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Abstract 
 

Chemical-Looping Combustion (CLC) is an innovative technology that can be used for CO2 capture. 
The CLC system is composed of two interconnected fluidized bed reactors. In the fuel reactor the added 
fuel reacts with an oxygen carrier, usually a metal oxide, to produce CO2 and H2O. The reduced metal 
oxide is then transported to the air reactor, where it is oxidized back to its original form, and the exit 
stream from this reactor will contain nitrogen and some unused oxygen. Chemical-Looping with Oxygen 
Uncoupling (CLOU) is very similar to CLC, but uses oxygen carriers with the ability to release gas phase 
oxygen, which reacts directly with the fuel, hence avoiding the necessity for a direct reaction between fuel 
and oxygen carrier. This could be especially advantageous for solid fuels, where gasification of char 
particles is otherwise a necessary step in the fuel conversion. 

 The objective of this work is to investigate two aspects of chemical-looping combustion. 1) hydrogen 
inhibition in steam gasification in CLC of solid fuels and 2) Chemical-Looping with Oxygen Uncoupling 
(CLOU) using combined Mn-Fe oxides. 

The influence of the steam and hydrogen concentration on the rate of char conversion in CLC was 
investigated. The oxygen exchange model was found to be the best in describing hydrogen inhibition 
mechanism in steam gasification. Thus, a strong dependency between fuel gasification rate and hydrogen 
concentration was found, indicating that it is desirable to use a reactive oxygen carrier which removes 
hydrogen efficiently.  

The thesis presents the first systematic study of oxygen carriers of iron-manganese oxides. Different 
combinations of iron and manganese oxide, with the Mn:Fe molar ratios varying between 4:1 and 1:4, 
were studied in a fluidized batch reactor to investigate release and uptake of oxygen and also their 
reactivity with respect to solid fuels, methane and synthesis gas (50/50% CO/H2). Although these 
materials were shown to work excellently in the laboratory reactors, the mechanical strength needed 
improvement in order to have sufficient durability for commercial application. Consequently, work was 
undertaken to investigate the reactivity and attrition resistance of a series of supported Mn-Fe oxygen 
carriers with the aim of optimizing performance of this system. The support materials used were 
MgAl2O4, CeO2, ZrO2, Y2O3-ZrO2 and Al2O3. 

For the unsupported materials, reactivity was a clear function of the Mn/Fe ratio and temperature. At 
the higher reaction temperature, 950˚C, the oxygen carriers with a Mn/(Mn+Fe) molar ratio in the range of 
25-33 %, show both the highest gas conversion of methane as well as the highest concentration of released 
oxygen. At 850˚C, on the other hand, the best methane conversion and oxygen release was seen for 
particles with a high Mn/(Mn+Fe) molar ratio of 67-80%. 

Addition of support to materials with high Mn-content had the drawback that they were difficult to 
oxidize at 850˚C. Based on the results from the reactivity tests and the measured attrition rates, ZrO2 
support seems to be the most promising candidate among different supports for materials with high Mn-
content. 

Among the tested oxygen carriers, materials with a Mn:Fe molar ratio of 33:67 supported with Al2O3 

showed the best behaviour, with a combination of high reactivity with fuel and low attrition. Also their 
oxidation with 5 vol% of oxygen was possible at temperatures higher than 850˚C. Low attrition, good 
reactivity and CLOU properties in combination with potentially low raw materials costs, make these 
materials highly interesting for the CLC application.  

Keywords: CO2 capture, Chemical-looping combustion, Chemical-looping with oxygen uncoupling, Iron-
manganese oxide, ZrO2, Al2O3  
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1. Introduction 

1.1 The Greenhouse Effect and Global Warming 

 
The last three decades has been consecutively warmer at the surface of the earth than any 

previous decade since 18501. The period between 1983-2012 was likely the warmest 30-year 

period of the last 1400 years in the northern hemisphere1. Since the 1950s, the ocean and 

atmosphere have warmed, sea level has risen, glaciers have decreased and the greenhouse gas 

concentrations have increased1. The Intergovernmental Panel on Climate Change (IPCC) 

announced in its third assessment report that the most important factor for global warming over 

the last 50 years is the increased concentrations of greenhouse gases in atmosphere2, and carbon 

dioxide is considered as the most important anthropogenic greenhouse gas. Anthropogenic 

carbon dioxide emissions originate from sources like combustion for power generation, industrial 

processes and transportation. The carbon dioxide emitted from natural sources is 20 times larger 

than the emissions from human activities. But these natural sources are balanced by natural sinks 

like photosynthesis of plants and marine plankton3.  

Fossil fuel is the primary energy source globally, and thus the major source of anthropogenic 

emissions of carbon dioxide4. With a significant increase in the global energy demand, and the 

fact that fossil fuels are the primary source of energy, rigorous action for stabilizing the CO2 level 

is needed5. Measures like improved energy efficiency and applying non-fossil energy alternatives 

such as nuclear, biomass, solar and wind energy will be important for reducing the CO2 

emissions. Given the strong dominance of fossil fuels, the increasing energy demand in 

developing economics and the need for fast and rapid reduction of emissions, it is likely that 

these technologies alone will not achieve the necessary reductions. An additional possibility to 

reduce the CO2 emission is capturing CO2 for storage in deep geological formations3. 

1.2 Carbon Capture and Storage (CCS) 

 
For the concept of CCS, CO2 is captured, compressed and stored in deep geological 

formations such as, depleted oil and gas reservoirs6, 7, deep saline aquifers8, 9 and coal bed 

formations10. The three main technologies being developed for CO2 capture are: (1) Oxy-fuel 

combustion, which means removing nitrogen from air before combustion, (2) Post-combustion 
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capture, which means capturing CO2 from flue gas in regular combustion and (3) Pre-combustion 

capture, which involves converting the fuel to hydrogen. In oxy-fuel combustion, pure oxygen in 

recycled flue gases is used instead of air for burning the fuel11, 12. In post-combustion capture the 

CO2 is removed from the flue gases by passing it through process equipment that captures most 

of the CO2. There are several technologies for post-combustion like absorption, adsorption, 

cryogenic separation and experimental technologies like membrane separation5. In pre-

combustion the carbon content of the fuel will be removed before burning. The fossil fuel will be 

converted to hydrogen and carbon dioxide in a decarbonisation process13 involving the following 

steps. In pre-combustion the fuel reacts with oxygen/air or steam in a gasifier and is partially 

oxidized to carbon monoxide and hydrogen. The gases produced from the gasification reactor 

react with steam in a catalytic shift reactor. The products from this step are hydrogen and carbon 

dioxide. These two gases are separated by a physical or chemical absorption process.  

For the three technologies described above, costly and energy consuming gas separation 

equipment is inevitable. Another technology that can be used for CO2 capture is Chemical-

Looping Combustion (CLC). One of the most important benefits of this combustion technology is 

that CO2 and H2O are obtained separate from the other non-condensable flue gases, like excess 

O2 and N2, as a part of the process. By eliminating the need for separation of gases, costly and 

energy consuming equipment is avoided14.  

1.3 Chemical-Looping Combustion (CLC) and Chemical-Looping with Oxygen 

Uncoupling (CLOU) 

1.3.1 Chemical-Looping Combustion 

 
The CLC system is composed of two fluidized bed reactors (Figure 1). One of them is an air 

reactor where an oxygen carrier, usually a reduced metal oxide, denoted (MexOy-1), is oxidized by 

air according to reaction 1. The oxygen carrier will then be transported to the second reactor, the 

fuel reactor. Here, the added fuel reacts with the oxygen carrier to produce CO2 and H2O, 

according to reaction 2. The reduced oxygen carrier is then again transported back to the air 

reactor to be re-oxidized back to its original state.  

 

O2(g) + 2MexOy-1 ↔ 2MexOy       (1) 

CnH2m + (2n+m)MexOy ↔ nCO2 + mH2O + (2n+m)MexOy-1      (2) 



3 
 

The total amount of heat released from the fuel reactor and the air reactor is equal to the heat 

released from ordinary combustion. Consequently, separation of CO2 by CLC does not cause any 

direct losses in energy14.  

The flue gases from the fuel reactor consist ideally of only CO2 and H2O. The H2O can be 

condensed and pure CO2 can be compressed and transported to an appropriate storage location. 

The flue gases from the air reactor consist of nitrogen and a small amount of oxygen which can 

be released to the atmosphere. Since CO2 is inherently separated from the nitrogen and oxygen in 

the flue gas, there is no direct energy penalty for the gas separation14.  

 

Figure 1- Schematic figure of the CLC process. Two interconnected fluidized bed reactors with 

circulating oxygen carrying particles are used in the combustion process 

 
The basic idea of Chemical-Looping Combustion was first presented in a patent by Lewis and 

Gilliland in 1954 where it was proposed as a technology to produce pure carbon dioxide15. Later 

in 1994, Ishida and Jin proposed CLC as a technology for CO2 capture in power plant16. In 2001, 

Lyngfelt et al. proposed two interconnected fluidized beds as a reactor design for the Chemical-

Looping Combustion process14. Substantial research has been performed on CLC in the last 

years. Progress within this area has been reviewed by e.g Lyngfelt17-19, Fan et al.20, Fang et al.21, 

Hossain et al.22 and Adanez et al.23. The earlier published work on CLC focused on gaseous fuel, 

e.g.24-30. Solid fuels, like coal, are more abundant and cheaper than gaseous fuel. Consequently, it 

would be beneficial if the CLC process could be adapted to solid fuels. This is today an ongoing 

development with studies in both laboratory batch reactor31-35 and circulating systems36-41. In 

solid fuel applications it is common to use cheaper alternatives as oxygen carrier such as natural 

mineral, ores42-44, industrial by-products and wastes. The CLC process has been demonstrated in 

different units45 of sizes 0.3 kW to 1 MW using solid fuel46-51, gaseous fuel52-54 and liquid fuel55. 
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1.3.2 Chemical-Looping with solid fuels 

1.3.2.1 Solid fuel conversion with steam gasification 

 
In solid fuel application of CLC, metal oxide carriers and the char remaining after the volatiles 

release, do not react directly, but only via gaseous intermediates56. Therefore, fluidizing the 

mixture of fuel and particles in the fuel reactor with H2O and/or CO2 is proposed. The char will 

then be gasified by H2O or CO2 to H2 and CO according to reactions 3 and 4. Subsequently, H2 

and CO can react with the oxygen carrier to produce CO2 and H2O
42.  

 

C + H2O ↔ CO + H2                             (3)                                                             

C + CO2 ↔ 2CO                                      (4)                     

                                                     

At the temperatures of interest, the reactions of CO and H2 with the oxygen carriers are rapid. 

On the other hand, the gasification reactions at these temperatures are comparably slow and 

therefore limit the conversion of the char31, 32, 57. The gasification of char is inhibited by CO and 

H2
58-60. Therefore, gasification in an inert sand bed is slower than in the presence of an oxygen 

carrier since the oxygen carrier effectively removes the inhibiting CO and H2. Gasification with 

steam is generally faster than CO2 gasification61. Keller et al. and Everson et al. did not observe 

inhibiting influence of CO on the steam gasification kinetics62, 63. Therefore, the CO inhibition on 

steam gasification is neglected in this work.  

The steam gasification of char can be explained by the following two steps:  

 

→          (5) 

→                     (6) 

 

By reaction (5), a  surface complex is formed and by reaction (6) this is converted to 

gaseous CO. In these reactions   is a free, active gasification site of carbon58, 60. 

There are three suggested mechanisms for explaining the hydrogen inhibition of steam 

gasification of carbon58. One is the oxygen exchange model in which it is assumed that reaction 

(5) is reversible58, 60 according to:  
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    (7) 

There are two hydrogen inhibition models in which reaction (5) is assumed irreversible. The 

first one is associative hydrogen adsorption in which a – complex58, 60 is formed according 

to: 

 

	 ⇌	 	 	       (8) 

 

The other is dissociative hydrogen adsorption which assumes dissociative chemisorption of 

hydrogen58, 60 according to:  

 

	 ⇌	 	 	       (9)   

 

The reaction rate can be explained by a Langmuir-Hinshelwood/Hougen-Watson (LHHW) 

type rate expression and is a function of ,  and temperature59. The surface rate of 

reactions for these models can be expressed by the following equation58.  

 

Oxygen exchange model                                  								(10)   

Associative hydrogen adsorption model         		 											(11)   

Dissociative hydrogen adsorption model         
.
								(12)   

 

In the above equation,  denotes the total concentration of active sites ( , ki denotes the rate 

constants which depend on temperature and pi denotes partial pressures. Hydrogen inhibition is 

accounted for by the term  in the denominator60.  

The mathematical expression of the rate equation for oxygen exchange model and associative 

hydrogen adsorption model is the same even if the rate constant expression is different 58.  
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1.3.2.2 Chemical-Looping with Oxygen Uncoupling 
 
 

One option for using solid fuel is Chemical-Looping with Oxygen Uncoupling (CLOU) which 

is a variant of Chemical-Looping Combustion64. Here an oxygen carrier material which releases 

gas phase O2 directly into the fuel reactor is used. In this method the solid fuel is converted 

through two steps. Firstly, oxygen is released by the oxygen carrier through reaction 13. 

  

MexOy ↔ MexOy-2 + O2 (g)       (13) 

 

Secondly, the fuel reacts with gas-phase oxygen, like in normal combustion, and produces 

CO2 and H2O according to reaction 14.  

 

CnH2m + (n + m/2) O2 (g) ↔ nCO2 + mH2O    (14) 

 

The oxygen carrier is then transported to the air reactor and oxidized with air just as in CLC.  

 

O2 + MexOy-2 ↔ MexOy                                  (15) 

 

The overall reaction in CLOU is identical to CLC, i.e. oxidation of hydrocarbon fuel to CO2 

and H2O, but the mechanism for fuel conversion is different. This is especially important for char 

conversion. Since the char can react directly with O2 released in CLOU, it does not need to be 

gasified, according to the reactions described above. Therefore, the main benefit with CLOU, as 

compared to CLC, is that the slow gasification of the solid fuel in CLC is eliminated64. The 

release of O2 can also be beneficial for gaseous fuels since the O2 released also can react with the 

fuel in the gas phase, thus reducing the need for good contact between gas and solids. 

Previous works34, 65 showed that the oxidation of solid fuels such as petroleum coke can be 

e.g. 45 times faster with CLOU, compared to ordinary CLC.  
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1.3.3 Oxygen Carriers 

 
The selection of oxygen carrier is one of the key aspects of the CLC design. The metal oxide, 

which is used as an oxygen carrier, should have special features for CLC implementation. The 

main features can be stated as follows: sufficient reduction and oxidation rate, high fuel 

conversion to CO2 and H2O, low cost, low risks for health and environment, low tendency for 

agglomeration and low fragmentation and attrition66, 67.   

Oxide systems of transition metals are possible candidates for oxygen carrier materials, such 

as Mn3O4/MnO, Fe2O3/Fe3O4, NiO/Ni and CuO/Cu22-24, 66-71. Support materials can be combined 

with the metal oxide to provide a higher reaction surface area and also to increase the mechanical 

strength of the metal oxide for preventing attrition. Al2O3, ZrO2, TiO2 or SiO2 are examples of 

materials that have been applied as support material67.  

In addition to the properties for a CLC oxygen carrier, a feasible CLOU oxygen-carrier should 

be possible to oxidize in the air reactor and also release gaseous O2 in the fuel reactor at 

appropriate temperature and oxygen partial pressures64, provide sufficiently fast reaction kinetics 

for the O2 uncoupling and the oxidation reactions, and have a decently high content of active 

oxygen. Many commonly proposed oxygen carriers for Chemical-Looping Combustion such as 

NiO and Fe2O3 fail to satisfy the CLOU requirements, i.e. they cannot release gas phase O2 at 

relevant conditions.  

Some metal oxides of manganese, copper, cobalt have an appropriate equilibrium pressure of 

gaseous oxygen within the range of 700 to 1200˚C. However, Co3O4/CoO is unsuitable due to 

high cost and toxicity. CuO/Cu2O appears promising34, 65 but the fairly high cost and the low 

melting point of metallic Cu, 1085˚C, are disadvantages. Although metallic Cu will not be 

formed during ideal CLOU conditions, it is likely that there will be some formation of Cu in the 

fuel reactor due to direct reaction with reactive gases such as volatile matter. Applying pure 

manganese oxide in CLOU is troublesome because the relevant equilibrium concentrations 

applicable for CLOU with Mn mean operation at relatively low temperatures, and it has been 

found that the oxidation of Mn3O4 to Mn2O3 is slow at relevant temperatures72. However, this 

temperature limitation can be overcome by combining manganese oxide with other materials. 

Iron, nickel, silicon, magnesium and calcium are examples of materials that can be combined 

with manganese oxides to change its characteristics73-77. The Fe-Mn system appears to be 
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especially promising due to favourable thermodynamics78, 79 which is also confirmed by the 

experimental work in this thesis.      

1.3.4 Combined Mn-Fe Oxide System 

 
A thermal analysis of the Mn2O3/Mn3O4 oxides system has been performed by Mattisson et 

al.64. This material releases oxygen in the gas phase through the following reversible reaction: 

6Mn2O3 ↔ 4Mn3O4 + O2 (g)        ∆H850=193.9   kJ/mol O2          (16) 

For Mn2O3/Mn3O4 the equilibrium pressure of O2 is equal to that of O2 in air at 899°C. This 

means that Mn2O3 releases oxygen in air at temperature above 899°C and Mn3O4 takes up oxygen 

at temperatures below this temperature64. The oxidized particles, i.e. Mn2O3, are transported to 

the fuel reactor in which the partial pressure of O2 is low, thus they will decompose and release 

gaseous O2. The amount of oxygen released and the maximum concentration of oxygen are 

dependent on the fuel reactor temperature. The fuel reactor temperature is influenced by the 

temperature of the incoming particles, the circulation rate and heat of reaction in the fuel reactor. 

For Mn2O3/Mn3O4 the overall reaction in the fuel reactor is exothermic, which results in a 

temperature increase in the fuel reactor and consequently the oxygen carrier would be able to 

release higher concentration of gaseous oxygen. A higher partial pressure of oxygen will improve 

the overall conversion rate for solid fuels64. 

The relevant equilibrium concentrations applicable for CLOU with Mn would mean operation 

at relatively low temperatures. Thus, oxidizing Mn3O4 to Mn2O3 in the air reactor with an oxygen 

concentration of maximum 5% is only possible at temperatures below 800˚C64. Higher oxygen 

concentration should be avoided in order to have a combustion process at a reasonable air ratio. 

Experiments with Mn3O4 suggest that this temperature is too low to have a sufficiently high 

reactivity72. Several recent studies have shown that it is possible to alter the thermodynamic 

properties of manganese oxides by combining them with other cations like iron, nickel, silicon, 

magnesium and calcium. Many such combined oxides have faster kinetics for O2 release, and are 

also capable to operate at higher temperatures than the unmodified Mn2O3-Mn3O4 system. 

Notably, many variants of the perovskite structure CaMnO3-δ have been shown to have excellent 

properties for chemical-looping applications75, 77, 80. In the perovskite structure, the oxygen non-

stoichiometry, δ, changes depending on the partial pressure of oxygen and temperature81. At 

constant temperature, by decreasing surrounding oxygen partial pressure, the oxygen deficiency 
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in perovskite increases by releasing gaseous oxygen to the surrounding. The combined 

manganese oxides have been examined as oxygen carrier in CLC and CLOU. Shulman et al.73, 74 

tested several combinations for example Mn/Mg, Mn/Ni, Mn/Si as well as the Fe/Mn oxide 

system.  

Due to the low price and favourable environmental properties of manganese and iron oxides, 

the Fe/Mn system is of interest for the development of CLOU. There are also a number of ores 

and minerals with a suitable Fe/Mn fraction that potentially could be used as oxygen carriers. 

Work that has focused only on the Fe/Mn system has been performed by Ksepko et al.82, Lambert 

et al.83, Fossdal et al.84 and Rydén et al.85. However, only in the work of Ryden et al. was the 

CLOU effect of this system investigated. 

In this work a binary phase diagram of the (MnzFe1─z)yOx system has been calculated with the 

software FactSage using the FToxid database, and this is shown in Figure 2, cf. paper II. The 

diagram is calculated for an O2 partial pressure of 0.05 atm, which may be an appropriate basis 

with respect to the exiting O2 concentration of the air reactor in a CLOU process. The phase 

diagram of iron-manganese oxide has also been investigated experimentally by Kjellqvist et al.86, 

Muan and Sōmiya87, Wickham79 and Crum et al.78, although in air. Results obtained with 

FactSage for this system agrees well with literature data, e.g. Kjellqvist and Selleby86. Thus the 

phase diagram gives an accurate representation of the system behaviour, although available 

thermodynamic data for combined oxides of iron and manganese are not precise in detail78. 
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Figure 2- Phase diagram of (MnyFe1─y)Ox in an atmosphere with an O2 partial pressure of 0.05 atm 

calculated with the software FactSage 

 
Figure 2 indicates that the stable phases at low temperature are the fully oxidized states i.e. 

hematite and bixbyite, both with the general formula Fe2-xMnxO3 or (Fe,Mn)2O3, whereas the 

reduced spinel phases (Fe,Mn)3O4 and the tetragonal spinel, hausmannite (Mn3O4), are stable at 

high temperature. There are also two-phase areas in which both forms i.e. bixbyite/hematite and 

spinel, coexist at intermediate temperatures. Moving from low to high temperatures will result in 

a phase change from (Fe,Mn)2O3 to (Fe,Mn)3O4 which is accompanied by oxygen release 

(reaction 17) equivalent to 3.3-3.4% change of mass.  

 

6(Mn,Fe)2O3 ↔ 4(Mn,Fe)3O4 + O2(g)      (17) 

 

A similar release of O2 will occur when moving from a high to a low partial pressure of 

oxygen, which is what happens when an oxygen carrier is transported from the air to the fuel 

reactor of a CLOU system. Thus reaction 17, decomposition of bixbyite to spinel, should happen 

spontaneously in the fuel reactor. The oxygen released would then be instantly consumed by the 

fuel, facilitating further O2 release. In the air reactor, reaction 17 is reversed, i.e. bixbyite is 

recreated by oxidation with air.  



11 
 

Figure 2 shows that the phase transition boundary between bixbyite and the two phase region 

of bixbyite and spinel occurs at higher temperature when the amount of Fe is increased. However, 

the phase transition between fully oxidized phase (Mn,Fe)2O3 and fully reduced phase needs to 

pass a two phase area where both phases coexist. This means that, for a constant oxygen partial 

pressure, a certain temperature change is needed to accomplish a complete phase change between 

the fully oxidized and fully reduced phases. The same will also apply to the needed change in 

oxygen concentration, if a change in oxygen concentration is used to achieve this phase change. 

The height of the two-phase area in Figure 2 should correspond to the change in temperature or 

O2 partial pressure that will be required to force reaction 17 into completion. Figure 2 also 

indicates that the smallest temperature change is needed where the manganese fraction is 60-80 

mole% since the height of two-phase region of bixbyite and spinel is low there.  

1.4 Objective 

 
This thesis concerns investigation of various aspects of chemical-looping with both gaseous 

and solid fuels. The main focus is the investigation around a new set of oxygen carriers based on 

the combined oxides of Fe and Mn. These materials have interesting oxygen uncoupling 

properties, and this is the first systematic investigation of this type of materials as oxygen carriers 

for chemical-looping combustion. The uncoupling properties make them especially interesting for 

solid fuels, but they also have advantages with respect to gaseous fuels. Hence, a systematic 

investigation of a number of pure Fe-Mn-O materials with varying ratios of Fe/Mn was 

conducted, see papers II-V. These investigations clearly demonstrate the feasibility of using such 

oxygen carriers, with remarkable oxygen release rates for certain materials. Still, the mechanical 

strength and attrition resistance were not sufficient for use in a real CLC system. Thus oxygen 

carrier particles of the same active systems were produced with a variety of support materials, 

including ZrO2 and Al2O3, see papers VI and VII. 

Furthermore, the potential effect of oxygen carriers on hydrogen inhibition of steam 

gasification was investigated in paper I, in a study where both hydrogen and steam concentration 

were varied. 
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2 Experimental 

2.1 Materials 

 
The oxygen carriers studied in this work are particles with different molar ratios of Fe/Mn, 

varying between 4:1 and 1:4, and also supported Mn-Fe materials with addition of MgAl2O4, 

CeO2, ZrO2, Y2O3-ZrO2 and Al2O3. All the materials were produced by spray-drying at VITO in 

Belgium. After spray-drying, the fraction in the required particle size range was obtained by 

sieving. In order to obtain oxygen carrier particles with sufficient mechanical strength, 

calcination was performed in air at 1200˚C, 1100˚C or 950˚C, for 4 h. After calcination, the 

particles were sieved again to the size range 125-180 µm. Details about the production method 

can be found in the paper II. 

An example of denotation for the samples without support in this work is M20F1100, where 

M denotes Mn3O4 and the digits after M represents the manganese oxide mass fraction of the 

sample. Further, F denotes iron oxide and the digit after F denotes the calcination temperature of 

the sample.  

For supported materials, M denotes Mn3O4 and the digits after M represents the mass fraction 

of Mn3O4 in the sample. Further, F denotes Fe2O3, the material after F denotes the applied 

support, the following digits show the mass fraction of support in the sample and the last digits 

indicate the calcination temperature of the sample. 

In the study of steam gasification, quartz sand, ilmenite, oxide scales and nickel oxide have 

been used as the bed materials. The oxide scales are a waste product from the steel industry. 

Details are given in paper I. 

The solid fuels which were used in some of the experiments are petroleum coke, a Colombian 

coal and wood char, see paper I, III-V and VII for details.  

2.2 Experimental Setup 

 
The experiments were performed in a fluidized bed quartz reactor which has a length of 820 

mm and a porous quartz plate of 22 mm in diameter placed 370 mm from the bottom. The 

laboratory setup incorporating this reactor is shown in Figure 3. This system is not a circulating 

fluidized bed system, but instead emulates circulation by exposing the oxygen carriers 

alternatingly to oxidation with air and a reduction in a fuel/steam mixture. The system is flushed 

between those cycles by an inert gas flow (nitrogen). All experiments were repeated at least two 
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times. To generate the required steam for the reduction period of the solid fuel experiments, a 

steam generator was used (Cellkraft Precision Evaporator E-1000). When using solid fuels, 300 

ml/min of inert sweep gas was introduced to the system at the top of the reactor together with the 

solid fuel to ensure that the pulverized fuel does not get stuck in the feed and that there is a 

sufficient dry gas flow to the analyzer. However this sweep gas did not enter the hot reaction 

zone of the reactor. The gas from the reactor was led to an electric cooler for removing water and 

then to a Rosemount NGA 2000 Multi-Component gas analyzer, which measured the 

concentrations of CO, CO2, CH4, H2 and O2 in the flue gas as well as the volumetric flow rate. 

The temperature was measured 5 mm under and 10 mm above the porous quartz plate using 

Pentronic CrAl/NiAl thermocouples with inconel-600 enclosed in quartz shells. The temperature 

presented in the paper is the set-point temperature, i.e. the temperature at the beginning of the 

reduction when no chemical reaction occurs. From high frequency measurements of the pressure 

drop over the reactor, it was possible to see if the bed was fluidized. 

 

 

Figure 3- Schematic layout of the laboratory setup 

2.3  Experimental Procedure and layout of the thesis 

 
In paper II, the CLOU property of unsupported iron-manganese oxide is examined by 

decomposition in N2 and moreover the reaction with both methane and synthesis gas (50/50% 

CO/H2) was examined. Normally a sample of 15 g of oxygen carrier particles with diameter of 

125-180 µm was placed on the porous plate and the reactor was then heated to the temperature of 

interest in a flow of 900 mLn/min containing 5% O2 in N2. This was done in order to prevent 

uncontrolled release of oxygen and to ensure that the oxygen carriers are adequately oxidized 
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prior to the experiments. The use of 5% O2 during oxidation corresponds to the exiting stream in 

an air reactor with an air ratio of approximately 1.2 in a real chemical-looping system. As the 

required conditions were reached, the particles were fluidized by 600 mLn/min of pure N2, and 

the outlet oxygen concentration was measured during the inert period. The particles were exposed 

to consecutive cycles of oxidizing and inert periods at a temperature of 900˚C. The particles were 

also exposed to periods in which the temperature for oxidation was still 900˚C but the 

temperature was raised to 1000˚C during the inert period, see Table 1. The periods in which the 

pure nitrogen is the only fluidizing gas in the reactor, are called non-fuel periods or inert periods. 

The non-fuel period helps to give better understanding of the O2 uncoupling behaviour since N2 is 

inert and does not interfere with the released oxygen. For reactivity evaluation, the particles were 

exposed to 365 mLn/min CH4 or 450 mLn/min synthesis gas (syngas, 50/50% CO/H2) at 950˚C. 

The oxidation and the reduction periods were separated by an inert period during which the 

reactor was purged from reactive gases and gaseous products by introduction of N2. 

Some of the particles were also examined at a temperature of 850˚C, both decomposition in 

nitrogen and reactivity test with methane. Table 1 presents a detailed plan of the experiments. 

 

Table 1- Experimental plan for testing of the oxygen uncoupling behaviour and reactivity with gaseous 
fuel for unsupported Fe-Mn materials. Fx is flow in period x, i.e. Ox(idation), Red(uction) and In(ert) 

No of 

cycles 

Reducing 

gas 

FOx 

(mLn/min) 

FIn 

(mLn/min) 

tIn 

(s) 

FRed 

(mLn/min) 

tRed 

(s) 

TOx 

(˚C) 
TRed (˚C) 

3 nitrogen 900 600 360 - - 900 900 

1 nitrogen 900 600 360 - - 900 900 → 1000 

3 methane 900 600 60 365 20 950 950 

3 syngas 900 600 60 450 80 950 950 

3 nitrogen 900 600 360 - - 900 900 

3 nitrogen 900 600 360 - - 900 900→1000  

3 nitrogen 900 600 360 - - 850 850  

3 methane 900 600 60 365 20 850 850  

3 nitrogen 900 600 360 - - 850       850 
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The particles with a calcination temperature of 1100˚C were selected as a basis for all 

experiments and were examined at three different temperatures, 850˚C, 900˚C and 950˚C. For 

materials calcined at 950˚C, only temperatures which were judged to be interesting were 

examined. Thus, the samples with a Mn/(Mn+Fe) molar ratio lower than 50% were examined at 

900˚C and 950˚C and the materials with a Mn/(Mn+Fe) molar ratio higher than 60%, were tested 

at 850˚C. This was motivated by the results with the materials calcined at 1100˚C and also by the 

thermodynamic analysis which clearly shows why lower temperature should be used for a high 

Mn-fraction and vice versa, cf. Figure 2. 

Paper II is a basis for the other CLOU publications, and those unsupported Fe-Mn materials 

that showed the best behaviour with respect to oxygen release and reactivity with gas here, have 

been investigated with solid fuel in the papers III to V. The solid fuel experiments without steam 

are meant to obtain conclusive evidence that the main mechanism in the oxygen carrier’s oxygen 

release and high reactivity is through oxygen uncoupling and not direct reaction of oxygen carrier 

and methane. This is due to the fact that in the experiments with solid fuel the possibility of direct 

solid-solid reaction in the fluidized bed is essentially eliminated. 

In paper III, the reactivity of M33F1100 particles was investigated with two solid fuels: 

Colombian coal and petroleum coke.  

In paper IV, the oxygen carrier particles M80F950 was alternatingly exposed to O2/N2 

mixture, and reducing periods in which different amounts of wood char were introduced to the 

bed of oxygen carrier particles.  

In Paper V, the author examined oxygen carrier materials with Mn:Fe molar ratios in the range 

67:33 up to 80:20, in order to see how the iron content affects oxygen release and uptake with 

addition of devolatilized wood char in N2.  

Considering the fact that the Mn-Fe combined system showed very interesting properties with 

respect to reactivity, but because of problems with respect to mechanical stability, it was 

motivated to study the use of support materials for combined oxides of Fe-Mn. In paper VI, the 

CLOU property and the reaction with both methane and synthesis gas of the oxygen carriers 

particles with Mn:Fe molar ratio of 75:25 with addition of MgAl2O4, CeO2, ZrO2 and Y2O3-ZrO2 

as support were investigated.  

Paper VII includes a comprehensive study of the use of Al2O3 as oxygen carrier.  Al2O3 has 

been found to be a suitable support for iron oxide88-91, and thus it was decided to also pursue this 
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system for the combined Mn-Fe system. The oxygen carriers studied in paper VII are particles 

with a Mn:Fe molar ratio of 80:20 and 33:67 with addition of different amounts of Al2O3 as 

support. For initial screening of these materials, the CLOU property and the reaction with both 

methane and synthesis gas of the oxygen carrier particles were examined. Four of the more 

interesting samples from the initial screening were selected for further testing with syngas and 

char at different temperatures. 

The work done in paper I investigates and models the influence of the steam and hydrogen 

concentration in the fuel reactor on the rate of solid fuel conversion using oxygen carriers and 

sand. The oxygen carriers used were ilmenite, nickel oxide and oxide scales. Different fractions 

of steam and hydrogen were added to the fluidizing stream. Additionally, gasification 

experiments of fuel particles pretreated in mixtures of H2 and N2 were performed in order to 

determine the reversibility of the observed hydrogen inhibition. 

Detailed information regarding experimental setup and procedure can be found in the 

respective papers. 

2.4 Data Evaluation 

 
The degree of oxygen carrier conversion, X, describes the extent to which the oxygen carriers 

are oxidized and is defined as follows: 
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Here m is the actual mass of the sample, mox is the mass of the fully oxidized sample i.e. 

bixbyite, and mred is the mass of the sample in its fully reduced form i.e. spinel. The degree of 

conversion of oxygen carriers as a function of time during reduction with methane and syngas is 

calculated from the outlet gas concentrations using equation 19 and equation 20, respectively. 
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Correspondingly, the degree of conversion is determined using the relationship 21 for the inert 

period and by equation 22 for the oxidizing period. 
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Moreover, the degree of conversion during reduction with solid fuel is described using equation 

23. 
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(23) 

 

In the equations presented above, Xi is the conversion as a function of time for a period i, Xi-1 is 

the degree of conversion after the foregoing period, t0 and t1 are the times for the start and the end 

of the period, n0 is the moles of active oxygen in the fully oxidized sample, and out is the molar 

flows of dry gas entering the analyser. Normally, when using gaseous fuels, the periods are rather 

short but with a high degree of variability with respect to the gas conversion, resulting in rather 

large flow variations. Thus, in this work the flow measured in the gas analyzers was used when 

calculating the conversion. But for solid fuel experiments, the flow is calculated from incoming 

flows and concentrations. This choice is based on what is judged to give the most accurate 

results. Ptot is the total pressure, pi,out is the outlet partial pressures of gas component i after 

removal of water vapour. pO2,in is the inlet partial pressure of oxygen. (O2/C)fuel, (H2/C)fuel are the 

estimated molar ratios of oxygen and hydrogen to carbon in the fuel; and pc,tot is the total partial 

pressure of carbon, i.e. pCO2,out+ pCO,out+ pCH4,out. The hydrogen partial pressure pH2,out was not 

measured online during the gas fuel experiments, but it was calculated by the assumption of 

having equilibrium water gas shift reaction.  

 

    CO + H2O ↔ CO2 + H2                                                                                             (24) 

 

The oxygen ratio of the oxygen carrier, R0, is defined as below:  
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                                     (25) 

In the equation above, m0 is the mass of active oxygen in the unreacted oxygen carrier. The R0 

value for particles with different Mn:Fe molar ratios is in the range 0.0335-0.0337 when moving 

between (MnzFe1─z)2O3 and (MnzFe1─z)3O4. Hence, theoretically removing the excess of 3 wt% 

oxygen can occur through this reaction by CLOU. 

In order to be able to compare oxygen carrier materials which contain different amounts of 

oxygen, a mass-based conversion, ω, is defined as follows: 

)1(1 0  XR
m

m
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                                  (26) 

For analysis of gas conversion, the fraction of CO2 in the outlet gas flow was calculated on dry 

basis as follows: 
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In paper I, the steam gasification of char was studied. Here, the degree of carbon conversion 

Xc is used to describe the progress of the gasification.  

total

C
C m

tm
X

)(
                             (28)                 

Here mc (t) denotes the mass of carbon already gasified at time t and mtotal denotes the total 

mass of carbon converted during one cycle. The mass of carbon is determined by integration of 

the concentrations of the carbon containing product gases during the reduction, assuming that the 

ideal gas law is valid.  
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t
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        (29) 

Here Mc denotes the molar mass of carbon. The total mass of carbon is determined in a similar 

way, but here the concentration profiles are integrated from the beginning of the gasification until 

the end of the oxidation phase. Therefore, the amount of carbon that was not gasified during the 

reduction but burnt off with synthetic air during oxidation is also included in mtotal. 
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The rate of carbon conversion normalized with respect to the amount of carbon initially 

present in the reactor, rw, is defined as: 

total

CC
W m

m

dt

dX
r


         (31) 

The instantaneous rate of conversion normalized with respect to the amount of carbon present 

at time t, r, is defined as: 

C

W

X

r
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1
                 (32) 

In this work r is used to express the rate of fuel conversion. 

2.5 Characterization of Oxygen Carriers 

 
The analysis of the phase compositions of the oxygen carrier particles was performed on a 

Siemens D5000 powder X-ray diffractometer (Cu Ka1, k = 1.54056 Å). The shape and 

morphology of fresh and tested oxygen carriers were observed using a FEI, Quanta 200 

Environmental Scanning Electron Microscope FEG (SEM). The bulk density of all materials, 

sized 125-180 µm, was measured by weighing 5 ml of particles filled in a graduated cylinder. 

The BET surface area of the particles was measured by N2-absorption using Micromeritics, 

ASAP 2020.  

The crushing strength, i.e. the force needed to fracture the particles, was examined using a 

Shimpo FGN-5 crushing strength apparatus. For each sample 30 different particles of size 180–

250 µm were tested and the mean value gives the crushing strength. Attrition resistance of the 

particles was investigated in a jet cup rig previously used for the study of attrition of oxygen 

carriers by Rydén et al.92. The apparatus consists of a 39 mm high conical cup with an inner 

diameter of 13 mm in the bottom, and 25 mm in the top. At the bottom of the cup, there is a 

nozzle with diameter of 1.5 mm which injects air with a velocity of approximately 100 m/s. The 

cup is located at the bottom of a 634 mm high cone with a maximum diameter of 216 mm. A 

particle filter with a 0.01 µm filter element is at the top of the apparatus. At the start of the 

experiments the filter was weighed. Approximately 5 g sample was placed in the cup. Every 10 

minutes the filter was weighed and the test was performed for 1 h. It should be noted that the 

attrition index is the result of a particular testing procedure so it should not be interpreted as the 

expected lifetime of oxygen carrier particles in a real chemical looping combustor. The jet cup 
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tests at room temperature provide an indication concerning the feasibility of different oxygen 

carrier materials92.  
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3 Results 

3.1 Steam gasification (paper I) 
 

Previously, Leion et al.42, 93 showed that the fuel gasification is about two times faster in the 

presence of oxygen carrier than using sand. This can be explained by removal of H2 which can 

inhibit the gasification. In paper I, the influence of the steam and hydrogen concentration in the 

fuel reactor on the rate of solid fuel conversion in chemical-looping combustion was investigated 

using oxygen carriers and sand. The oxygen carriers used were ilmenite, nickel oxide and oxide 

scales. Different fractions of steam and hydrogen were added to the fluidizing stream. Higher 

steam concentration increases the rate of char conversion and, higher hydrogen concentration 

decreases the rate as a result of hydrogen inhibition. 

The oxygen exchange model was found to be the best in describing hydrogen inhibition 

mechanism in steam gasification for CLC experiments of wood char and Colombian coal. In 

equations 10-12, hydrogen inhibition is accounted for by the term  in the denominator. The 

hydrogen inhibition is more significant for the oxygen exchange model since  is in square root 

for the dissociative hydrogen adsorption model. Thus, a strong dependency between fuel 

gasification rate and hydrogen concentration was found. Consequently, to achieve high rates of 

char conversion in CLC with solid fuels, it is desirable to use an oxygen carrier which consumes 

and thereby removes hydrogen efficiently from the reaction zone. 

 

3.2 Oxygen carriers based on combined oxides of Mn-Fe (papers II-VII) 
 

A large number of oxygen carrier particles based on the system Mn-Fe have been  

manufactured by spray-drying and evaluated with respect to i) the oxygen uncoupling properties, 

ii) reactivity with methane and syngas, iii) reactivity with solid fuels and iv) physical 

characterisation including attrition resistance. The main aspects are summarized below, but for 

details, the reader is referred to the papers attached to the thesis. 

 

3.2.1 Oxygen Release of the Oxygen Carriers 
 

The oxygen release ability of the oxygen carrier particles was investigated by exposure to N2 

in the fluidized bed reactor, see Table 1. Figure 4a illustrates oxygen concentration as a function 

of oxygen carrier conversion, X, during the final periods with N2. Unsupported materials with 
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different Mn/Fe ratios were used. The inert periods had a duration of 360 s and were made after 

the fuel cycles. 

As can be seen in Figure 4a, the particles with a Mn/(Mn+Fe) molar ratio of 20-40% released 

oxygen during the entire non-fuel period. The outlet volume fraction of oxygen for these 

materials after 360 s is in the range of 0.2% to 0.4%. The other materials did not release any 

oxygen during the non-fuel periods. The latter can be explained by the phase diagram, Figure 2, 

which shows that the reduced oxygen carriers with a Mn/(Mn+Fe) molar ratio of more than 40% 

would be difficult to oxidize to bixbyite in 5% of oxygen at 900˚C since they are very close to the 

phase region of bixbyite + spinel or spinel. The most likely reason is that the reaction is 

kinetically hindered when conditions are close to those where the reduced phase is stable. 

Consequently, according to the results from the non-fuel periods, M25F950, M33F950 and 

M33F1100 show the best behaviour in term of release of oxygen at this temperature.  

 

 

         a             b 

Figure 4-Oxygen concentration as a function of the oxygen carrier conversion, X, during the final non-

fuel periods for 360 s (a) at 900˚C and (b) at 850˚C for unsupported Mn-Fe materials (paper II) 

 
However, applying a temperature lower than 900˚C in the air reactor should make it possible 

to oxidize the oxygen carriers with a Mn/(Mn+Fe) molar ratio higher than 50% to bixbyite. 
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Hence, the materials were also tested at a lower temperature, i.e. 850˚C. Figure 4b shows the 

oxygen concentration as a function of oxygen carrier conversion during non-fuel periods for 360 

s at 850˚C.  

As seen in Figure 4b, the oxygen release from the oxygen carriers with a Mn/(Mn+Fe) ratio 

higher than 50 mole%, increases when reducing the temperature to 850˚C and decreases for 

material with a Mn/(Mn+Fe) ratio of less than 50 mole%. The particles with a calcination 

temperature of 950˚C show better oxygen release than the particles calcined at 1100˚C.  

 The temperature was raised from 900˚C to 1000˚C during non-fuel periods to investigate the 

release of oxygen for unsupported materials. By increasing temperature, the oxygen carriers are 

expected to release oxygen at higher oxygen partial pressure, see Figure 2. The results for the last 

periods with temperature increase are presented in Figure 5. As seen, the temperature increase 

leads to a significant oxygen release for materials with 20-40% manganese. 

 

Figure 5- Oxygen concentration as a function of oxygen carrier conversion, X, during the last non-fuel 
period with temperature increase from 900˚C to 1000˚C for unsupported materials (paper II) 
 

Figure 6 illustrates the concentration of O2 as a function of Mn/(Mn+Fe) molar ratio at the end 

of the 300 s non-fuel periods for unsupported materials. From Figure 6 it can be concluded that 

the oxygen carriers with a Mn/(Mn+Fe) molar ratio in the range 20% to 40% release oxygen at 

900˚C, whereas the materials with higher Mn-fraction show no oxygen release. Again, the 

explanation is that the oxygen carriers with a high Mn-fraction could not be oxidized to bixbyite 

at 900˚C at any feasible rate. Figure 6 shows that by decreasing the temperature from 900˚C to 
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850˚C, the oxygen release of material with a Mn/(Mn+Fe) molar ratio of 50% and higher is 

increased from 0% to 0.1-0.45%. Also, the particles with a calcination temperature of 950˚C 

show better oxygen release than the particles calcined at 1100˚C. Higher calcination temperature 

often gives lower porosity and lower reactivity. 

 

 

Figure 6- O2 concentration as a function of Mn/(Mn+Fe) molar ratio at the end of the 300 s non-fuel 
periods at 900˚C and 850˚C for unsupported materials (paper II) 

 
Support materials are often used together with active oxygen carriers in order to improve 

reactivity or mechanical properties. For instance, Al2O3, ZrO2, TiO2 or SiO2 are examples of 

materials that have been used as support material67. Considering the promising results of the Mn 

Fe combined system as well as the problems with respect to mechanical stability, it is relevant to 

investigate the use of support materials for combined oxides of Fe-Mn.  

In paper VI, addition of MgAl2O4, CeO2, ZrO2 and Y2O3-ZrO2 as support to oxygen carriers 

with a Mn:Fe molar ratio of 75:25 has been investigated. Figure 7 illustrates the oxygen volume 

fraction as a function of time(s) during one inert period for the different oxygen carriers with a 

Mn:Fe molar ratio of 75:25 with addition of MgAl2O4, CeO2, ZrO2 and Y2O3-ZrO2 as support. 
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Here the temperature is raised from 800˚C to 850˚C at the same time as the gas is switched from 

oxidizing to inert. The time needed for the temperature increase is around 250 s. 

 

Figure 7- Oxygen volume fraction as a function of time(s) during the inert periods at 850˚C for oxygen 

carriers with a Mn:Fe molar ratio of 75:25 with addition of MgAl2O4, CeO2, ZrO2 and Y2O3-ZrO2 as 

support (paper VI) 

 
Figure 7 shows that the oxygen concentration for all materials except M45F_MgAl40_950 is 

in the range of around 0.2% to 0.5% during the inert period, with the highest release for the 

unsupported material. This may not be so surprising, considering that the amount of bed material 

is the same for all cases, meaning that the amount of active material is considerably less for the 

supported carriers. The measured oxygen volume fractions are much lower than those predicted 

by thermodynamics, which means that the oxygen concentrations measured are a result of 

kinetics. Still, there is a relatively large spread in the oxygen release rates for the different 

supports, with the best behaviour seen for the material produced with pure zirconia and calcined 

at 1200˚C, while the material with MgAl2O4 support had the least propensity to release oxygen. 

Hence, it seems as if the CLOU property, which is now well known for the pure combined oxide, 

is to a large extent retained using Ce and Zr-based supports. 

Furthermore, a comprehensive study of the use of Al2O3 as oxygen carrier was made, see paper 

VII.  Al2O3 has been found to be a suitable support for iron oxide88-91, and thus it was decided to 

also pursue this system for the combined Mn-Fe system. Here, two sets of materials were 

produced using spray-drying: high-Fe materials with a Mn:Fe molar ratio of 33:67 and high-Mn 
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materials with a Mn:Fe molar ratio of 80:20. AlOOH was used for the preparation, which is 

transformed to Al2O3 during heat up. The Al content was varied for each set of materials.  

Figure 8 shows the oxygen volume fraction as a function of time during one inert period for 

some materials with a Mn:Fe molar ratio of 80:20 with addition of Al2O3 as support. Here the 

temperature is raised from 800˚C to 850˚C at the same time as the gas is switched from oxidizing 

to inert. The O2 concentration is in the range of around 0.2% to 0.5% with the highest release for 

the materials with lowest Al content calcined at 950˚C, M77FA3-950.   

 

 

Figure 8- Oxygen volume fraction as a function of time(s) during the inert periods at 850˚C for materials 

with a Mn:Fe molar ratio of 80:20 and for materials with a Mn:Fe molar ratio of 80:20, all with addition of 

Al2O3 (paper VII) 

 
Comparing Figure 7 and 8 indicates that materials with addition of Al2O3 showed higher 

oxygen release than the other support materials. Still, there were problems with oxidation for 

these materials at temperatures above 800˚C.  

The oxygen carriers with higher iron content i.e. material with Mn/(Mn+Fe) molar ratio of 

33%, showed high oxygen release, and the mechanical strength was higher compared with the 

material with high Mn-fraction. Also, the oxidation with 5 vol% of oxygen was possible at 

temperature higher than 850˚C. Figure 9 shows the volume fraction of O2 at the end of the 300 s 
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inert period as a function of the AlOOH mass fraction added during production. As can be seen 

from Figure 9 the materials released more oxygen at higher temperature. The material with the 

lowest amount of Al had the highest rate of release. Generally, oxygen release falls with 

increasing Al content at lower reaction temperatures, but is more constant or even increases with 

Al content at high temperatures. At 1050˚C, M31FA3-1100 showed a very drastic decrease in 

oxygen release. Pressure drop measurements indicated defluidization at this temperature. 

Nonetheless, this material started to fluidize again as temperature was lowered and it was 

possible to run the final cycles at 900˚C. It should be noted that for M28FA14-1100, the 

measurements in the final cycle at 900˚C, was lost because of sampling error. 

 

Figure 9- Volume fraction of O2 at the end of the 300 s inert period at different temperatures as a function 

of AlOOH mass fraction, for materials with a Mn:Fe molar ratio of 33:67 (paper VII) 
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3.2.2 Conversion of the Oxygen Carriers with Gaseous Fuel 
 
 

Figure 10 demonstrates the outlet dry gas concentration for reduction with CH4 for a sample of 

unsupported material. 

 

Figure 10- Measured dry gas concentrations during 40 s reduction of 15 g M80F950  with 365 mLn/min 
CH4 at 850 ˚C (paper IV) 

 
In Figure 10 the air is shifted to nitrogen at the time 20 s. The figure shows that the iron 

manganese oxide spontaneously decomposes giving ≈0.6% of oxygen in the outlet gas. At the 

time 80 s gaseous fuel, methane, is added for 40 s. Methane reacts directly with the oxygen 

released from the (Mn0.8,Fe0.2)xOy producing CO2 and heat, which results in a temperature 

increase promoting the spontaneous release of O2. The O2 uncoupling was sufficiently fast for 

producing a concentration of CO2 close to 100%. Before fuel is added the oxygen concentration 

is 0.5-0.6%, corresponding to an oxygen flow of 5 mLn/min. The oxygen in the CO2 comes from 

the oxygen carrier, so when fuel is added oxygen is released from the particles at a rate which is 

able to oxidize a methane flow of 365 mLn/min, which means an oxygen flow of 730 mLn/min 

from the particles. Thus, the oxygen release is increased by two orders of magnitude. At the same 

time the measured oxygen concentration, i.e. measured on dry basis, is increased by roughly a 

factor of three, see Figure 10. This is mainly an artifact caused by the steam produced in the 

reaction with methane, giving two H2O per CO2 in the outlet gas. Since the steam is removed 

before the analyzer the concentrations of the other gas components are overestimated. Figure 10 

also shows the calculated O2 concentration calculated on wet basis, i.e. the actual concentration at 

the outlet of the reactor, and as seen this is reasonably constant. This would also be expected if 
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the oxygen concentration is mainly controlled by the thermodynamic equilibrium. This suggests a 

very rapid O2 release, considering the large quantities of oxygen consumed by the fuel. Another 

factor influencing the results is that the reaction between CH4 and M80F950 is exothermic. 

Hence the temperature in the sample bed increases ≈20 K during experiments with CH4, which 

should increase the equilibrium partial pressure of O2 over the sample somewhat.  

There is some backmixing of the gas before it reaches the analyzer. As seen in Figure 10, the 

initial transient in the O2 concentration when nitrogen is turned on is approximately 10 s long. 

Similar transients of approximately 10 s due to back mixing are expected when oxygen release 

from the particles is slowing down and methane starts to appear in the outlet gas. This would 

explain the overlapping period in Figure 10 when O2 and CH4 are measured simultaneously 

during 10 s. The actual concentration of O2 in the reactor likely goes to zero as methane starts to 

rise rapidly.  

Figure 11a shows the gas conversion, γ, from equation 27, as a function of mass-based oxygen 

carrier conversion for unsupported materials at 950˚C with methane, cf. Table 1. The value for ω 

does not start at 1 because it decreases slightly due to release of oxygen during the short inert 

period before the reduction. 

Figure 11a shows that the methane conversion for M25F950 and M33F950 are higher than for 

the others. The oxygen carriers with 50-80% manganese did not release any oxygen during non-

fuel periods in inert atmosphere. The same particles showed some gas conversion during the 

reduction phase but it was generally lower compared to the other materials. All particles except, 

M67F1100, showed full conversion of syngas at 950˚C. 
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         a            b 

Figure 11- Gas conversion, , (a) vs. mass-based conversion, ω, at 950˚C  and (b) vs. oxygen carrier 
conversion, X, at 850 ˚C using methane for 20 s for unsupported materials (paper II) 

 
 

As stated before, the oxidation of the oxygen carriers with a Mn/(Mn+Fe) molar ratio higher 

than 50% would be difficult or impossible in the air reactor with 5% of oxygen at 900˚C or 

950˚C. Therefore, at 950˚C, these particles are in the reduced spinel phase, (Mn,Fe)3O4, when 

introduced to the fuel reactor. Hence the methane conversion shown in Figure 11a is likely due to 

further reduction of (Mn,Fe)3O4 to MnO. The mass-based conversion, ω, is used in Figure 11a 

instead of X, because the X is defined based on the conversion of (Mn,Fe)2O3 to (Mn,Fe)3O4. For 

comparison to the other figures, the mass-based conversion, ω, can be converted to X using 

equation 26. Thus, a full conversion in the other figures corresponds to a change in ω of 

R0=0.0336.  

As discussed previously, applying a temperature lower than 900˚C in the air reactor should 

make it possible to oxidize the oxygen carriers with a Mn/(Mn+Fe) molar ratio higher than 50% 

to bixbyite. Hence, the materials were also tested at a lower temperature, i.e. 850˚C. In Figure 

11b, gas conversion is plotted against oxygen carrier conversion using methane for 20 s at 850˚C. 

As seen in Figure 11b, the reactivity of the oxygen carriers with a Mn/(Mn+Fe) molar ratio 

higher than 50%, increases when reducing the temperature to 850˚C whereas the reactivity 

decreases for materials with a Mn/(Mn+Fe) molar ratio of less than 50%. The particles with a 
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calcination temperature of 950˚C show better oxygen release and methane conversion than the 

particles calcined at 1100˚C. These observations were expected since the lower calcination 

temperature gives softer particles with more porosity which results in higher reactivity. The 

oxygen carriers M67F950, M75F950 and M80F950 have almost full conversion of methane to 

CO2 and H2O at 850˚C. 

In Figure 12, the methane conversion, , is shown for an oxygen carrier conversion, ω, equal 

to 0.997, as a function of the Mn/(Mn+Fe) molar ratio for unsupported materials. 

 

 

Figure 12- The methane conversion, , at 950˚C and 850˚C at ω = 0.997 versus Mn/(Mn+Fe) molar ratio 
for unsupported materials (paper II) 

 
In Figure 12 the methane reactivity shows the same trend as the oxygen uncoupling properties 

in Figure 6. At the higher temperature, 950˚C, oxygen carriers with Mn/(Mn+Fe) molar ratio in 

the range of 25% to 33%, show the best gas conversion. At 850˚C, on the other hand, high 

methane conversion is seen for high Mn containing oxygen carriers. 
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Considering the fact that the Mn-Fe combined system shows very interesting properties with 

respect to reactivity, but because of problems with respect to mechanical stability, it is motivated 

to study the use of support materials. 

Figure 13 shows the methane conversion, , as a function of mass-based oxygen-carrier 

conversion for oxygen carriers with a Mn:Fe molar ratio of 75:25 with addition of MgAl2O4, 

CeO2, ZrO2 and Y2O3-ZrO2 as support. For comparison, also unsupported material with the same 

Mn/Fe ratio is included in the figure. 

Figure 13 shows that the methane conversion for M75F950 and M45F_Z40_950 is higher than 

for the other investigated materials. Generally, all the particles except M45F_MgAl40_950 and 

M45F_Ce40_1200 have fairly high CH4 conversion. The particles with a lower calcination 

temperature show better methane conversion than the particles calcined at higher temperature. 

Overall, the CH4 conversion for the materials can be ranked according to the support used as 

follows: ZrO2 > Y2O3-ZrO2 > CeO2 > MgAl2O4. 

The unsupported M75F950 and the supported M45F_Z40_950 both convert methane to CO2 

and H2O almost completely at 850˚C. These materials were able to transfer oxygen 

corresponding to almost 2.5% of their mass in 20 s. In Figure 13, only the unsupported M75F950 

showed full gas yield throughout the whole period, but for M45F_Z40_950 the conversion almost 

remained at 1 and only at the end it decreases somewhat. However, this is not surprising since the 

amount of bed material is the same for all cases, meaning that the amount of active material is 

considerably less for the supported carriers.  
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Figure 13- Gas yield, , vs. mass-based conversion, ω, using methane for 20 s at 850 ˚C for oxygen 

carriers with a Mn:Fe molar ratio of 75:25 with addition of MgAl2O4, CeO2, ZrO2 and Y2O3-ZrO2 as 
support. The unsupported material M75F950 is included for comparison (paper VI) 

From these experiments it is not possible to safely conclude which is the main mechanism for 

the oxygen transfer; whether the fuel reacts directly with the oxygen carrier or if the fuel reacts 

with the oxygen released. In previous work94 with M75F950, solid fuel tests were performed 

which indicated that the main mechanism of the fuel conversion is via CLOU. Since 

M45F_Z40_950 shows similar behaviour as M75F950, it is likely that most or all of the oxygen 

is transferred via the CLOU mechanism, at least during the part of reaction period where there is 

full conversion of CH4 and still a surplus of oxygen. 

The oxygen carrier M45F_MgAl40_950 showed low release of oxygen and very low fuel 

conversion. This can be attributed to the fact that the particles could not be oxidized with 5% O2 

and therefore it was in its reduced form during the entire experiment. This material could not 

even be oxidized at 700˚C. This can be due to interaction of support with active materials. XRD 

results indicated that the MgAl2O4 is not an inert support and reacts with the iron manganese 

oxide. 

In addition to the supports studied above, Al2O3 was also investigated, as discussed in the 

previous section. Figure 14 shows the methane conversion, , as a function of mass-based 

oxygen-carrier conversion for materials with a Mn:Fe molar ratio of 80:20 with addition of Al2O3 

as support.  
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Figure 14- Gas yield, , vs. mass-based conversion, ω, using methane for 20 s at 850 ˚C for materials 
with a Mn:Fe molar ratio of 80:20 with addition of Al2O3 as support (paper VII) 

Figure 14 shows that the methane conversion for M77FA3-950 and M74FA6-950 is higher 

than the other investigated materials with almost full conversion of methane to CO2 and H2O at 

850˚C. Generally, the particles with a lower calcination temperature showed better methane 

conversion than the particles calcined at higher temperature. As mentioned in the previous 

section, it was not possible to oxidize materials with high Al-content. 

The oxygen carriers with higher iron content i.e. material with Mn/(Mn+Fe) molar ratio of 

33%, showed lower gas conversion, but the mechanical strength was higher compared with the 

material with high Mn-fraction. Also, the oxidation with 5 vol% of oxygen was possible at 

temperatures higher than 850˚C.  

As said, addition of Al2O3 to materials with a Mn:Fe molar ratio of 33:67 was also 

investigated. In Figure 15 the methane conversion, , for mass-based oxygen-carrier conversion, 

ω, equal to 0.997, is shown as a function of the AlOOH mass fraction used during production. 

Clearly, the CH4 conversion is higher at higher temperatures. The CH4 conversion is highest for 

M20FA37-1100 and M24FA25-1100 at temperature above 950˚C.  
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Figure 15- Gas yield, , at ω = 0.997 versus AlOOH mass fraction using methane for 20 s at different 
temperatures for materials with a Mn:Fe molar ratio of 33:67 with addition of Al2O3 as support calcined at 
1100 and 1200˚C (paper VII) 

 
Materials calcined at 1200˚C showed higher gas conversion with the exception of materials 

with ALOOH content of 25 wt% and higher. For these, the materials calcined at 1100˚C showed 

higher gas conversion. For materials calcined at 1100˚C, addition of more Al2O3 increases the 

CH4 conversion. This may be associated with the higher BET surface area for these materials. 

But in the case of calcination at 1200˚C, addition of Al2O3 decreases the CH4 conversion. 

3.2.3 Oxygen carrier reactivity with solid fuels 
 

In this work several experiments were made with Mn-Fe based oxygen carriers and solid fuels 

in order to better elucidate the CLOU reaction. In Figure 4a and 11a, the unsupported oxygen 

carrier M33F1100 shows good behaviour in terms of its oxygen release during non-fuel periods 

at 900˚C and methane conversion at 950˚C. Therefore, M33F1100 was also tested with a low-

volatile solid fuel using inert fluidization gas, N2. The char particles effectively remove the 
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released oxygen as they were converted to CO2, hence increasing the driving force for oxygen 

release more effectively than when an inert gas such as nitrogen is introduced to the samples. 

In figure 16 the corrected outlet gas concentrations, i.e. concentration before adding the sweep 

gas, are shown as a function of time for the reducing period and the following oxidation period 

for M33F1100 particles and petroleum coke at 950°C. The oxygen concentration at the end of the 

oxidation is 5% and when the fluidizing gas is switched to nitrogen it falls to around 1% which 

corresponds to the O2 release by the carrier. When the fuel is introduced to the reactor a small 

peak of CH4 and CO can be seen in the beginning of the reaction due to devolatilization of the 

fuel. Some volatiles react with the oxygen carrier and CO2 increases rapidly. The oxygen 

concentration falls to zero as the fuel reacts rapidly with the oxygen released. When the 

devolatilization is finished, the remaining char can only be converted by reaction with oxygen 

released from the oxygen carrier. This is since the fluidizing gas is nitrogen, so there is no 

gasification of the char. Thus, the CO2 is a measure of oxygen release. After switching to 

oxidizing gas, there is first a CO2 peak, after which the oxygen increases. This is accompanied by 

a small increase in temperature as a result of the exothermic oxidation. The CO2 peak shows that 

there is some fuel left in the bed which has not been converted. 

 

                                  a                                                                           b  

Figure 16- Concentrations for (a) the reduction and oxidation and (b) close-up of the reduction for a cycle 
with 0.1 g of petroleum coke in 20 g of M33F1100 particles at 950°C. The fluidizing gas in reduction is 
pure nitrogen (paper III) 

 
Using petroleum coke as fuel at 900 and 1000°C shows a similar type of behaviour as the one 

shown in Figure 16, although the rate of reaction and the flue gas concentrations are different.  
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Figure 17 shows the corrected CO2 concentration, i.e. the concentration before addition of sweep 

gas, as a function of mass-based conversion during reduction of 20 g M33F1100 with 0.1 g 

petroleum coke at 900, 950, 1000°C and also using steam at 950°C. The value for ω does not 

start at 1 because it decreases slightly due to release of oxygen during the short inert period 

before the reduction. 

The change in mass-based conversion suggests that the oxygen-carrier particles are able to 

release oxygen corresponding to approximately 0.4% of their mass. The concentration of CO2, 

which corresponds to the oxygen release rate when M33F1100 and fuel is fluidized by nitrogen, 

increases with temperature. Adding steam as fluidizing gas in the reduction period increases the 

CO2 concentration as the char can also be gasified by steam. Thus, a combination of CLC and 

CLOU occurs, in other words both steam gasification, with syngas being oxidized by the oxygen 

carrier, and combustion of fuel through oxygen release by the particles. However, the increase in 

CO2 and mass-based conversion resulting from the steam added is fairly moderate. 

Moreover, for the test where steam was added in the fluidizing gas, the CO concentration falls 

to zero after devolatilization. This indicates full conversion of the gas, in contrast to experiments 

with oxygen carriers without release of gaseous oxygen, where there is a significant fraction of 

unconverted CO95. Thus, the tests indicate that this type of combined manganese-iron oxygen 

carrier, if used in chemical-looping of solid fuels, could contribute both to faster fuel conversion 

and to higher conversion of gas, as compared to oxygen-carrier materials that does not release 

oxygen. It should be noted that in all experiments, a CO2 peak could be observed in the start of 

the oxidation period, which shows that the amount of fuel was in excess to remove oxygen 

released.  
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Figure 17- Corrected CO2 concentration as a function of mass-based conversion, ω, during reduction of 
20 g M33F1100 with 0.1 g petroleum coke (paper III) 

 
In order to increase the mechanical stability of these combined materials, several supports 

have been employed, with varying degrees of success, see sections 3.2.1 and 3.2.2. One of the 

more interesting systems was the one including Al2O3, especially utilizing higher Fe-content, i.e. 

particles with a Mn:Fe molar ratio of 33:67. Some materials were investigated further with extra 

experiments with syngas and solid fuel as to obtain a better understanding of the behaviour of the 

samples with respect to reaction with solid fuels, i.e. coal or biofuels. The solid fuel experiments 

were designed as to get quantification of the release of oxygen. These results are presented in 

more detail in paper VII.  

Figure 18a illustrates the oxygen carrier mass-based conversion, ω, vs. time during reduction 

with 0.2 g of devolatilized wood char at 950˚C. In these experiments, the char is fully 

devolatilized, therefore, the char can only be converted by reaction with oxygen released from the 

oxygen carrier. As the char is in excess and the fluidizing gas is nitrogen the emitted CO2 is a 

measure of oxygen release.  

Figure 18b shows mass-based conversion, ω, vs. time during reduction period of 3 g oxygen 

carrier with syngas at 950˚C. As shown in Figure 18a, M20FA37-1100 showed the fastest release 

of oxygen and it could release 2% of its mass in around 500 s. This should be compared to the 

syngas conversion where 1.8 wt% in around 10 s of oxygen reacted with syngas, see Figure 18b. 

Thus, it is quite clear that the oxygen release rate is much slower compared with the rate of 

oxygen carrier conversion in the presence of syngas. This indicates that the main mechanism of 

gas conversion is through the direct reaction for these materials. 
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a 
 

b 

Figure 18- Oxygen carrier mass-based conversion, ω, as a function of time during reduction period of (a) 
10 g oxygen carrier using 0.2 g of devolatilized wood char and (b) 3 g oxygen carrier with syngas at 
950˚C (paper VII) 

 
As seen in Figure 4b and 11b, the oxygen carriers M67F950, M75F950 and M80F950 show 

high oxygen release and almost full conversion of methane to CO2 and H2O at 850˚C. These are 

combined oxides with a higher fraction of Mn compared to Fe, and as explained earlier they have 

a higher propensity to release oxygen at lower temperatures compared to high-Fe materials. Tests 

were also performed with these materials using wood char in a similar way as above, with the 

aim of elucidating the dominating reaction pathway. 

Data for one of the solid fuel tests with M80F950 is shown in Figure 19. Here, the corrected 

gas concentrations, i.e. gas concentrations corrected for dilution by the sweep gas, are shown as a 

function of time for reduction of 10 g M80F950 particles with 0.6 g wood char at 850˚C. The 

oxygen concentration during oxidation is 5%. When the fluidizing gas is switched to nitrogen, the 

oxygen concentration decreases to around ≈0.5%. When the fuel is introduced to the reactor, 

peaks of CH4 and CO can be seen in the beginning of the reaction due to the presence of some 

volatile matter in the char. Simultaneously, the CO2 concentration increases since the combustion 

of volatiles and char starts instantly. As the solid fuel enter the reactor, the oxygen concentration 

falls to zero as the fuel consumes all oxygen released. The absence of oxygen and the high 
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concentration of CO2 show that the decomposition reaction of (Mn,Fe)2O3 to (Mn,Fe)3O4 is 

occurring without any thermodynamic barrier. When the rapid initial devolatilization is finished, 

the remaining char can only be converted by reaction with oxygen released from the oxygen 

carrier.  

 

Figure 19- Measured dry gas concentrations during the reduction of 10 g M80F950. with 0.6 g wood char 

at 850˚C (paper IV) 

 
The results from fuel tests using lower ratios of fuel to oxygen carrier particles showed similar 

behaviour, but with lower CO2 concentration and higher O2 levels, see paper IV. The oxygen 

concentration in these experiments does not fall to zero and also increases with increasing 

temperature due to the exothermic reaction of the fuel combustion. The excess of oxygen in these 

experiments shows that the amount of fuel for these cases was insufficient to remove all oxygen 

evolved, indicating that the fuel combustion, not the O2 release, is limiting the overall reaction. In 

order to obtain a rate which is relevant for a well-functioning CLC system, the oxygen 

concentration in the bulk should approach zero. Figure 20 shows the oxygen carrier conversion as 

a function of time for both a CH4 cycle and the solid fuel cycles. In Figure 20, time starts when 

fuel is added, and because of oxygen release during the preceding inert period, X is slightly less 

than 1. The denotation of  
. .

 in Figure 20, is used to indicate the ratio of the mass of wood 

char to oxygen carrier.  

Figure 20 demonstrates that by increasing the mass ratio of fuel to oxygen carrier, the rate of 

oxygen carrier conversion also increases. It also shows that for full reduction of oxygen carrier 

(X=0), a sufficient amounts of fuel is needed. The test with the highest char to oxygen carrier 



41 
 

ratio, 
. .

.
, is the case where the maximum oxygen removal rate from the oxygen carrier 

was achieved. Here the oxygen carrier is almost fully reduced and the rate of oxygen carrier 

conversion is similar to the test with CH4. This was also the only solid fuel test where the oxygen 

concentration reached zero.  

 

Figure 20- Oxygen carrier conversion,(X), vs. time for both CH4 cycle and solid fuel cycles with 

M80F950 at 850˚C (paper IV) 

 

Figure 20 shows that for the tests with 
. .

.
 and CH4, the oxygen carrier becomes fully 

reduced in around 40 s. Considering concentration transients caused by the backmixing, the 

conversion time seen in Figure 20 is overestimated by around 10 s. Thus, most of the oxygen is 

released in about 30 s. Therefore, the particles were able to release oxygen corresponding to more 

than 3% of their mass in less than 40 s. The rapid release of oxygen in the solid fuel experiments, 

support the presumption that the main reaction mechanism between methane and M80F950 is by 

oxygen release in gas phase. This could be compared to the results of the Al2O3 supported 

material in Figure 18a, where considerably longer time is needed for the full release of oxygen, 

and this at a higher temperature. This illustrates that the identified optimum Mn-fraction of 60-80 

mole% in the phase diagram in Figure 2, could be of very high interest, since both the 

thermodynamics and kinetics seem to support this. The problem seems to be associated with 

mechanical stability as well as the difficulties in oxidizing the materials at a sufficiently low 

partial pressure of oxygen, which will be discussed below. 
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3.2.4 Oxidation of the oxygen carrier particles 
 

It is important that oxygen carriers can be oxidized at reasonable levels of oxygen in the gas 

phase. During experiments with M80F950, oxidation was slow and after more fuel cycles, the 

oxidation became slower. The difficulties with initiating the oxidation were solved by reducing 

the oxidation temperature to 800˚C. This is in accordance with thermodynamics, as a temperature 

decrease facilitates oxidation by lowering the equilibrium partial pressure. As mentioned 

previously, this is particular important for high-Mn oxygen carriers. In paper V, the oxygen 

carrier materials with Mn:Fe molar ratios in the range 67:33 up to 80:20 were examined with 

devolatilized wood char, in order to see how the iron content affects oxygen release and uptake. 

Thermodynamic analysis shows that increased iron content raises the temperature at which the 

material releases oxygen at a given partial pressure of oxygen. For a given temperature, increased 

iron content should therefore reduce the oxygen release but facilitate the oxygen uptake. Here 

oxygen release is investigated at 850˚C in cycles comprising oxidation by 5% oxygen in nitrogen 

followed by addition of devolatilized wood char in N2.  

The reduction with devolatilized wood char and the subsequent oxidation in 5% oxygen of 

M67F950, M75F950 and M80F950 were first investigated at 850˚C. The conversion was rapid 

during reaction with char, but difficulties with oxidation were seen already in the third cycle. In 

this respect there was no difference between the three materials investigated in this work, as 

problems with the oxidation of the materials started after approximately three cycles for all of 

them.  

Further tests were therefore made with a lower oxidation temperature. In Figure 21, the 

corrected gas concentrations, i.e. gas concentrations corrected for dilution by the sweep gas, are 

shown as a function of time for (a) reduction of 10 g M80F950 with 0.3 g wood char at 850˚C 

and (b) the following oxidation period with 5% O2 at 800˚C. Figure 21a shows the same trend as 

Figure 19 although the CO2, CO and CH4 peaks are lower because the wood char used here is 

devolatilized. Figure 21b shows the gas concentration during oxidation with 5% O2. By switching 

the fluidizing gas to 5% O2, the CO2 concentration increases since the combustion of unconverted 

char starts. During this period all oxygen is consumed by the char, as the oxygen concentration is 

clearly too low to allow any oxidation of the oxygen carrier. As the char burns out the oxygen 

concentration starts to increase and stabilizes at the inlet concentration of approximately 5%. 

After some time the temperature of the oven is decreased to 800˚C, and the oxygen concentration 
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drops, indicating that the material is reacting with some of the supplied oxygen. The results for 

the other two investigated materials were similar to the results in Figure 21, except for small 

differences in concentrations.  

 

           a                                                                                      b                                                                               

 Figure 21- Measured dry gas concentrations during (a) the reduction of 10 g M80F950 with 0.3 g 
devolatilized wood char at 850˚C and (b) oxidation with 5% O2 at 800˚C (paper V) 

 
Figure 22 shows the oxygen carrier conversion as a function of time during (a) reduction of 

M67F950, M75F950 and M80F950 with devolatilized wood char at 850˚C and (b) oxidation with 

5% O2 at 800˚C.  

In Figure 22a, time starts when fuel is added, and because of oxygen release during the 

preceding inert period, X is slightly less than 1. In all these tests the amount of inserted solid fuel 

was in excess whilst some CO2 was observed during oxidation periods. All three materials show 

almost similar behaviour during the reduction period and released most of its oxygen in 80 s, as 

seen in Figure 22a. The rate of oxidation for all these three materials is slow, which can be 

attributed to the gas flow rate and the low oxygen content of this flow.  Figure 22 shows that 

varying the iron content between 20% and 33% does not appear to have any strong effect on 

either oxygen release or oxygen uptake.  

 

 
 

  



44 
 

 
 

 

 

          a 

 

          b 

Figure 22- Oxygen carrier conversion,(X), vs. time during (a) reduction period with wood char at 850˚C 

and (b) oxidation with 5% O2 at 800˚C (paper V) 

        

3.2.5 Analysis of the Oxygen Carrier Particles  

3.2.5.1 Crystal structures (papers II,VI-VII) 
 

The crystalline phase composition of the fresh unsupported Mn-Fe oxygen carriers was 

examined with X-ray powder diffraction. The identified phases were bixbyite and for high iron 

content material, hematite. However, there is a difficulty in safe analyses of this system as the 

XRD peaks of several of these compounds are close to each other, which is not surprising 

considering that the iron and manganese are neighbours in the periodic table. Some additional 

tests were performed with M33F950 particles in order to better elucidate the reduction 

mechanism. Here, a fresh sample was first reduced in 900˚C in N2 until the measured oxygen 

concentration approached zero, at which point the sample was cooled in nitrogen and analysed 

with XRD. The same sample was then again heated in an inert atmosphere to 950˚C, and there 

exposed to methane during only a 10 s reduction. As can be seen in in Figure 23, the identified 

phases for fresh M33F950 are the bixbyite and hematite structure of (Mn,Fe)2O3 as expected. The 

sample reduced in nitrogen contained two phases: hematite (Mn,Fe)2O3 and the reduced spinel 
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phase (Mn,Fe)3O4. This is also expected from the phase relationships in Figure 2, since a 

complete reduction to spinel for material with this composition will occur only at a very high 

temperature or very low partial pressure of oxygen. Hence, as the partial pressure of oxygen is 

very low at 900˚C, complete reduction in nitrogen may take a long time, and thus the two 

identified species are expected. When this sample was heated to 950˚C, there was a release of 

oxygen, due to decomposition of the remaining hematite to spinel at the higher temperature. 

Further reduction with a 10 s pulse with CH4 completely reduced the hematite to spinel, as can be 

seen in Figure 23. 

 

Figure 23- Diffractograms for fresh M33F950, reduced particles in N2 at 900˚C and reduced particles with 
CH4 at 950˚C (paper II) 

 
The crystalline phase composition of the oxygen carriers with a Mn:Fe molar ratio of 75:25 

with addition of MgAl2O4, CeO2, ZrO2 and Y2O3-ZrO2 as support was examined with X-ray 

powder diffraction. The active phases identified of materials with CeO2, ZrO2 and Y2O3-ZrO2 

were similar to unsupported material, i.e. M75F950, again confirming the intact and operational 

combined oxide materials. The oxidized active phase in these samples is cubic bixbyite structure 

of (Mn,Fe)2O3 and the reduced phase is the tetragonal spinel structure of (Mn,Fe)3O4. The 

additional inert phase in the material with ZrO2 as support is the monoclinic structure of ZrO2 

both in the reduced and oxidized states. For ZrO2-supported material sintered at 1200˚C, some 

tetragonal or cubic structure of ZrO2 was also seen. With Y2O3-ZrO2 as support, the cubic or 
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tetragonal structure of Y2O3-ZrO2 was identified, and with CeO2 as support, the cubic structure of 

CeO2 was seen. In the case of CeO2, some small fraction of Fe or Mn could possibly be mixed 

with CeO2.  

 The phase identified for the material with MgAl2O4 as support, M45F_MgAl40_950, was 

MgxFeyMnzAl3-x-y-zO4. This indicates that the MgAl2O4 is not an inert support and reacts with the 

iron manganese oxide. Judging from the reactivity experiments, this phase is apparently rather 

inactive for reactions with methane and syngas. 

The phase analysis support the reactivity results that CeO2, ZrO2 and Y2O3-ZrO2 could be 

possible candidates as support for the oxygen-carrier materials based on Mn-Fe whereas the 

MgAl2O4 is a poor candidate. However, based on the attrition data, only the ZrO2 showed 

substantial improvement compared to the unsupported oxygen carrier.   

The crystalline phase composition of the oxygen carriers with a Mn:Fe molar ratio of 33:67 

with addition of Al2O3 as support was examined with X-ray powder diffraction. The oxidized 

phases are (Fe,Al)2O3, corundum, or (Mn,Fe)2O3, bixbyite, and the reduced phase is 

(Mn,Fe,Al)3O4-spinel. It should be noted that the XRD-patterns of (Mn,Fe,Al)3O4 and 

(Mn,Fe)3O4 are similar, and therefore it was hard to differentiate between these. The fresh 

materials contained both reduced and oxidized phases. In general, by increasing Al content, more 

Al was seen in this structure. Therefore, with lower Al, mostly (Mn,Fe)3O4 could be expected. 

The (Mn,Fe)2O3 was mostly seen for materials with lower Al content. By increasing Al content 

more (Fe,Al)2O3 was seen. 

3.2.5.2 Crushing strength (papers II-VII) 
 

The crushing strength of unsupported Mn-Fe oxygen carriers varies between 0.1 – 1.7 N and is 

generally higher for higher Fe content. There was less of an effect of the calcination temperature, 

although for high-Fe materials the crushing strength is somewhat higher for materials treated at 

1100˚C. Although the relation between crushing strength and attrition is not clear, it can be 

expected that material with too low crushing strength will break in a real unit. For comparison, 

the crushing strength of a Ni-based oxygen carrier successfully operated in continuous fluidized 

bed CLC reactor for 1000 h was 2.3 N96. 

The crushing strength of the oxygen carriers with a Mn:Fe molar ratio of 75:25 with addition 

of MgAl2O4, CeO2, ZrO2 and Y2O3-ZrO2 varies between 0.4 – 1 N. Generally the crushing 

strength increases as a function of calcination temperature. However, for the materials with ZrO2 
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the crushing strength is somewhat lower for materials sintered at higher temperature. This can be 

attributed to crystal structure transformation of ZrO2 at higher temperature. ZrO2 has monoclinic 

crystal structure at temperatures below 1170˚C and with increasing temperature it changes to 

tetragonal and cubic structure which has smaller volume97. Therefore, cooling of these materials 

results cracks due to induced stresses as a result of volume expansion of crystal structure 

transformation from the cubic to tetragonal to monoclinic97. 

This explanation correlates well with the XRD analysis of these materials which showed that 

the inert phase in the material with ZrO2 as support is the monoclinic structure of ZrO2 both in 

the reduced and oxidized states. For ZrO2-supported material sintered at 1200˚C, some tetragonal 

or cubic structure of ZrO2 was also seen. Thus, the calcination temperature could be of substantial 

importance, and it is advised not to use too high calcination temperatures for ZrO2-supported 

material.   

The crushing strength of the oxygen carriers with a Mn:Fe molar ratio of 33:67 with addition 

of Al2O3 as support varies between 0.6 – 1.7 N with the highest crushing strength for materials 

with lowest addition of Al, M31FA3. Generally the crushing strength and density increase as a 

function of calcination temperature.  

3.2.5.3 Attrition resistance (papers VI-VII) 
 

Attrition tests were performed using a customized jet cup rig, which was briefly described 

above The following particles were tested: oxygen carriers with a Mn:Fe molar ratio of 75:25 

with addition of MgAl2O4, CeO2, ZrO2 and Y2O3-ZrO2 as support and also materials with a 

Mn:Fe molar ratio of 33:67 and 80:20 supported with Al2O3. As a reference, the attrition index of 

an unsupported material with a Mn:Fe molar ratio of 33:67, which is M33F1100 and also 

unsupported material with a Mn:Fe molar ratio of 75:25 were also measured. Among materials 

with a Mn:Fe molar ratio of 75:25, all the materials except M45F_Z40_950 showed very poor 

attrition resistance and were fragmented or turned to dust. For M45F_Z40_950 an attrition index, 

Ai of 8.5 wt%/h was found, and also had the highest crushing strength in this group of materials. 

Attrition tests were performed on the fresh materials with a Mn:Fe molar ratio of 80:20 

supported with Al2O3 i.e. M77FA3 calcined at 950, 1100 and 1200˚C, M74FA6 calcined at 950, 

1100 and 1200˚C, M50FA37 calcined at 950 and 1200˚C. All the materials except those calcined 

at 1200˚C showed very poor attrition resistance and were fragmented or turned to dust. For 

materials calcined at 1200˚C, an attrition index, Ai of 1.2-1.8 wt%/h was found. 
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The results for materials with a Mn:Fe molar ratio of 33:67 supported with Al2O3 indicated 

good attrition resistance for all materials except M24FA25-1100, with attrition indices, Ai of 

0.45-3.7 wt%/h. For comparison, the attrition behaviour of unsupported material, M33F1100, was 

poor with Ai of 30 wt%/h.  
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4 Discussion 

 
In the last five years, there has been a significant number of investigations of materials for 

CLOU, with a focus on Cu-based materials. As Cu-materials may have drawbacks with respect to 

cost, agglomeration and stability, it is motivated to also investigate other materials which have 

the ability to release gas phase oxygen at relevant conditions. There are several combined oxide 

systems which may be of interest, whereof the Mn-Fe combination is one of the more 

promising98. This work is the first comprehensive investigation of the Fe-Mn-O system for 

Chemical-Looping with Oxygen Uncoupling (CLOU), where materials with varying Mn/Fe ratios 

have been investigated with respect to oxygen release and reactivity with gaseous and solid fuels. 

The results clearly illustrate that this system could have great promise, as many of the materials 

release a fair amount of oxygen at relevant conditions. This uncoupling effect gives an important 

advantage when used with solid fuels, as the gasification reactions needed with normal CLC are 

fully or partially avoided, thus promoting char conversion. But CLOU materials will also have 

advantages over non-CLOU materials in converting gaseous fuels. Due to the low price and 

favourable environmental properties of manganese and iron oxides, these findings could be of 

great importance for the development of chemical-looping combustion with oxygen uncoupling. 

The materials used in this work are manufactured which is associated with a production cost. A 

cheaper alternative for these materials would be natural ores, or waste products from industry. It 

is well known that naturally occurring manganese ores often contain high fraction of iron, in 

addition to other impurities, such as Si, Ca and Al. The price of manganese ore (metallurgical 

grade) has varied between 100 and 800 $/ton in the last ten years99, with the most current prices 

around 200–300 $/ton. 

In a CLC system, it is important to keep the air ratio low in order to improve efficiency, which 

means that the oxygen concentration from the air reactor should be as low as possible. In this 

work, 5% O2 was employed, which corresponds to an air ratio of about 1.2 in an actual CLC 

system. The results presented above showed that the reduced form of the oxygen carriers with a 

Mn/(Mn+Fe) molar ratio of more than 50% would be difficult or impossible to oxidize to 

(Mn,Fe)2O3 at 950˚C and 900˚C because they are in or very close to the phase regions of bixbyite 

+ spinel or spinel at a partial pressure of O2 of 0.05 atm. Therefore, applying a lower temperature 

of 850˚C will improve the reoxidation of these oxygen carriers. It should be mentioned that this 

thermodynamic restriction only applies to the air reactor, and the temperature of the fuel reactor 
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could be higher, which would likely enhance the overall kinetics and the equilibrium oxygen 

partial pressure. A higher temperature in the fuel reactor is possible since the overall reactions in 

the fuel reactor for a high Mn-fraction oxygen carrier are exothermic.  

The rate of oxygen release is directly proportional to the solids inventory of oxygen carrier in 

the fuel reactor. To illustrate the implications of the rates measured for M80F950 at 850˚C, an 

example is given here. If it is assumed that the oxygen carrier transfers oxygen corresponding to 

2% of its mass in each cycle, this would correspond to a solids circulation between air and fuel 

reactor of 230 kg/min,MW using wood char as fuel. The presented rates of oxygen release 

suggest that a residence time of less than 30 s could be sufficient for the release of oxygen in 

presence of fuel. This would then, with the given circulation rate correspond to a solids inventory 

of only 115 kg/MW for the fuel reactor. 

Although some of the unsupported materials worked excellently in laboratory, their 

mechanical strength and attrition resistance needed improvement in order to have sufficient 

durability for commercial application. Therefore, a series of supported materials with a Mn:Fe 

molar ratio of 80:20 with addition of MgAl2O4, CeO2, ZrO2, Y2O3-ZrO2 and Al2O3 were 

investigated with the aim of increasing the attrition resistance. Based on the results from the 

reactivity tests and the measured attrition rates for all the particles, ZrO2 support seems to be the 

most promising candidate among different supports for materials with high Mn-content. 

Unfortunately, addition of support to these materials had the drawback that these could not be 

oxidized at 850˚C and a decrease in temperature to 800˚C was needed in order to be able to 

oxidize the materials back to their fully oxidized state. 

For materials with higher iron content, the oxidation with 5 vol% of oxygen was possible at 

temperatures higher than 850˚C, which is also in agreement with the phase compositions 

predicted by thermodynamics. Therefore, addition of Al2O3 to materials with a Mn:Fe molar ratio 

of 33:67 was investigated. Almost all Al2O3 supported high Fe-materials had good attrition 

resistance compared with unsupported materials as well as the other supported materials. Among 

the Al2O3 supported materials with a Mn:Fe molar ratio of 33:67, M20FA37-1100 showed the 

fastest release of oxygen and it could release 2% of its mass in around 500 s with solid fuel. The 

comparison between gaseous and char conversion shows that the conversion with gaseous fuels is 

reached within a much shorter period of time, in order of tens of seconds. The char conversion in 

N2 is controlled by the oxygen release. As the oxygen release rate is much smaller compared to 
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the overall rate of oxygen carrier conversion in syngas or CH4 conversion, the main mechanism 

of conversion of gaseous fuel is through the direct reaction. But the problem associated with 

mechanical stability as well as the difficulties in oxidizing the materials have been solved, and it 

is likely that also a partial, but slower, uncoupling effect could have significant advantages in a 

real system with respect to fuel conversion. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



52 
 

5 Conclusions 

 
The influence of the steam and hydrogen concentration on the rate of char conversion in CLC 

was investigated. The oxygen exchange model was found to be the best in describing hydrogen 

inhibition mechanism in steam gasification. Thus, a strong dependency between fuel gasification 

rate and hydrogen concentration was found, indicating that it is desirable to use a reactive oxygen 

carrier which removes hydrogen efficiently.  

Oxygen carrier materials of the combined oxide system Fe-Mn-O have been investigated with 

respect to chemical-looping combustion and chemical-looping with oxygen uncoupling. At the 

higher reaction temperature, 950˚C, oxygen carriers with a Mn/(Mn+Fe) molar ratio in the range 

of 25-33%, show the highest oxygen uncoupling properties and best methane conversion. At 

850˚C, on the other hand, high methane conversion and oxygen release are seen for particles with 

a high Mn/(Mn+Fe) molar ratio, 67-80%. In fact the oxygen carriers with the latter ratio calcined 

at 950˚C gave almost full conversion of methane to CO2 and H2O at 850˚C. The rapid release of 

oxygen was also verified using wood char as fuel, where any solid-solid reaction between char 

and oxide particles would be negligible. It is shown that these materials are able to release gas 

phase oxygen corresponding to up to around 3.4% of its mass. Moreover, most of this oxygen can 

be released in only 30-40 s in presence of a fuel that maintains an oxygen partial pressure close to 

zero.  

Addition of support to materials with a high Mn-fraction had the drawback that they could not 

be oxidized at 850˚C and to be able to oxidize them it was necessary to decrease the temperature 

to 800˚C. Based on the results from the reactivity tests and the measured attrition rates for all the 

particles, ZrO2 support seems to be the most promising candidate among different supports for 

materials with a high Mn-fraction. 

Most Al2O3-supported materials with a Mn:Fe molar ratio of 33:67 had good attrition 

resistance, with an attrition index, in range 0.45 to 3.7 wt%/h. In comparison, the attrition 

behaviour of the corresponding unsupported material, M33F1100, was poor with an attrition 

index of 30 wt%/h. Furthermore, some of these materials showed good reactivity with methane 

and syngas. Experiments with char showed that these materials were able to release large 

quantities of oxygen, i.e. up to 2% of the mass. This means that they are suitable for CLOU. 

However, the release is slow and it is clear that the main reaction mechanism with gaseous fuels 
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is not through oxygen release. Low attrition, good reactivity and CLOU properties in 

combination with potentially low raw materials costs, make these materials interesting for CLC.  
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