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Abstract—The Characteristic Basis Function Method (CBFM)
is applied to rapidly compute the impedance and radiation
characteristics of electrically large aperture-fed antenna arrays.
A stationary formula for the antenna input admittance matrix is
expressed in terms of a product of matrix blocks that are readily
available from a method of moment formulation. Numerical re-
sults are shown for large arrays of waveguide antennas requiring
more than 2 million basis functions, which is reduced by a factor
of 9000, so that the solution for the currents are still obtainable
in-core on a single desktop computer, while being orders faster
than commercial software codes or a standard MoM approach,
provided that sufficient memory is available for the Gaussian
elimination.

Index Terms—phased array antennas, far-field pattern, method
of moments.

I. INTRODUCTION

In this paper, the Characteristic Basis Function Method
(CBEM, [1], [2]) is formulated first and then applied to obtain
a fast solution of the radiation and impedance characteristics of
aperture-fed antenna arrays that are typically being considered
as next generation satellite communication antenna systems.
Ultimately, the latter involves the design of optimally sparse
aperiodic aperture antenna arrays in conjunction with sophis-
ticated beamforming algorithms.

In Sec. II the basic antenna configuration and the voltage
excitation sources are described, an electric field integral equa-
tion (EFIE) is formulated and discretized using the method
of moments, and the input admittance matrix is computed
using a stationary formula. The CBFM-enhanced MoM is
discussed in Sec. III, which allows to compute the impedance
and radiation characteristics of the antenna array in a time-
efficient manner. Sec. IV describes the numerical results for
a very large aperture antenna array of open-ended waveguide
elements.

II. MATHEMATICAL FORMULATION

Consider the aperture-fed array antenna as shown in
Fig. 1(a), where only two antenna elements are visualized
for simplicity. The antennas are excited by electric field
distributions pertaining to the modes in the waveguides feeding
the antennas. The apertures are positioned over an infinitely-
large perfectly-conducting (PEC) ground plane. The antenna
conductors may be lossy.

According to the surface equivalence principle, the electri-
cally thin antenna conductor can be replaced by an equivalent
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Fig. 1. (a) Original antenna configuration. (b) and (c), equivalent antenna
array configurations: in (b) antenna 1 transmits, while other ports are short-
circuited; in (c) antenna 2 transmits, while other ports are short-circuited. The
original situation is the superposition of the equivalent situations (b) and (c).
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electric current sheet. Also, since we are only interested
in the field in the upper half space, we will assume that
E = H = 0 below the ground plane and then fill it with PEC
material. On account of the boundary conditions, the aperture
electric fields must then be replaced by a compensating source
magnetic current placed just above the infinite ground plane. In
Figs. 1(b) and (c) we consider the situations 1 and 2, where the
equivalent electric surface current J; arises if M ; is switched
on, while My = 0, whereas J, arises if M, is switched
on, while M; = 0. Note that the equivalent electric currents
J 1,2y are supported by the entire conductor surface .S, and
that the source magnetic currents M (; o1 = E; 5y Xfi, where
7y is the unit normal vector as indicated in Fig. 1.

One of the objectives is to compute the antenna input
admittance matrix. For instance, the mutual admittance Y5;
between the short-circuited aperture 2, and the source aperture
1, is given by [3, Eq. (42)]

1

Yor = —
21 V1‘/2

/ M, -H{dS (D)
Sa

where V7 and V; are the amplitudes of the voltage excitation
sources, and Sy is the surface area of aperture 2. Note that



the total magnetic field is generated by both the electric and
magnetic surface currents, i.e., H1(J1, M1).

The radiated fields in Figs 1(b) and (c) can be computed
once the source currents J and M are known, i.e., E(J, M),
and H(J, M). The fields from sources and the determination
of J through a method-of-moment (MoM) approach is dis-
cussed below.

A. The Method of Moment Formulation

To compute the fields from sources in the presence of a
PEC ground plane, the image principle is invoked, so that
the free-space Green’s function can be used for computing
the fields from currents and their mirrored counterparts. For
the impressed current sources M and J, the electric and
magnetic fields tangential to the current supporting surfaces
can be computed in free space as

nn x M

Eun(J, M) = [£(D) ~K(M)] -~

tan

5 (2)
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Hold, M) = [K(7) + (M)] + (2b)
Un)

tan
for 7 € R®, and where 7 is the free-space wave impedance.
Here, the operators are defined as

£0X) = ~jeno || X0
S

jjﬁov!/ v’ X (r)G(

X)= !/X(T/) x V'G(r—r')ds’

where G = exp(—jkoR)/(4mR) is the free-space Green’s
function, R = |r — 7’|, and the wavenumber ko = w,/LoEo.

In our problem [c¢f. Fig. 1 and Eq. (1)], the electric field
E(r) will not be observed at the support of the magnetic
current M. Furthermore, H (r) will not be observed at the
support of J, so that the terms 4 X M /2 and fi x J/2 in
Eq. (2) will not be considered any longer.

To compute an element of the antenna input admittance
matrix [see e.g. Yo; in Eq. (1)], we first express the magnetic
field H as a superposition of the incident and scattered
magnetic fields, that is, H = H'(M) + H*(J). As opposed
to M, the current J is not known a priori but can be
found by solving an Electric Field Integral Equation (EFIE)
at the antenna conductor surface S. Toward this end, we first
impose that the tangential components of the total electric
field E = E'(M) + E°(J) at S must satisfy the Impedance
Boundary Condition (IBC)

G(r —r')dS'+

r—r')dV’

(3a)

(3b)

Elwn = ZsJ “)
where Zg is the surface sheet impedance. For good conductors
of thickness d, one can use that [4]

-

203 tan((1 = )d/(20)) ®)

Zs =

where the skin depth § = /2/wpgo. From (2a), we conclude
that E},,(M) = —K(M)|,, and that E}, (J) = L(J)|,,, 50
that J can be found from (4) by solving the EFIE

‘C(J)ltan - )‘tan' (6)

Next, we expand the electric current J into N (/] vector basis
[J] .
functions { f[‘] }n 1» and the magnetic current M into the set
[M] .
of NI™MI vector basis functions {f [M]}N ie.,

n=1 »
NI
)= X 15
n=1

where {I,[{]]} and {VJM]} are the associated set of expansion
coefficients. Following Galerkin’s moment method, we test
the EFIE in (6) N/ times through the symmetric product
(a,b) = [[a-bdS to yield the matrix equation zNYT =
V[J], where the elements of the NI/I x NI/ complex sym-
metric matrix ZI”*’) and the NI/] x 1 excitation vector V!”]
are computed numerically as

|lan’

ZsJ = K(M

ZV[M M@y ()

Z = (FE e = Zs £ (8a)
NIM]
Vill==% ey (8b)
n=1
for m = 1,2,..., NI, and where we defined the elements

of the NIV x NIM coupling matrix C"M as CLiM =
—(£U K (£IM))). For the singular case, i.e. when an observa-
tion and source point coincides, special numerical integration
routines are used [5]. Note that the elements in the expansion
coefficient vector VI™ are known and fixed as they model the
impressed magnetic current associated to a field mode at the
port.

B. Antenna Input Admittance Matrix

After solving 1/l (Z[J’J])_lv[‘”, the antenna input
admittance Y5; between the ports 2 and 1 [¢f. Eq. (1)] can be
computed. For this purpose, we use that H, = H'(M,) +
H*(J,), and Egs. (1) and (2b), to obtain

L / LMy £(M) + M K(J1)dS. (9)
ES 770
Eq. (9) can be further evaluated by using the expansions in (7),
to yield
NIMI (] 1
20 (s )]
m=1 n=1

NIM] N

o33 [ (s k) )]

m=1 n=1

(10)

which can be compactly written in matrix-vector form, that is,

Yo, = — (V[M]> {Y[M,M]V[lM]+C[M,J]I[1J]} (11)

V1V2



where we have used that Y, = 0_2(‘1"%/[], L(fM)), and
that CIA%7 = = (fIM (£, s0 that CMIT = —(C[J’M])T,
since testing H (J) with M is a minus sign different from
testing E(M) with J [see Eq. (2)]. Furthermore, IVl =
(7T and W = —cPMIVIM [gee Eq. (8b)].
Hence, (11) can also be written as

L (i [y

Y =
AT
M) (Z[J,JJ)’l C[J,M]] vl (1)

Eq. (12) consists of two contributions: (i) H i(M 1) that is
generated by the source magnetic current M which is tested
by the source magnetic current Mo, and; (ii) H®(J1(M))
that is generated by the same source magnetic current M
which, in turn, induces an electrical current J; that gives rise

to a scattered magnetic field H*(J) which is also tested by
M.

C. Antenna Radiation Pattern
The normalized far-field functions { Egy, Hy }, observed at
the surface of a sphere, for R — oo, can be computed with
the aid of (2), i.e.,
Efar(97 ¢) = £OO(J) - ICOC(M)
Hfar(ea ¢) =7 X Efar/nO

where we have defined the far-field operators L., and K,
for observation points on the far-field sphere, as

(13a)
(13b)

Loo(X)(0,0) = RIL(X)(r), R— o0 (14a)
Koo (X)(0,¢) = RFELC(X)(r), R —o00.  (14b)
In terms of the basis functions, i.e. by using Eq. (7),
N[I M]
Epy = Z 1L (£ - Z VIMIK (£ as)
N[J NIM]
— ZI[J Z V[M]g[M] (16)

n=1
where the electrlc far-field functions of the basis function
currents g1, (6, ¢) = Loo (1) and gi") (0, ¢) = Koo (£1M).
Note that, with the above definitions, the time-average total
radiated power Pq is defined as Poq = 1/2%Re [[ 5. Brar X
H3 dQ, where the solid angle d2 = sin(6) df d¢.

III. THE CHARACTERISTIC BASIS FUNCTION METHOD

In this paper, the CBFM is ap hed to reduce the size of the
moment matrix equation zN = yl] [¢f also Eq. (8a)].
Following the CBFM for antenna array problems [6], the array
of N, antenna elements is subdivided into N, subdomains
to contain one antenna element per subdomain. We employ

(1
the KI[,J] Characteristic Basis Functions (CBFs) {JCBF}f 1
for the electric current on the pth subdomain, where p =
1,2,..., Ng. The sth CBF JCBF on the pth subdomain is,

i

in turn, expanded into the N,”' lower-level basis functions

NI . . .
{ fL‘{]Z) n—y for the electric current on the pth subdomain with
fixed expansion coefficients {I,, 5 s}, i.e.,

NI
T = Z Lps fY) (17)
Hence, the total electric current J is expanded as
Na K} Nt
J= Z Z IC]zF JCBF Z I€BF JgBF (18)

p=1 s=1 n=1

where {IS%F}, or {IFPF}, are the N) unknown expansion
coefficients for the CBFs associated to the electric current.
It can be shown that, when employing (18) to discretize the
EFIE in (6), the following reduced moment matrix equation
is obtained:

Gz | [ [
el T

%, 2070, TP Yo B L I (TR

(19)

where ZL‘Z’J] is the moment matrix block pertaining to the
lower-order basis functions on the observation subdomain p
and source subdomain ¢, and VI[DJ] is the excitation coefficient

vector for the N;[,J] lower-order basis functions { fﬂ)} on the
pth subdomain for the electric current. The matrix |, is of size
N,[,J] x K, I[,J], where the sth column of |, represents the sth CBF
for the electric current on the pth subdomain in accordance
with (17). The reduced moment matrix ZE‘:&‘I] in the reduced

LEINCBE — vyl in (19) is of size NLIL x

matrix equation Z rod

N

As opposed to I°BF . the expansion coefficients in (17)
are predetermined and then fixed to prescribe each CBF. To
generate these fixed expansion coefficient vectors, we solve
for several currents on a single antenna element in a smaller
subarray, for example by exciting the subarray elements one-
by-one. The so-induced currents on the pth subdomain are
then used as CBFs, whose expansion coefficient vectors form
the columns of 1,. A detailed description on the herein
applied CBF generation procedure can be found in [7], where
the problem of electrically interconnected subdomains and
partially overlapping CBFs is discussed in [8]. It is pointed
out that the number of basis functions is reduced through
the application of the Singular Value Decomposition (SVD)
with an appropriate thresholding procedure on the singular
values [9], and that the Adaptive Cross Approximation (ACA)
algorithm is invoked to rapidly construct Zr;]d [7].

[‘] JI|CBF _ ijd in (19) has been

solved, the current J = ), ¢ C"* ICBF JCBF can be computed.
One can also expand the magnetlc current in term of CBFs,

M =3¢ C‘“ VCBEAMCBE to model each waveguide mode.
Analogously to the denvatlon for (12), when employing CBFs
for the electric and magnetic currents, it can be shown that the

Once the matrix equation Z;



mutual admittance Y1, between the gth waveguide mode at
port 1 and the pth waveguide mode at port 2 is computed as

1 cBEp\ T [ [M,M
Y2;qu = quv'2p (V2 P) |:Y£ed ]
M,J 2,01\ Y A[7,M] | \,CBF,
_Cled } (Zr[ed ]) CEed : vl I (20)
where ZE'JAJ], YE?g’M], Cg\g"ﬂ, and Cr[g(;M] are the reduced

matrices instead, along with the CBF expansion coefficient
vectors V?BF’p and VfBF’q for the corresponding magnetic
currents (i.e. waveguide modes) and ports. The corresponding
mode excitation voltages are V" and V.

Finally, the far-field function E¥, in (15) can be expressed
. CBF,[J] CBF,[M]
in terms of the CBF patterns g, and g,

s 1Ly

NI LM

CBF CBF
CBF _CBF,[M]
Vo gy :

B =) IPgP - 1)
n=1

n=1

Note that, for array antennas with identical antenna elements,
some of the subdomains support identical sets of CBFs,
so that the corresponding sets of CBF-patterns differ only
by the phase factor exp(jkoryq - #(0,$)), where r,, is the
relative offset vector between the subdomains p and ¢, and
7 = sin(0) cos(¢)& + sin(f) sin(¢)G + cos(9) 2.

IV. NUMERICAL RESULTS

The CBFM computations have been carried out on a 64 bit
(x86-64) Linux — openSUSE (v.12.3) server equipped with 2
Intel Xeon E5640 CPUs operating at 2.67 GHz (each CPU
has 4 cores/8 threads), with access to 144 GB RAM memory
and 2 TB harddisk space.

For the numerical computations, an open-ended corrugated
circular waveguide antenna element as classified by RUAG
Space (Sweden) has been used as depicted in Fig. 2(a). The
element is excited by the fundamental TE;; mode. The result-
ing E- and H-plane gain patterns (@ 18.3 GHz) are shown in
Fig. 2(b) and are in good agreement with the simulation results
obtained by the FEKO software (less than 1% rel. error).

Voltage gain patterns
at f=18.3GHz

Magnitude of Average Current Distribution
[dBA/m or dBV/m]

49.9661 5

30.3593
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Fig. 2. (a) Magnitude of current distribution (@18.3 GHz) of a TE;1-mode
excited open-ended corrugated circular waveguide. (b) Comparison of E- and
H-plane gain patterns with the FEKO simulation software.

-0.02 -0.02 x [m]

Next, an identically meshed waveguide antenna element is
applied in a large array of 317 elements, each employing 9030
Rao-Wilton-Glisson basis functions for the electric current,
and 189 RWGs for the waveport magnetic current, i.e., in total
2,922,423 RWGs. The diameter of the array at 18.3 GHz is ~
45\. Primary and secondary CBFs are generated as explained

49.9661

Magnitude of Average Current Distribution
[dBA/m or dBV/m]

21.2547

1-7.4566

1-36.1679

-64.8793

-93.5906

Fig. 3. Magnitude of current distribution (@18.3 GHz) of a 317 Element
array of open-ended corrugated circular waveguides. Center element excited,
surrounding elements short-circuited.

in [1] for a radius of 4\, however, along with a typical SVD
threshold of 102, only a single CBF is retained per element
out of the 9 that were initially generated. Hence, only 317
CBFs are employed for the entire array. This huge compression
(~ factor 9000) can be attributed to the relatively low mutual
coupling between the array elements, which is typically less
than 15 dB, so that the employment of a single mode current
per antenna element suffices. However, mutual coupling effects
between the single mode currents is still of importance for the
accurate modeling of the far sidelobes.

The time for generating CBFs is 4 min. 33 sec., for building
the reduced matrix 2h. 2min. and 44 sec., and the solution of
the (317x 317) reduced matrix equation is performed in split
seconds. The total simulation time is 140 min. and 35 sec.,
which includes also the construction of the reduced excitation
vector.

V. CONCLUSIONS AND RECOMMENDATIONS

The CBFM has both been formulated and implemented for
analyzing large aperture-fed antenna arrays. The numerical
accuracy of the proposed algorithm has been assessed by the
FEKO software through a singly-excited TE;; open-ended
corrugated circular waveguide antenna, and an example of a
317 element array of these elements has been analyzed on
a dual-CPU computer system. The original problem requires
us to employ over 2 million basis functions, but this amount
can be reduced to only 317 macro basis functions because



of the relatively weak mutual coupling between antenna array
elements. However, coupling effects should not be ignored for
the accurate modeling of far side lobes.
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