysis of enzymes

predicted to be present e.g. KEGG and a community-

based Metacyc related project, termed trypanocyc (http://

metdev.toulouse.inra.fr/). This information will even-

tually be incorporated into a constraint-based model

allowing predictions of metabolic flux through the net-

works as previously attempted for Leishmania [49] and

Trypanosoma cruzi [50].

Dynamic models of key parts of trypanosome metabolism

have also been developed. The first seven enzymes of

glycolysis are localized to the glycosome. Kinetic

parameters for all of the enzymes from glucose transport,

through hexokinase, to pyruvate kinase and the pyruvate

transporter are available. A series of ordinary differential

equations incorporating these kinetic parameters was

created [51] and flux of glucose to pyruvate successfully

simulated. The model has been updated repeatedly as

new information comes to light and made fascinating

predictions on novel ways to kill trypanosomes by pro-

voking differentiation at an inappropriate time [52]. An

interesting effort to include the production and stability

of mRNA and protein turnover for phosphoglycerate

kinase attempted to introduce multi-layered modelling

into the flow of information [53]. Most recently, algo-

rithms permitting inclusion of uncertainty about the

system, including ranges of kinetic parameters reflecting

different parameters measured in different labs, rather

than single representative values, have been introduced

[54]. The topology that describes the distribution of

metabolites between compartments is also uncertain,

given the technical difficulties in precise quantification

within different compartments, and by including this
Current Opinion in Microbiology 2014, 20:162–169
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Figure 2
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Glucose and thiol metabolism modelled in Trypanosoma brucei. Mathematical models have been produced that depict the catabolism of glucose via

the glycolytic pathway in the glycosome and also the pentose phosphate pathway which is dually localized to the glycosome and the cytosol. The

polyamine and glutathione/trypanothione pathways have also been modelled mathematically and can be linked to glycolysis and the PPP via NADPH,

a key reductant generated by the PPP and consumed via trypanothione reductase to maintain this pivotal thiol in its reduced form such that it can

operate to maintain cellular redox balance.
uncertainty [55] (allowing a fraction of each enzyme to be

active in both cytosol and glycosome) allowed glycolysis

to run even with the presence of recently described

metabolite-permeability pores in the glycosomal mem-

brane [56] (Figure 2).
Current Opinion in Microbiology 2014, 20:162–169 
The presence of enzymes of a second key pathway of

glucose catabolism, the pentose phosphate pathway

(PPP), in both the glycosome and the cytosol, added

more complexity but a model capable of predicting flux

through both branches was generated. The diversion of
www.sciencedirect.com
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bound phosphate from glucose 6-phosphate into the PPP

breaks the proposed bound-phosphate pool in the glyco-

some [57�]. Additional reactions must protect against this.

RNAi of ribokinase ruled out this enzyme taking such a

role alone, but a network of other reactions preserving

bound phosphate could be operative.

Other basic kinetic models, this time of the polyamine

and trypanothione pathways, have also been attempted

for T. brucei [58] and T. cruzi [59]. In principle, such

models could be refined and combined with the existing

glycolysis-pentose phosphate pathway model via the

cofactor NADPH which is created by the pentose phos-

phate pathway and is critical to the functioning of the

trypanothione system.

Conclusions
Progress is being made in understanding the trypanoso-

mal cell from the systems perspective, which combines

information from all levels into an operative unit. The

challenges towards this are large. However, as creation of

the system becomes increasingly tangible we can also

look ahead to the host–parasite combined system and in

the same way begin to learn how the host attempts to

control the parasite and how the parasite deals with host

molecular mechanisms to eliminate it.

Acknowledgments
EJK was funded by The Scottish Universities Life Sciences Alliance. We
are grateful to SysMO for funding the SilicoTryp (project: http://
www.sysmo.net/index.php?index=164). The Wellcome Trust Centre for
Molecular Parasitology is supported by core funding from the Wellcome
Trust (085349).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest

�� of outstanding interest

1. Brun R, Blum J: Human African trypanosomiasis. Infect Dis Clin
North Am 2012, 26:261-273.

2. Stephens NA, Kieft R, Macleod A, Hajduk SL: Trypanosome
resistance to human innate immunity: targeting Achilles’ heel.
Trends Parasitol 2012, 28:539-545.

3. Kieft R, Capewell P, Turner CM, Veitch NJ, MacLeod A, Hajduk S:
Mechanism of Trypanosoma brucei gambiense (group 1)
resistance to human trypanosome lytic factor. Proc Natl Acad
Sci U S A 2010, 107:16137-16141.

4.
�

Uzureau P, Uzureau S, Lecordier L, Fontaine F, Tebabi P,
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