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Automated engine calibration of hybrid electric
vehicles

Nikolce Murgovski, Markus Grahn, Lars Johannesson and Tomas McKelvey

Abstract—We present a method for automated engine calibra-
tion, by optimizing engine management settings and power-split
control of a hybrid electric vehicle. The problem, which concerns
minimization of fuel consumption under a NOX constraint, is
formulated as an optimal control problem. By applying Pon-
tryagin’s maximum principle, this study shows that the problem
is separable in space. In the case where the limits of battery
state of charge are not activated, we show that the optimization
problem is also separable in time. The optimal solution is
obtained by iteratively solving the power-split control problem
using dynamic programming or the Equivalent Consumption
Minimization Strategy. In addition, we present a computationally
efficient suboptimal solution, which aims at reducing the number
of power-split optimizations required. An example is provided
concerning optimization of engine management settings and
power-split control of a parallel hybrid electric vehicle.

Index Terms—Hybrid electric vehicle, engine management
system, engine calibration, optimal control

I. INTRODUCTION

Electrification of vehicles is a promising technology that
has the potential to improve energy efficiency of vehicles
and thereby reduce carbon dioxide emissions. An example
of electrified vehicles are hybrid electric vehicles (HEVs).
HEVs possess most of the features of conventional vehicles,
but besides the internal combustion engine (ICE), they also
include an energy buffer, typically a battery, and one or more
electric machines (EMs). This gives them an additional degree
of freedom in choosing engine operating points, which allows
more efficient operation [1].

The energy efficiency of HEVs depends on several fac-
tors, from which the most studied are optimal power-split
control (see e.g. [1], [2] and references therein), and opti-
mal dimensioning of powertrain components (see e.g. [3],
[4], [5], and references therein). The power-split control is
a dynamic optimization problem that governs arbitration of
demanded power between the ICE and EMs. The problem
can be approached in different ways, but besides heuristic and
rule-based approaches [6], [7], [8], [9], [10], the dominating
approaches contain an optimal control formulation, based on,
e.g., dynamic programming (DP), or Pontryagin’s maximum
principle [1], [7], [11], [12], [13]. The problem formulations
often consider idealized conditions, assuming an exact knowl-
edge of the driving mission. The idealized solutions could then
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be used as a benchmark for HEV powertrain design, or as
a starting point for development of power-split strategies for
real-time control. The Equivalent Consumption Minimization
Strategy (ECMS) is a well-known real-time control strategy
that can be regarded as an approximation of an optimal control
formulation [2].

Besides energy efficiency, additional performance criteria in
vehicles are the levels of harmful emissions, such as nitrogen
oxides (NOX), soot, carbon monoxide, and hydrocarbons,
which are combustion byproducts formed in ICEs. An effective
solution that reduces toxic emissions in gasoline engines is
a three-way-catalyst (TWC). The TWC, however, cannot be
used for a Diesel ICE. Instead, Diesel vehicles are equipped
with oxidation catalyst and particulate filter, which effectively
remove soot, hydrocarbons and carbon monoxide [14]. Unless
additionally equipped with a lean NOX trap or a selective
catalytic reduction, Diesel vehicles cannot reduce the engine-
out NOX emissions. Instead, the approach is to operate the
engine such that NOX emissions are low already when leaving
the engine. During combustion, there is a well-known trade-
off between fuel consumption and NOX emissions; control
measures that decrease NOX emissions typically increase fuel
consumption and vice versa [15].

Methods that minimize fuel consumption in an HEV while
limiting, or penalizing NOX emissions, have been developed
and described in literature [7], [16], [17]. However, these stud-
ies do not consider the dependence on optimal performance
of engine management system settings, concerning boost
pressure, exhaust gas recirculation rate, fuel rail pressure,
multiple injections with controllable timings and durations,
etc. Instead, when optimizing power-split control of HEVs,
the ICE’s management system is typically set (calibrated) for
a conventional vehicle.

A common approach when calibrating engine management
settings is to first approximate a given driving cycle to steady-
state engine operating points. Then, the ICE calibration at
these points is either based on solving the Lagrangian primal
[18], or dual problem [19], [20]. In the latter problem, the
objective function is essentially a sum of fuel consumption
and weighted emissions, using a constant weighting factor (the
Lagrange multiplier). Early work with the latter approach can
be found in applications of conventional vehicles, for both
gasoline ICE [18], [19] and Diesel ICE [20]. Most recent work
with this approach has been performed in [21], [22], within
the scope of conventional vehicles.

The ICE operation in conventional vehicles and HEVs is
different, and the optimal ICE settings in a conventional
vehicle are most likely not optimal for the same engine in
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an HEV. (For example, in an HEV, ICE operation at low
speed and torque is generally avoided [1].) Moreover, an HEV
may include a downsized engine that has been calibrated for a
smaller size conventional vehicle, or an engine that is specifi-
cally designed for an HEV. Therefore, the ICE calibration in an
HEV should be performed with respect to the optimal engine
operating points that are obtained by the energy management
(power-split) controller. In turn, the optimal power-split control
depends on how the ICE is calibrated. These two tasks are
strongly coupled and the optimization should reflect on that.

Surprisingly, there are only few published papers on this
topic. The published strategies rely on the possibility of
splitting the optimization problem in two parts, one for the
calibration and one for the power-split control. The ICE
calibration is performed similarly as mentioned above for
conventional vehicles, while the power-split control is based
either on suboptimal methods [23], or on DP [24], [25].

In this study, we revisit the problem of combined ICE
calibration and HEV power-split control, and we formulate the
problem as a constrained, dynamic optimal control problem,
where states are NOX mass and battery state of charge (SOC).
This allows the problem to be studied using optimal control
theory [26], where problem separability in space (optimization
variables) is derived directly from Pontryagin’s maximum
principle [27]. We show that for a special case, where battery
SOC limits are not activated, the optimization problem is
also separable in time and can be solved efficiently. The
optimal solution is obtained by iteratively solving the power-
split control problem using dynamic programming [28] and
the ECMS [2]. We present also a computationally efficient
suboptimal solution, which aims at reducing the number of
power-split optimizations required. An example is provided
concerning optimization of engine management settings and
power-split control of a parallel hybrid electric vehicle. The
computationally efficient solution for the studied example
managed to achieve the global optimum in less than 4 minutes.

The paper is outlined as follows. Section II provides
background on engine calibration in conventional vehicles,
state of the art in engine calibration and delimitations of
this study. The problem formulation and modeling details are
described in Section III. The optimization method is presented
in Section IV. Computationally efficient optimization methods
are provided in Section V. An example of ICE calibration and
power-split control of an HEV is given in Section VI. The
paper is ended with a discussion and a conclusion in Section
VII and Section VIII.

II. ENGINE CALIBRATION PROCEDURES FOR
CONVENTIONAL VEHICLES

Common controllable systems that affect fuel consumption
and emissions of a modern passenger car are the gas exchange
system, the fuel injection system, and the after-treatment
system. These systems have many degrees of freedom, and
many settings that can be calibrated. A sophisticated global
optimization procedure that accounts for all systems’ settings
is, in practice, not (yet) possible [29], [30]. Instead, some
systems’ settings are calibrated manually at an early design

stage, and possibly in conjunction with the hardware design,
such as design of pistons, cylinder head, and physical location
of injectors. The early stage calibration is based on limited
input data, typically the operating range of engine speed and
load. Examples of settings calibrated at the early stage are
the number of injection pulses for combustion events, indi-
vidual dwell time between different injection pulses, fuel rail
pressure, and relative injection amounts in different injection
pulses.

Next, the remaining systems’ settings are calibrated with
respect to a complete driving cycle. Three settings, z =
[z1 z2 z3]T , are typically considered, which have a large impact
on fuel consumption and emissions. These settings are the
injection timing, z1, duty cycle to the exhaust gas recirculation
valve, z2, and duty cycle to the variable geometry turbine, z3.

A. Calibration under steady-state operation

The calibration procedure of z involves two steps at which
optimal set points for z are obtained. First, an engine model
is generated in a form of five-dimensional static maps for fuel
consumption and emissions. The process involves operating
the engine in a test cell, for discrete grid values of engine
speed, torque, and z, within the entire operating range of the
engine. Fuel consumption and emissions are measured under
stationary conditions.

Second, the optimal set points for z are obtained by
minimizing fuel consumption, while fulfilling constraints on
accumulated emissions. The optimization is performed over
a set of representative engine speed/torque operating points,
which are obtained by simulating the vehicle model on a
certain driving cycle. Note that, although these speed/torque
points may not excite the entire operating range of the engine,
they can still be used to optimize the complete working range
of the engine. This is a direct result of the optimal calibration
procedure, which considers a scalar coefficient weighting the
flow of fuel and emissions for the entire operating range of
the engine [18], [19], [20]. Obtaining the optimal weighting
coefficient is an iterative procedure, where simulation of the
vehicle model and optimization of the set points for z is
repeated several times. The method will be detailed later,
in Section IV-B, for the case of a hybrid electric vehicle.
Note that, since the procedure is iterative, the representative
operating points are obtained by simulating a vehicle model,
rather than operating the real vehicle.

The resulting engine calibration is optimal only for the
set of speed/torque points that are chosen as representative.
How these points are chosen depends mainly on the standard
procedure for determining the legislative limits for emissions.
In Europe, the New European Driving Cycle (NEDC) is
designed to assess emission levels of passenger vehicles [31].

The set of representative points depends also on the pow-
ertrain and engine model. The powertrain model translates
the speed/torque points of the driving cycle from the wheels
to the engine. It is relevant that these models approximate
reasonably well the net fuel consumption and emissions of the
real vehicle. The modeling accuracy becomes more important
as the new driving cycle, the World-Harmonized Light-Duty
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Fig. 1. Optimization framework for steady-state engine calibration, including
compensations for transients. The steady-state calibration is repeated several
times, after adjusting (typically manually) the emission limits and the transient
compensation model.

Vehicles Test Cycle, is being developed. This cycle is likely
to include a larger portion of engine transient operation,
compared to the NEDC [31].

B. Compensations for transients

When calibrating the engine based on a static engine
model, the transition between two successive operating points
is assumed immediate. However, dynamics in the engine
necessitate a transient engine operation, which leads to higher
fuel consumption and emissions than fuel consumption and
emissions from the static engine model. To account for the
differences, compensations are used that limit emissions dur-
ing transients [32], [33], [34], [35]. The compensations involve
manual adjustments of the optimal engine set points, typically
the oxygen fraction in the intake manifold and the injection
timing. Additionally, when calibrating the static engine model,
the emissions’ limits are lowered, such that the real vehicle
does not exceed the legislative limits for emissions.

After the transient compensations are performed, the static
engine model is recalibrated. The whole process is iterated
several times with different limits on accumulated emissions,
until the real vehicle achieves satisfactory fuel consumption
and emission levels. The engine calibration process, including
transient compensation, is illustrated in Fig. 1.

C. State of the art in engine calibration and delimitations of
this study

The research in engine management system optimization is
divided into optimization of steady-state engine operation and
transient engine operation. The state of the art optimization of
steady-state engine operation is as described in Section II-A.

The state of the art research on optimization of transient
engine operation has been mainly focused on reducing emis-
sion spikes for a subset of engine transient scenarios, rather
than optimizing fuel consumption on a complete driving cycle

Fig. 2. Hybrid electric vehicle with a parallel powertrain configuration.
The internal combustion engine propels the front wheels, while the electric
machine is mounted on the rear axle.

[36], [37], [38], [39], [40], [41]. Several studies have included
optimization over a complete driving cycle, considering both
steady-state and transient engine operation [32], [33], [42],
[43]. The approach in [42], [43] proposes neural network for
modeling transient engine behavior, while the approach in
[32], [33] is complementing transient compensations, rather
than replacing them with an accurate dynamic engine model.
Optimal engine calibration based on a complete dynamic
engine model is yet to be developed.

The study presented in this paper focuses solely on engine
calibration based on a static engine model. The transient com-
pensation procedure, which is well established in literature, is
not further discussed in the rest of this paper.

III. POWERTRAIN MODEL AND PROBLEM FORMULATION

Depending on the ICE and EM arrangement, HEV power-
trains are commonly divided into series, parallel and series-
parallel configurations [1]. The powertrain studied here is
a through-the-road parallel powertrain, in which both the
ICE and EM are mechanically connected to the wheels. The
powertrain is constructed by augmenting a front-wheel driven
conventional vehicle with a battery and an EM mounted on
the rear axle, as illustrated in Fig. 2. The EM can operate in
both motoring and generating mode. This allows recuperation
of braking energy, which in the case of a conventional vehicle
is lost as heat.

A. Powertrain model

The vehicle is required to fulfill a certain driving mission
fully described by road altitude, desired vehicle velocity and
acceleration at each point in time. In the view of the vehicle
powertrain, this can be translated to angular velocity ω and
torque T demanded at the wheels, for each time instant of
the driving mission. When delivering the inputs ω and T ,
we adopt a commonly used backward-simulation, quasi-static
powertrain model [1], which does not necessitate a driver
model. In this model, the vehicle follows exactly the reference
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Fig. 3. Static maps of an ICE, left, and an EM, right. The ICE map depicts
efficiency for fixed values for injection timing, duty cycle to the exhaust gas
recirculation valve and duty cycle to the variable geometry turbine. The EM
efficiency map includes also the losses from the inverter and rear differential
gear.

trajectories, ω and T , yielding the following equations

T = TEr(g)η(g) + TM , (1)
PB = TMω + PMd(TM , ω), (2)
ωE = r(g)ω. (3)

The notation above reads as follows: TE and TM are torques
of the ICE and EM, ωE is rotational speed of the ICE, r
and η are gear ratio and efficiency of gear g, and PB is
power at the battery terminals. The efficiencies of all gears,
including the two differential gears, are modeled as constant.
The efficiency and gear ratio of the front differential gear are
denoted with η and r, while the losses of the rear differential
gear and power inverter are reflected within the EM losses
PMd. The dominating inertia of the vehicle is the inertia of
the vehicle itself (chassis, driving axels, wheels, etc.), and we
have therefore neglected the rotational inertia of the ICE and
EM. Auxiliary load is not considered.

The battery is modeled as a series connection of a voltage
source u(s) and a resistance R(s), which, in a general case,
are both a function of state of charge (SOC). Then, the SOC
derivative is given as

ṡ = − i

QB
= fs(PB , s), (4)

with

fs(PB , s) = −
u(s)−

√
u2(s)− 4R(s)PB

2QBR(s)
. (5)

In the equations above, s and QB denote battery SOC and
capacity, respectively. Equation (5) is obtained by deriving the
battery current i from

PB = u(s)i−R(s)i2. (6)

The ICE is modeled by two static functions, ff (ωE , TE , z)
and fNOX

(ωE , TE , z), describing fuel consumption and NOX
emissions in g/s, respectively. The inputs z = [z1 z2 z3]T , are
control variables denoting injection timing, z1, duty cycle to
the exhaust gas recirculation valve, z2, and duty cycle to the
variable geometry turbine, z3. (See, e.g., [15] for background
on ICEs.) An example of the ICE’s efficiency map for fixed
values of z is given in Fig. 3. The maps’ generation is further
discussed in Section VII-A.

Similarly, the EM’s dissipative power PMd, including
the inverter and rear differential losses, is obtained from
speed/torque measurements under stationary conditions. An
example of a static EM model is given in Fig. 3.

To keep the problem simple it is assumed that no additional
losses are associated with arbitration of the engine on/off state,
gear selection, and clutch engagement. Therefore, when the
engine does not deliver torque it is turned off and declutched
from the wheels. This does not affect the generality of the so-
lution proposed in Section IV, as the method allows inclusion
of dynamic engine on/off, transmission and clutch model. This
is further discussed in Section VII-B.

B. Problem formulation

The optimization objective is formulated to minimize fuel
consumption, by limiting NOX emissions under a certain level∫ tf

0

fNOX
(ωE , TE , z)dt ≤ mNOXmax, (7)

throughout the entire driving mission with duration tf . Then,
the optimization problem can be formulated as follows:

min
g,TE ,z

∫ tf

0

ff (ωE , TE , z)dt, (8a)

subject to:
T = TEr(g)η(g) + TM , (8b)
PB = TMω + PMd(TM , ω), (8c)
ωE = r(g)ω. (8d)
ṁNOX

= fNOX
(ωE , TE , z), (8e)

mNOx ∈ [0,mNOXmax], (8f)
z ∈ Z(ωE , TE), (8g)
ṡ = fs(PB , s), (8h)
s(0) = s(tf ) = s0, (8i)
s ∈ [smin, smax], (8j)
TM ∈ [TMmin(ω), TMmax(ω)], (8k)
TE ∈ [0, TEmax(ωE)], (8l)
ωE ∈ [ωEidle, ωEmax], (8m)
PB ∈ [PBmin, PBmax], (8n)
g ∈ {0, 1, ..., gmax}. (8o)

The NOX constraint (7) has been replaced by equivalent con-
straints (8e) and (8f). There are five time dependent variables,
g, TE and z = [z1 z2 z3]T , and two states, mNOX

and s.
The vectors TM , PB and ωE are removed from the control
signals in (8). These vectors can be directly expressed by
TE , g, and the reference signals T and ω, by simply back-
substituting the equalities (8b)-(8d). The constraint (8i) is
introduced to conserve battery energy at the beginning and
end of the driving cycle. The set Z(ωE , TE) in (8g) is a
feasible set for z, expressed as a function of engine speed and
torque. The remaining constraints are boxing constraints on the
optimization variables, where the EM and ICE torque limits,
(8k) and (8l), are functions of speed. All variables have real
values, except the gear number g, which accepts non-negative
integer values. The constraints are imposed for ∀t ∈ [0, tf ].
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IV. OPTIMIZATION METHOD

A straightforward way to solve (8) is by directly using
dynamic programming (DP). However, a serious limitation of
DP is that the computational time increases exponentially with
the number of state variables [28]. Recall that the optimization
problem (8) has two real-valued states. Solving this problem
with a standard DP implementation will require high com-
putational demands. In order to shorten computational time,
we propose here an alternative solution based on Pontryagin’s
maximum principle, which will eliminate at least one state
from the problem.

A. Problem separability in space

The Hamiltonian of the optimization problem (also known
as Pontryagin’s H function), reads as follows

H(·) = ff (ωE , TE , z)

+ λsfs(PB , s) + λNOX
fNOX

(ωE , TE , z).
(9)

Here, λs and λNOX
are costates of the system, for which it

holds

λ̇∗s = −
(
∂H(·)
∂s

)∗

, λ̇∗NOX
= −

(
∂H(·)
∂mNOX

)∗

= 0, (10)

at any optimal solution (marked by ∗). This is a necessary
condition at any local/global optimum [26], where the above
mentioned derivatives are defined. Hence, the solution of (8)
can also be obtained by minimizing the Hamiltonian, i.e.

min
g,TE ,z

H(·), (11a)

s.t.: (8b)-(8o),

λ̇s = −∂H(·)
∂s

, (11b)

λ̇NOX
= 0. (11c)

The necessary condition (10) reveals that along sections of
the driving mission, where the derivative ∂H(·)/∂mNOX

is
defined, λ∗NOX

is, in fact, a constant value, because H(·) does
not explicitly depend on mNOX

. It is clear that the derivative is
not defined when the constraint (8f) is active. Since mNOX

is
monotonically increasing (in time), the constraint (8f) might be
active only at two time segments, one starting at the beginning
of the driving mission, and one ending at the end of the driving
mission. Hence, if there is at least one time instant in the
remaining time interval (where mNOX

does not lie on the
bounds), it is possible to obtain a single constant value for
λ∗NOX

. (The trivial case where the HEV is operated as a pure
electric vehicle along the entire mission is not of interest in
this study and has been neglected.) Then, obtaining the optimal
value for λNOX

is a straightforward procedure, which will be
detailed later, in Section IV-D.

Now consider the case where the optimal costate λ∗NOX

is given. (Naturally, we also consider a feasible optimization
problem.) The consequence is that the NOX limit (8f) can
be removed from the problem, as the optimal costate must
satisfy this constraint. Without the NOX limits, the NOX state
constraint (8e) is also not needed and can be removed from
the problem. Then, the variables z in (11) are present only

in the objective function (9) and in the constraint (8g). This
allows the problem (11) to be formulated as a bilevel program

min
g,TE

ff (ωE , TE , z
∗) + λsfs(PB , s)

+ λ∗NOX
fNOX

(ωE , TE , z
∗),

(12a)

s.t.: (8b)-(8d), (8h)-(8o), (11b),
z∗ = argmin

z
ff (ω∗

E , T
∗
E , z)

+ λ∗NOX
fNOX

(ω∗
E , T

∗
E , z),

(12b)

s.t.: z ∈ Z(ω∗
E , T

∗
E) (12c)

that can be separated into two tasks, by obtaining z∗ for
any feasible combination of ωE and TE . The upper-level task
optimizes the HEV power-split control, while the lower-level
task optimizes the ICE calibration.

B. Optimal ICE calibration
The lower-level task in (12), i.e. the engine calibration

problem, can be solved independently of the upper-level task,
by optimizing z for any feasible combination of values of the
optimization variables in the upper-level task. Furthermore,
since the engine calibration does not explicitly depend on
gear number, and the gear number is directly related to engine
speed via (3), z can be optimized for feasible combinations
of ωE and TE . Then, the engine calibration problem can be
approached by gridding the feasible sets for z, ωE and TE ,
and solving

f∗z (ωE , TE) = argmin
z

ff (ωE , TE , z)

+ λ∗NOX
fNOX

(ωE , TE , z),
(13a)

s.t.: z ∈ Zd(ωE , TE), (13b)
ωE ∈ WE ⊆ [ωEidle, ωEmax] ⊆ Rn, (13c)
TE ∈ TE(ωE) ⊆ Rm, (13d)

where the sets Zd, WE and TE are discrete. Here,
f∗z (ωE , TE) ∈ Rn×m×3 is a three-dimensional map, illus-
trated in Fig. 4, holding the optimal set points of z for
all speed/torque combinations. As a consequence, the five-
dimensional fuel and NOX maps can be replaced with the
two-dimensional maps

f̃f (ωE , TE) = ff (ωE , TE , f
∗
z (ωE , TE)), (14)

f̃NOX
(ωE , TE) = fNOX

(ωE , TE , f
∗
z (ωE , TE)), (15)

which are calibrated with the optimal set points for z. The
map (14) is used in the power-split optimization problem, to
be explained in Section IV-C, for obtaining the optimal engine
speed and torque trajectories ω∗

E and T ∗
E . The optimal engine

settings are here obtained as a function of engine speed and
torque, but, if needed, they can also be obtained as explicit
functions of time, z∗ = f∗z (ω∗

E , T
∗
E), as originally stated in

(8). For speed/torque points that are not in the discrete sets
WE and TE , z∗ can be obtained by interpolation in f∗z .

The maps f̃f (ωE , TE) and f̃NOX
(ωE , TE) are calibrated

optimally, only when the optimal costate λ∗NOX
is given. For

any different value λNOX
, the problem (13) will generate

suboptimal maps. The optimization framework for obtaining
λ∗NOX

is described in Section IV-D.
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Fig. 4. Illustration of the map f∗z (ωE , TE) holding the optimal engine
calibration points for grid values of engine speed and torque.

C. Optimal power-split control

After the engine is calibrated, the power-split control prob-
lem is solved by minimizing the Hamiltonian (11), or the
primal problem (8), without considering constraints associated
to z. A problem formulation based on (8) can be written as

min
g,TE

∫ tf

0

f̃f (ωE , TE)dt,

s.t.: (8b)-(8d), (8h)-(8o).
(16)

Bellman’s principle of optimality can be applied for solving
the problem via backwards recursion, in a standard DP for-
mulation [28]. Denoting with J∗

DP (s(tk), tk) the cost matrix
holding the optimal cost-to-go from state s(tk) at time tk to
the desired final state at time tf , the optimization problem, at
a time instance tk, can be formulated as

J∗
DP (s(tk), tk)

= min
g(tk),TE(tk)

{
f̃f (ωE(tk), TE(tk))∆t

+ J∗
DP (s(tk+1), tk+1)

}
,

s.t.: (8b)-(8d), (8k), (8m)-(8o) at tk,
s(tk+1)− s(tk) = fs(PB(tk), s(tk))∆t

s(tk) ∈ S ⊆ [smin, smax]

TE(tk) ∈ TE(ωE(tk))

tk ∈ T ⊆ [0, tf ].

(17)

Discrete values are used for time, battery SOC and ICE
torque, and the SOC derivative is replaced with a difference.
The grid resolution of the discrete sets, T , S and TE , is
a tradeoff between computational time and accuracy. The
sampling interval is denoted by ∆t.

The cost at the final time is a penalty for violating the
battery charge sustaining constraint. A typical choice, used
later in Section VI, is a linear penalty function

J∗
DP (s(tf ), tf ) = L · |s(tf )− s0| (18)

where L is a large positive number.

D. Optimization framework

Finally, we present an algorithm for obtaining the optimal
solution of (8). The procedure is based on iteratively calibrat-
ing the ICE and solving the power-split control problem for

Fig. 5. Optimization framework for ICE calibration in a hybrid electric
vehicle. The ICE calibration is an iterative procedure, where iterations are
needed for obtaining the optimal costate that weights the tradeoff between
fuel consumption and emissions.

several values of λNOX
, until the optimal λ∗NOX

is attained.
The set of steps to be performed is illustrated in Fig. 5 and
line up as follows: for an initial guess of λNOX

the ICE
is calibrated by solving (13) and the two-dimensional maps
f̃NOX

(ωE , TE) and f̃f (ωE , TE) are obtained. The latter map
is used in the DP problem (17), to obtain the optimal engine
speed and torque trajectories. Then, using the optimal trajec-
tories the NOX emission and fuel consumption are computed.
This procedure is repeated for several values of λNOX

and
the solution is kept that gives the lowest fuel consumption
that does not violate the NOX limit (8f).

There are several ways to obtain λ∗NOX
. A straightfor-

ward way is to grid the set of costate values and evaluate
the algorithm for each discrete value. The costate is non-
negative, while an approximate upper bound can be found
by minimizing NOX emissions for any feasible z, or by
engineering intuition. A more efficient way to obtain the
optimal costate is to use the contradictive nature of the
two objectives; that is, higher penalty for NOX emissions
leads to increased fuel consumption. Therefore, a monotonic
dependence of fuel consumption on λNOX

can be expected;
this has also been observed in the example in Section VI.
The monotonic behavior can be exploited to efficiently obtain
λ∗NOX

by a root finding algorithm, e.g. bisection.

V. COMPUTATIONALLY EFFICIENT SOLUTIONS

A heavy computational burden in the engine calibration
framework is the iterative solutions of the DP problem (17).
In this section we propose solutions that require fewer power-
split optimizations, or replace the power-split control with a
time efficient alternative.

A. Reversed bilevel program
Consider the bilevel program (12), where the lower-level

task is moved to the upper level, and the upper-level task is
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Fig. 6. Optimization framework for computationally efficient ICE calibration
in a hybrid electric vehicle. The power-split control is taken outside the inner
ICE calibration loop. The procedure requires fewer power-split optimizations,
but it may deliver a local optimum.

moved to the lower level. The resulting bilevel program

min
z
ff (ω∗

E , T
∗
E , z) + λ∗NOX

fNOX
(ω∗

E , T
∗
E , z), (19a)

s.t.: z ∈ Z(ω∗
E , T

∗
E), (19b)

ω∗
E = r(g∗)ω, (19c)

[g∗, T ∗
E ] = argmin

g,TE

ff (ωE , TE , z
∗) + λsfs(PB , s) (19d)

s.t.: (8b)-(8d), (8h)-(8o), (11b),

is not easily separable in space, as it would require solving
the power-split problem for all feasible combinations of z.
Instead, this formulation is used as a starting point for a
computationally efficient, locally-optimal solution.

A computationally efficient strategy can be devised by
assuming that a map fz0(ωE , TE) is given, which is, prefer-
ably, in the neighbourhood of f∗z (ωE , TE). Then, the map
f̃f0(ωE , TE) is obtained from (14) and the power-split control
in the lower level task in (19) [or equivalently (16)] delivers the
representative points ω∗

E0, T ∗
E0. The representative points are

used for recalibrating the ICE, giving new maps f̃f1(ωE , TE),
f̃NOX1(ωE , TE). The difference from the optimization frame-
work in Fig. 5 is that the power-split problem is moved outside
the loop for obtaining f̃f1(ωE , TE), f̃NOX1(ωE , TE), where
iterations over λNOX

are performed.
The procedure repeats until convergence, or maximum num-

ber of iterations is reached. The advantage of this strategy is
that fewer power-split optimizations might be required. The
disadvantage is that the solution may not converge to the global
optimum, as there is no easy way to choose fz0(ωE , TE)
sufficiently close to f∗z (ωE , TE).

A flowchart of the optimization framework is presented in
Fig. 6.

B. Problem separability in time
The power-split control problem has been widely studied in

literature, both for assessment of performance, and for realtime
model predictive control of HEVs. In this section a computa-
tionally efficient power-split control is briefly discussed. In a
general case this solution is suboptimal, although an optimal
result could be achieved in special cases.

A well known time efficient power-split control that has
been observed to give near optimal results is the ECMS [2],
[44], [45]. The basic assumption behind ECMS is that the
optimal battery SOC costate λ∗s does not vary significantly
from a certain reference value (typically constant), which
could be obtained with connection to the typical daily usage
of the vehicle. Operating with the reference costate may cause
violation of the battery SOC limits, and therefore λs is allowed
to deviate from the reference as the battery SOC gets close to
the limits. Typical approach is to control λs with some sort of
closed loop controller [46], [47], [48].

A special case of the ECMS is a power-split control of a
vehicle with a large battery, where the battery SOC limits are
not activated at any time instant along the driving cycle. Then,
the obtained solution is indeed optimal, if an initial λ∗s0 can
be found, for which the optimal solution of (11) satisfies the
charge sustaining constraint (8i), without activating the SOC
limits (8j). As it turns out, the scenario where SOC limits
are not activated is a typical case in the energy management
of HEVs (see e.g. [1], [2] and references therein). Then, the
power-split control problem

[g∗ T ∗
E ] = argmin

g,TE

f̃f (ωE , TE) + λsfs(PB , s),

s.t.: (8b)-(8d), (8h), (8k)-(8o), (11b),
λs(0) = λ∗s0,

(20)

becomes separable in time. This means that the optimal control
signals g∗(tk), T ∗

E(tk), at some time instant tk, can be obtained
by instantaneous optimization of (20), considering only the
single time instant t = tk. This is a direct consequence
from the removal of the SOC limits and the charge sustaining
constraint. The optimal solution can be obtained in a forward
simulation manner. First, for the given λ∗s0, the optimal con-
trols g∗(0), T ∗

E(0) are obtained by solving (20) at t = 0. At
the same time, both the battery state and costate are integrated,
thus obtaining s∗(t1) and λ∗s(t1), at the next time instant t1.
Then, the optimal control signals g∗(t1), T ∗

E(t1) are obtained
by solving (20) at t = t1. The procedure repeats until t = tf
is reached.

The challenge in this strategy is obtaining λ∗s0 that satisfies
the SOC sustaining constraint (8i). The method is similar to
the one obtaining λ∗NOX

. The power-split problem (20) is
iteratively solved for different values of λs0, where in each
iteration the optimal control is obtained for all time instances.
The procedure stops when s(tf ) is close to s0. Bisection can
also be applied for obtaining a new value for λs0.

The optimization framework of the power-split control
based on the ECMS is illustrated in Fig. 7. This power-split
control can be used in combination with the global optimiza-
tion framework depicted in Fig. 5, and in the framework for
computationally efficient ICE calibration depicted in Fig. 6.
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Fig. 7. Optimization framework for computationally efficient power-split
control of a hybrid electric vehicle, based on the Equivalent Consumption
Minimization Strategy (ECMS). The optimization is iterative, where iterations
are needed for obtaining the optimal initial value for the battery SOC costate.

VI. OPTIMIZATION EXAMPLE

This section provides an optimization example of ICE cali-
bration and power-split control of a through-the-road parallel
HEV. We consider a vehicle with 60 kW Diesel ICE and
±50 kW EM, as illustrated in Fig. 3. The five-dimensional
ICE’s fuel and NOX flow maps are obtained using steady-
state measurements. The Lithium-ion battery is modeled by
constant open circuit voltage and resistance. Its available
energy is 464 Wh, which is half of its total capacity; to
mitigate battery wear the battery is operated within 25-75 %
SOC. We require the initial and final SOC of the battery to
be 50 %. Emission levels are assessed using both the New
European Driving Cycle (NEDC), and the USA’s Federal Test
Procedure1 (FTP75). The vehicle is required to emit not more
than 0.18 g/km NOX on the NEDC, which corresponds to Euro
V targets on NOX emissions. For simplicity, the same level of
0.18 g/km is kept for FTP75.

A. Computational performance

The optimization problem is solved using the framework
illustrated in Fig. 5, where the power-split control is optimized
by the ECMS, using 300 discrete points for the ICE torque.
Without considering discretization error, the ECMS result is
optimal, since the optimal battery SOC does not activate
SOC limits, and the optimal SOC costate can be found that
satisfies the SOC charge sustaining constraint. The satisfaction
of the battery SOC constraints can be observed in Fig. 9.
Furthermore, since the battery is modeled by a constant open
circuit voltage and resistance, it follows from the necessary
condition

λ̇∗s = −
(
∂H(·)
∂s

)∗

= 0 (21)

that the optimal SOC costate is a constant scalar value, since
H(·) does not explicitly depend on s. The dependence of
SOC costate on NOX costate, i.e. the dependence of Diesel
consumption on NOX emissions, is shown in Fig. 8, for
different values of the difference s(tf )− s0.

1The driving cycles, NEDC and FTP75, are available online at
http://www.dieselnet.com/standards/cycles. May 2014.
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Fig. 8. Diesel consumption vs. NOX emissions for various deviations from
the desired final SOC. The left plot is a contour plot, while the right plot shows
an alternative view, a surface plot, of the influence of NOX and SOC costates
on deviation from the desired final SOC. The optimal result is indicated by
the star.

TABLE I
DIESEL CONSUMPTION AND NOX EMISSIONS FOR THE CONVENTIONAL
VEHICLE, THE HEV WITH ICE CALIBRATED FOR THE CONVENTIONAL

VEHICLE, AND THE HEV WITH THE OPTIMALLY CALIBRATED ICE.

NEDC FTP75
Quantity [g] Diesel NOX Diesel NOX

Conventional vehicle 276.67 1.97 473.17 3.20
HEV (conventional ICE) 202.38 1.25 301.81 2.16
HEV (recalibrated ICE) 201.13 1.97 299.92 3.19

NOX limit 1.97 3.20

The number of investigated costate values depends on the
the desired accuracy and initial knowledge of the interval in
which the optimal costates reside. An engineering estimate
is that not more than 40 × 40 iterations are needed until
the optimal solution is obtained with a relative error of less
than 0.01 % in both fuel consumption and SOC sustenance
(the measurement and discretization errors, for example, are
expected to be larger). The entire problem is solved in less
than 100 minutes, on a standard PC (4 GB RAM, 2.67 GHz
dual core CPU). The computational time can be reduced if
the optimal battery SOC costate, once obtained, is used as a
starting point in succeeding iterations.

The power-split control problem is also solved using DP. For
this, the feasible SOC and ICE torque ranges are gridded with
200 and 300 points, respectively. The required optimization
time of DP is much larger, 8 to 12 hours, while the solution’s
accuracy is lower than the accuracy of ECMS’s solution, due
to the discretization in both SOC and engine torque that DP
requires. Therefore, in the rest of this section we show results
obtained by using ECMS for the power-split control problem.

B. Optimization results

Minimization of fuel consumption is carried out in three
different case studies. First, a conventional vehicle is consid-
ered and the ICE is calibrated to minimize fuel consumption
on the driving cycle. Second, the conventional vehicle is
converted to an HEV by mounting the EM on the rear axle.
Fuel consumption is minimized by splitting the power between
ICE and EM, but still using the same ICE calibration as for
the conventional vehicle. Third, the ICE is recalibrated with
representative operating points of the HEV.
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Fig. 9. The subplots, from top to bottom, depict demanded velocity of the driving cycle and simulation results including the optimal cumulated fuel
consumption, NOX emissions, and battery SOC. The optimal fuel consumption and SOC trajectories nearly overlap, for the HEV with ICE calibrated for a
conventional vehicle, and the HEV with optimally calibrated ICE.

The optimal fuel consumption and NOX emissions are
shown in Table I and the optimal states’ evolution is depicted
in Fig. 9. It can be observed that by recalibrating the ICE
using the optimal representative operating points of the HEV,
fuel consumption can be decreased by 0.62 % for NEDC, and
0.63 % for FTP75, by still keeping the NOX emissions under
the legislative limit.

The optimal ICE efficiency and NOX maps are shown in
Fig. 10. The figure also depicts the optimal operating points
of the conventional vehicle and the HEV. It can be observed
that the HEV avoids engine operation at low torque, where
the engine is less efficient. The percentage of total cycle time
the engine is on in the HEV is 19.9 % on the NEDC and
19 % on the FTP75, for both cases of engine calibration. The
average engine efficiency, when the engine delivers power on
the NEDC, increased from 37.77 % to 38.5 %, by recalibrating
the ICE in the HEV. On the FTP75, the engine efficiency
increased from 38.53 % to 38.97 %.

The complete speed/torque grid used for the calibration of
the fuel and NOX flow maps is illustrated in the right subplots
of Fig. 10, with the shaded regions depicting the representative
grid points of the driving cycles. Coincidentally, the engine
operating points of the HEV, regarding the shaded regions,
are distributed similarly to engine operating points of the
conventional vehicle. Therefore, the recalibration only slightly
enlarged the high efficiency area towards greater torque values,
but besides this, the engine efficiency maps are similar.

The engine maps shown in Fig. 10 are calibrated in their
entire range, although the engine operating points do not
excite the entire operating range of the engine. The optimal

calibration procedure makes this possible, due to the single
coefficient λ∗NOX

that weights fuel consumption and emissions
in the entire engine range. However, engine operating points
that are not excited by the driving cycle, could be further tuned
(perhaps manually), without having any impact on the net fuel
consumption and emissions for that driving cycle.

The optimization problem is also solved by using the
computationally efficient strategy described in Section V-A.
As initial maps in the algorithm, the maps are used that
are calibrated for the conventional vehicle. The algorithm
converged in just two iterations, requiring only two power-
split optimizations. This outcome was also revealed in Fig.
9, where it can be observed that the last two case studies
have nearly the same optimal SOC trajectories regardless of
whether the ICE is calibrated for a conventional vehicle, or
for the HEV. The result is obtained in less than 4 minutes and
is exactly the same as the optimal result of the last case study
in Table I.

VII. DISCUSSION AND FUTURE WORK

This section discusses the process of ICE data gathering,
the possibility of powertrain model enhancement and future
studies.

A. ICE data gathering and calibration

The generation of the static ICE fuel and NOX flow maps
may require a large number of measurements due to the
many combinations of input values. To limit the number of
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(a) ICE maps calibrated for the conventional vehicle on the NEDC.
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(b) ICE maps calibrated for the conventional vehicle on the FTP75.
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(c) ICE maps calibrated for the HEV on the NEDC.
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(d) ICE maps calibrated for the HEV on the FTP75.

Fig. 10. Optimal ICE efficiency map and NOX map, at the left and right subplot of each sub-figure, respectively. The optimal ICE operating points are
depicted by stars. The NOX map also illustrates the complete grid of speed/torque points used for the engine calibration. The shaded regions indicate the
representative grid points at which the ICE is operated for the selected driving cycle.

measurements, the ICE was operated at 2596 input combina-
tions, found according to the D-optimal design methodology
[49]. The collected data was fitted to models describing boost
pressure, oxygen fraction in the intake manifold, engine torque
and NOX emissions, as functions of engine speed, injected fuel
and z (see [50], [51], [52] for details). The maps were then
enlarged to 10 × 17 × 30 × 30 × 30 grid points using linear
interpolation, and the torque map was inverted to get torque
as input, rather than fuel flow.

In order to obtain more informative data for the limited
amount of measurements, ICE operation at high speed and
torque was not considered, but the focus was kept on the
region where the studied driving cycles reside. The performed
measurements covered only part of the available speed and
torque range of a Volvo 2.4 liter passenger car Diesel engine
(with actual maximum speed of 4700 rpm). This, however,
does not infringe the generality of the proposed method.
Utilization of the entire available speed and torque range shall
be considered in future studies.

B. Enhanced modeling and future studies

In this study, we considered a relatively simple powertrain
model, thus emphasizing the optimization methodology. How-
ever, the proposed method can readily be applied to more de-
tailed powertrain models, including auxiliary losses, rotational
inertia of the ICE and EM, and more detailed transmission and
clutch models. Dynamic ICE start/stop, clutch and gearbox

models are also possible when, for example, changes in dis-
crete states are penalized. This will increase the computational
complexity of DP when optimizing the power-split control,
as additional states will be needed for the ICE on/off, clutch
and transmission gear [53]. The proposed method may also
employ stochastically generated driving cycles [24], applied
to both HEVs and plug-in HEVs.

Constraints on other emissions, such as soot, hydrocar-
bon, carbon monoxide, and combustion noise, may also be
considered. This will necessitate additional costates, which
will increase the computational complexity [19], but the op-
timization method will otherwise be the same. Implementing
engine thermal dynamics and transient modeling, e.g. boost
pressure dynamics, is a more challenging task that shall
be considered in future studies. Experimental validation of
improvements from the ICE recalibration is a major topic to
be also considered in future studies.

VIII. CONCLUSION

A method is presented for combined optimization of ICE
management settings and power-split control of a hybrid
electric vehicle. It is shown that the optimization problem is
separable in space, while in the case where battery SOC limits
are not activated, it is also shown that the problem is separable
in time. The optimal solution is obtained by iteratively solving
the power-split control problem using dynamic programming
or the ECMS. A computationally efficient solution is pre-
sented, which for the studied example managed to achieve the
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TABLE II
PARAMETER VALUES.

Vehicle frontal area Af = 2.4 m2

Aerodynamic drag coefficient cd = 0.36
Rolling resistance coefficient cr = 0.012
Air density ρa = 1.184 kg/m3

Wheel radius rw = 0.38 m
Vehicle rotational inertia Iv = 1.2 kgm2

u = 160 V, PBmax = 20 kW, PBmin = −36 kW, R = 0.26 Ω,
r(g = 1, ..., 6) = {16.8, 9.6, 6.3, 4.7, 3.5, 2.7},
η(g = 1, ..., 5) = 92.15 %, η(g = 6) = 93.1 %.

global optimum 25x faster (i.e. 100 min/4 min) than the time
needed for the full optimization, when ECMS is used for the
power-split control. The speedup is 120x (i.e. 8 h/4 min), when
DP is used for power-split control in the full optimization.

The provided example considers optimization of engine
management settings and power-split control of a parallel
HEV, driven on the NEDC and FTP75. It is found that by
recalibrating the engine a fuel improvement can be achieved
of about 0.62 %, by still keeping the NOX emissions under the
legislative limit. In a real vehicle the fuel improvement may
differ due to dynamics that have been omitted in the simulation
model. However, it is important to note that although small, the
fuel improvement can be achieved with almost no additional
investment cost, in contrast to the cost of electric components
in the HEV.

After recalibration, all the HEV components are for sure
on-board diagnosis relevant; before they may not have been
since it was the calibration for the conventional vehicle. In
a more general case the ICE may not be first calibrated
for a conventional vehicle, but, instead, it may be calibrated
directly for the HEV (consider heavily downsized ICE, or ICE
designed specifically for the HEV). In this case, the method
provides an automated way to perform ICE calibration for the
hybrid application.

APPENDIX A
DATA AND MODELING

Given the longitudinal vehicle velocity v and road gradient
α, the dissipative forces the vehicle encounters are the aero-
dynamic drag and the rolling resistance

Fa =
ρaAfcd

2
v2, Fr = mgcr cosα. (22)

Then, the demanded angular velocity and torque at the wheels
are

ω =
v

rw
(23)

T = (Iv +mr2w)ω̇ + (Fa + Fr +mg sinα)rw. (24)

Here, m is the vehicle mass, which is 2000 kg for the con-
ventional vehicle and 2340 kg for the HEV. The remaining
parameters are given in Table II.
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