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Abstract
The Grignard reaction of 2,3-O-isopropylidene-α-D-lyxo-pentodialdo-1,4-furanoside and benzylmagnesium chloride (or bromide)

afforded a non-separable mixture of diastereomeric benzyl carbinols and diastereomeric o-tolyl carbinols. The latter resulted from

an unexpected benzyl to o-tolyl rearrangement. The proportion of benzyl versus o-tolyl derivatives depended on the reaction condi-

tions. Benzylmagnesium chloride afforded predominantly o-tolyl carbinols while the application of benzylmagnesium bromide led

preferably to the o-tolyl carbinols only when used in excess or at higher temperatures. The structures of the benzyl and o-tolyl

derivatives were confirmed unambiguously by NMR spectral data and X-ray crystallographic analysis of their 5-ketone analogues

obtained by oxidation of the corresponding mixture of diastereomeric carbinols. A possible mechanism for the Grignard reaction

leading to the benzyl→o-tolyl rearrangement is also proposed.
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Introduction
One of the most popular synthetic routes leading to the forma-

tion of simple alkyl or aryl branched-chain sugars involves the

addition of Grignard reagents. In this regard, a wide variety of

Grignard reagents have been added to the free or masked (as

hemiacetal) carbonyl functionalities present in the molecule of a

suitable fully O-protected saccharide, thereby making possible

the preparation of a series of useful carbohydrate derivatives

[1-8]. Despite the demonstrable advantages of the Grignard

reaction, there remain, in addition to the recognised drawbacks,

some new unexpected impediments limiting its application in

the synthesis of branched carbohydrates.

In the context of our studies on the synthesis of sugar amino

acids structurally related to iminosugar mannojirimycin (a

strong inhibitor of α-mannosidase), we have recently prepared,

by applying the Grignard reaction, several branched sugar

carbinols as intermediates for subsequent oxidation to ketones

affording the corresponding hydantoins (precursors of amino

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Scheme 1: Grignard reaction of aldehyde 3 and oxidation of the resulting mixture of alcohols 4–7. Reagents and conditions: a) PhCH2MgCl (1) or
PhCH2MgBr (2) (1.2 equivalents), Et2O; see methods A–E in Experimental; b) PDC, DCM, Ac2O, reflux, 3 h.

acids) via the Bucherer–Bergs reaction in the next step, which

were finally transformed into sugar amino acids (precursors of

biologicaly active iminosugars). Thus, using methylmagnesium

iodide, some alanine-branched sugars were obtained [9,10].

Analogously, leucine derivatives were synthesised starting from

isobutylmagnesium bromide [11]. Unexpected difficulties were

encountered in an attempt to prepare the benzyl-branched sugar

carbinol, as a precursor of the final phenylalanine-branched

sugar, using benzylmagnesium chloride (1) or benzylmagne-

sium bromide (2) in the Grignard reaction with 2,3-O-iso-

propylidene-α-D-lyxo-pentodialdo-1,4-furanoside (3). In this

case, the corresponding o-tolyl derivative was obtained as the

major product instead of the expected benzyl compound

(Scheme 1). Therefore, this reaction was subjected to more

detailed inspection.

Results and Discussion
Although 1 and 2 have frequently been used for the introduc-

tion of the benzyl group into a carbohydrate molecule [12-18],

the benzyl→o-tolyl rearrangement has, to the best of our knowl-

edge, only been reported once. In this regard, Panigot and

Curley [19] showed that the reaction of 1 with 2,3,4,6-tetra-O-

acetyl-α-D-glucopyranosyl bromide (or chloride) produced a

3:1 mixture of 2-(β-D-glucopyranosyl)toluene and (β-D-

glucopyranosyl)phenylmethane isolated as the corresponding

2,3,4,6-tetra-O-acetates. However, this is not a case of the

typical Grignard reaction where the Grignard reagent is coupled

with a carbonyl compound. Moreover, the anomeric position

was involved in the reaction and there was an important limita-

tion: the formation of the unexpected o-tolyl rearrangement

product entailed the participation of both of the equatorially

disposed 2- and 6-acetoxy groups present in the substrate. The

non-acetylated substrates (like O-benzyl) afforded solely non-

rearranged benzyl derivatives. Our results represent the situa-

tion where the benzyl→o-tolyl rearrangement occurs during the

Grignard reaction between 1 or 2 and the non-anomeric free

aldehyde function (C-5 position of the furanose) of an O-alkyl

(methyl and isopropylidene)-protected carbohydrate.

First, the addition reaction of aldehyde 3 with 1 under the stan-

dard Grignard reaction conditions (method A, see Experimental

part) was examined. Based on the NMR spectral data of the

isolated product, a mixture of 5-(R) and 5-(S) o-tolyl deriva-

tives 4 and 5 together with a mixture of 5-(R) and 5-(S) benzyl

derivatives 6 and 7 (Scheme 1) in the ratio of approximately 3:1

was confirmed, indicating the substantial predominance of the

benzyl→o-tolyl rearrangement. In the subsequent experiments

(methods B–E), the influence of the reaction conditions

(temperature, reactants ratio, solvent, sequence of reactants ad-

dition) was examined, with the aim of suppressing the forma-

tion of the rearranged products 4 and 5. As the preliminary

experiments revealed that the addition of a solution of Grignard

reagent 2 into a solution of the carbohydrate aldehyde 3 (i.e.,

reverse addition of reactants) in the mole ratio of 1.3:1 had

some positive effect in respect of the yield (but not of the

proportion of isomers) of the Grignard reaction products, we

applied these parameters in subsequent experiments. It was

found that the application of 2 instead of 1 also afforded a mix-

ture of o-tolyl and benzyl carbinols but their proportion was

dependent on the reaction conditions (see Table 1 and Table 2).
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Table 2: Overall yields of 8 and 9 from oxidation of mixture of carbinols 4–7.

Method
Entrya Overall yield

8/9 ratio
4–7 8 and 9 Ketone 8 Ketone 9

A 0.62 g 0.59 g, 20% 0.44 g, 15% 0.15 g, 5% 3:1
B 1.37 g 1.29 g, 44% 0.30 g, 10% 0.99 g, 34% 1:3
C 1.17 g 1.11 g, 38% 0.58 g, 20% 0.53 g, 18% 1.1:1
D 0.82 g 0.77 g, 26% 0.56 g, 19% 0.21 g, 7% 2.7:1
E 0.96 g 0.89 g, 30% 0.62 g, 21% 0.27 g, 9% 2.3:1

aAmount of mixture of carbinols 4–7 taken into oxidation obtained from 10 mmol of aldehyde 3 applying methods A–E.

The mixture of diastereomeric carbinols 6 and 7 resulted as a

main product of the “normal” Grignard reaction only at lower

temperature without excess of 2. Only a minor positive effect

on the formation of “normal” addition products 6 and 7 was

observed using 2-methyltetrahydrofuran as a solvent as well as

the addition of an equivalent of CeCl3·2LiCl in THF to the reac-

tion mixture, although it is known that the application of these

reagents favours the addition of Grignard reagents to carbonyl

compounds to afford higher yields [20-22].

Table 1: Reaction conditions for the Grignard reaction.

Method Entrya Conditionsb Conditionsc

A 1/3 = 3:1 0.5 h, rt 3 h, reflux
B 2/3 = 1.3:1 0.5 h, −25 °C 1.5 h, rt
C 2/3 = 2.5:1 0.5 h, −25 °C 1.5 h, rt
D 2/3 = 1.3:1 0.5 h, rt 2 h, rt
E 1/3 = 1.3:1 0.5 h, −25 °C 1.5 h, rt

aMole ratio of reagent 1 or 2 and aldehyde 3 taken into the Grignard
reaction; btime and temperature for addition of reactant 1 or 2 to 3 (in
case of method A, reverse addition of reactants was applied, i.e., alde-
hyde 3 was added to Grignard reagent 1; creaction time and tempera-
ture after addition of reactants.

Since all attempts to separate and purify carbinols 4–7 using

column chromatography were unsuccessful even after acetyla-

tion, their physical and spectral data are not given here in detail.

In this regard, the ratio of the R and S isomers thus formed has

not been studied. However, based on the NMR data (signals for

methyl and methylene group of o-tolyl and benzyl group, res-

pectively) of the isolated crude mixture of products 4–7, it was

possible to determine the relative ratio of o-tolyl and benzyl

isomers. Finally, for the separation of o-tolyl isomer from

benzyl isomer, a mixture of all four chromatographically non-

separable isomeric alcohols 4–7 was oxidised using PDC,

thereby destroying the chiral center at C-5 position of the

saccharide moiety, to afford a mixture of the two corres-

ponding crystalline ketones 8 and 9. These were successfully

separated and purified using column chromatography and

recrystallisation. Their structures were established on the basis

of 1H and 13C NMR spectral data. The EI mass spectra and the

data of elemental analysis were also confirmative. The singlet

signal observed for the H1 atom strongly supports the α-con-

figuration at the anomeric atom C1 with the equatorially posi-

tioned H1 and H2. A singlet (three protons) at δ = 3.91 and a

singlet (two protons) at δ = 2.48 clearly indicate the methyl (in

o-tolyl) and methylene (in benzyl) groups, respectively. Finally,

the o-tolyl structure and benzyl structure of the moieties at C-5

atom of ketone 8 (Figure 1) and ketone 9 (Figure 2), respective-

ly, (the numbering of the atoms is in accordance with the

numbering recommended by the IUPAC Nomenclature of

Carbohydrates [23]) was unambiguously confirmed by single-

crystal X-ray analysis.

The formation of o-tolyl isomers 4 and 5 can be explained by

the possible reaction sequence (path 1) depicted in Scheme 2.

The first step involves an addition of the Grignard reagent to the

saccharide aldehyde, producing a trienic magnesium alkoxide

intermediate A (magnesium salt of 2-R-hydroxymethyl-1-meth-

ylene-1,2-dihydrobenzene, where R is the saccharide moiety)

which, upon quenching with aqueous NH4Cl, affords (via an

intermediate B) the corresponding o-tolyl isomer (a mixture of

diastereomeric alcohols 4 and 5). A similar mechanism was

proposed [24,25] for the reaction of 1-naphthylmethyl-

magnesium chloride (10) with some aldehydes and ketones

(Scheme 3). However, in this case, a trienic magnesium alk-

oxide intermediate E (magnesium salt of 2-hydroxymethyl-1-

methylene-1,2-dihydronaphthalene, an analogue of intermedi-

ate A in Scheme 2, path 1), produced by an addition of the

Grignard reagent 10 to the monomeric formaldehyde (11, R1 =

R2 = H), was unstable and decomposed by a reversible process

into the Grignard reagent and aldehyde. The latter underwent a

Prins-type reaction with the magnesium alkoxide intermediate

E in the presence of MgCl2, to give magnesium salt G which,

upon quenching with aqueous NH4Cl, affords 1-(2-hydroxy-

ethyl)-2-hydroxymethylnaphthalene H (an analogue of diol D in
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Figure 1: Molecular structure (DIAMOND drawing with adjacent ChemDraw image) of o-tolyl derivative 8. Atomic displacement ellipsoids are drawn at
30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2: Molecular structure (DIAMOND drawing with adjacent ChemDraw image) of benzyl derivative 9. Atomic displacement ellipsoids are drawn
at 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Scheme 2, path 2) and 1-methylnaphthalene (12). On the other

hand, the reaction of 10 with ketones produced either normal

benzylic alcohols, rearranged alcohols or a mixture of both,

depending on the steric hindrance. However, the rearranged

alcohols representing 1-methylene-2-substituted-1,2-dihydron-

aphthalenes F (analogues of intermediate B in Scheme 2) were

unstable and decomposed to 1-methylnaphthalene (12) and the

starting ketone 11 without the formation (via an intermediate F)

of 1-methyl-2-substituted-naphthalenes I, analogues of o-tolyl

derivatives 4 and 5 (Scheme 2, final step of path 1), which were

in present study, by contrast, isolated as stable products. More-

over, path 2 in Scheme 2 can be excluded, since no diols of type

C (analogues of diols H in Scheme 3) were detected in the reac-

tion mixture.
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Scheme 2: Proposed mechanism for Grignard reaction leading to benzyl→o-tolyl rearrangement (path 1). R = saccharide moiety; a = NH4Cl, H2O.

Scheme 3: Proposed mechanism [24,25] for Grignard reaction leading to 1-naphthylmagnesiumchloride→1-methylnaphthalene rearrangement. R1,
R2 = H, alkyl, cycloalkyl, phenyl, benzyl; a = NH4Cl, H2O.

To extend and confirm these observations, the analogous addi-

tion of 1 as well as 2 to another two representative carbohy-

drate aldehydes – 3-O-benzyl-1,2-O-isopropylidene-α-D-xylo-

pentodialdo-1,4-furanose and 1,2:3,4-di-O-isopropylidene-α-D-

galacto-hexodialdo-1,5-pyranose were investigated next. Unfor-

tunately, only very complex reaction mixtures (including

diatereomeric carbinols, biphenyl, polymeric impurities, etc.)

resulted under the above reaction conditions. However, analysis

of the NMR spectral data of these mixtures showed the absence

of CH3 protons of the o-tolyl moiety, indicating that the

benzyl→o-tolyl rearrangement did not occur in these cases;

accordingly, no further detailed inspections of the reaction

mixtures were performed.

X-ray analysis
Single crystals (stable at ambient temperature) suitable for

X-ray diffraction were obtained by the slow crystallisation of 8

and 9 from MeOH by cooling in a refrigerator. The preliminary

orientation matrices and final cell parameters were obtained

using Siemens SMART and Siemens SAINT software [26]. The

data were empirically corrected for absorption and other effects

using the SADABS program [27] based on the method of
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Blessing [28]. The crystal and experimental data for 8 and 9 are

summarised in Table 3 and Table 4. The structure was solved

by direct methods and refined by full-matrix least-squares on

all F2 data using Bruker SHELXTL [29]. The non-H atoms

were refined anisotropically. All the hydrogen atoms were

constrained to the geometrically idealised positions using an

appropriate riding model. Molecular graphics were obtained

using the program DIAMOND [30].

Table 3: Crystallographic and experimental dataa for compound 8.

Crystal data

Empirical formula C16H20O5
Formula weight 292.32
Crystal size 1.00 x 0.36 x 0.18 mm
Crystal description Needle
Crystal colour Colourless
Crystal system Orthorhombic
Space group P212121
Unit cell dimensions a = 8.0419(2) Å

b = 10.0156(2) Å
c = 19.2682(3) Å

Volume 1551.95(6) Å3

Z 4
Calculated density 1.251 Mg/m3

Absorption coefficient 0.093 mm−1

F(000) 624

Data collection

Measurement device type Siemens SMART CCD
Measurement method ω-scans
Temperature 173(2) K
Wavelength 0.71073 Å
Monochromator Graphite
θ range for data collection 2.11 to 28.33°
Index ranges −10 ≤ h ≤10,

−13 ≤ k ≤13,
−25 ≤ l ≤25

Reflections collected/unique 21019/2217 [R(int) = 0.0496]
Completeness to θ = 28.33° 99.7%
Absorption correction Multi-scan
Max. and min. transmission 0.9835 and 0.9132

Refinement

Refinement method Full-matrix least-squares on
F2

Data/restraints/parameters 2217/0/214
Goodness-of-fit on F2 1.025
Final R indices [I>2σ(I)] R1 = 0.0322, wR2 = 0.0797
R indices (all data) R1 = 0.0398, wR2 = 0.0850
Largest diff. peak and hole 0.198 and −0.149 e·Å−3

aStandard deviations in parentheses.

Table 4: Crystallographic and experimental dataa for compound 9.

Crystal data

Empirical formula C16H20O5
Formula weight 292.32
Crystal size 0.98 x 0.21 x 0.12 mm
Crystal description Needle
Crystal colour Colourless
Crystal system Monoclinic
Space group P21
Unit cell dimensions a = 10.5035(14) Å

b = 5.7075(8) Å,
β = 96.268(3)°
c = 12.3449(16) Å

Volume 735.64(17) Å3

Z 2
Calculated density 1.320 Mg/m3

Absorption coefficient 0.098 mm−1

F(000) 312

Data collection

Measurement device type Siemens SMART CCD
Measurement method ω-scans
Temperature 153(2) K
Wavelength 0.71073 Å
Monochromator Graphite
Theta range for data
collection

2.42 to 29.20°

Index ranges −14 ≤ h ≤ 14,
−7 ≤ k ≤ 7,
−16 ≤ l ≤ 16

Reflections collected/unique 10030/2175 [R(int) = 0.0516]
Completeness to θ = 29.20° 99.4%
Absorption correction Multi-scan
Max. and min. transmission 0.9884 and 0.9104

Refinement

Refinement method Full-matrix least-squares on
F2

Data/restraints/parameters 2175/1/193
Goodness-of-fit on F2 1.002
Final R indices [I>2σ(I)] R1 = 0.0329, wR2 = 0.0802
R indices (all data) R1 = 0.0411, wR2 = 0.0842
Largest diff. peak and hole 0.188 and −0.195 e·Å−3

aStandard deviations in parentheses.

Based on the calculated values of the ring-puckering para-

meters (Q, Φ, θ) [31] (Table 5) and relevant torsion angles

(Table 6),  the conformations of the five-membered

O4–C1–C2–C3–C4 furanose ring and the five-membered 1,3-

dioxolane ring (O2–C2–C3–O3–C14) in compounds 8 and 9

were established. It was found that the furanose ring in 8

adopted the OE (O4E) conformation distorted significantly to the
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OT1 (O4TC1, twisted on O4–C1, O4-endo) direction. The con-

formation of the five-membered 1,3-dioxolane ring in 8 can be

described as a 4E (C14E) shifted significantly to the 4TO

(C14TO2, twisted on C14–O2, C14-endo) direction. Regarding

compound 9, an inspection of the relevant data revealed an

almost perfect OE (O4E) conformation of the furanose ring and

the E4 (EC14) conformation distorted significantly to the OT4

(O2TC14, twisted on O2–C14, C14-exo) direction of the 1,3-

dioxolane ring.

Table 5: Puckering parametersa for the five-membered furanose ring
and the five-membered 1,3-dioxolane ring in compounds 8 and 9.

Ring Parameter Compound

8 9

Furanose Q (Å) 0.3467(16) 0.3206(16)
Φ (°) 8.1(3) 353.8(9)

1,3-Dioxolane Q (Å) 0.3299(16) 0.2146(16)
Φ (°) 155.1(3) 332.9(4)

aStandard deviations in parentheses.

Table 6: Relevant torsion angles (°)a for the five-membered furanose
ring and the five-membered 1,3-dioxolane ring in compounds 8 and 9.

Ring Torsion angle Compound

8 9

Furanose O4–C1–C2–C3 26.34(16) 17.62(18)
C1–C2–C3–C4 −5.02(16) 3.34(18)
C2–C3–C4–O4 −17.45(15) −23.03(17)
C3–C4–O4–C1 35.47(15) 35.73(16)
C4–O4–C1–C2 −39.06(17) −33.52(17)

1,3-Dioxolane O2–C2–C3–O3 −6.58(16) 3.57(18)
C2–C3–O3–C14 −16.04(16) 11.31(17)
C3–O3–C14–O2 32.66(16) −21.76(17)
O3–C14–O2–C2 −37.19(16) 24.23(17)
C14–O2–C2–C3 26.66(16) −17.24(17)

aStandard deviations in parentheses.

Conclusion
In summary, various reaction conditions were employed for the

synthesis of carbinols 4–7 from Grignard reagent 1 (or 2) and

sugar aldehyde 3. Depending on the reaction conditions, the

ratio of o-tolyl carbinols 4 and 5 (products of the benzyl→o-

tolyl rearrangement) versus non-rearranged benzyl carbinols 6

and 7 varied from 3:1 to 1:3 (based on the isolated o-tolyl and

benzyl ketones 8 and 9, respectively). It seems that the

benzyl→o-tolyl rearrangement is specific for 2,3-O-isopropyli-

dene-α-D-lyxo-pentodialdo-1,4-furanoside because no re-

arrangement was observed when 3-O-benzyl-1,2-O-isopropyli-

dene-α-D-xylo-pentodialdo-1,4-furanose and 1,2:3,4-di-O-iso-

propylidene-α-D-galacto-hexodialdo-1,5-pyranose were used as

starting sugar aldehydes. The structures of o-tolyl and benzyl

derivatives 8 and 9 were unambiguously confirmed by X-ray

crystallographic analysis. Compounds 8 and 9 represent prof-

itable synthetic blocks for the synthesis of structurally modified

iminosugars and sugar moiety-containing heterocycles, amino

acids, etc.

Experimental
Reagents and apparatus: The starting methyl 2,3-O-isopropyl-

idene-α-D-lyxo-pentodialdo-1,4-furanoside was prepared

according to a recognised method [32,33]. Benzylmagnesium

chloride (1) and benzylmagnesium bromide (2) solutions (1 M

in diethyl ether) and the other reagents and solvents were

commercially available products and were used as received.

Melting points were determined using a Boetius PHMK 05

microscope. Specific rotations were determined on a Jasco

P-2000 digital polarimeter. Microanalyses were performed on a

Fisons EA 1108 analyser. The 1H and 13C NMR spectra (in

CDCl3, internal standard Me4Si) were recorded on a Varian

600 MHz VNMRS spectrometer equipped with HCN 13C

enhanced salt-tolerant cold probe operating at 599.84 and

150.84 MHz working frequencies, respectively. Advanced tech-

niques from the Varian pulse sequence library of 2D homo- and

hetero-correlated spectroscopy (gCOSY, gTOCSY, gHSQCAD,

gHMBCAD, and gH2BC) including 1D sequences with selec-

tive excitations (1DNOESY, 1DTOCSY, and 1DROESY) were

used for the signal assignments. The quaternary carbon atoms

were identified on the basis of a semi-selective INEPT experi-

ment and a 1D INADEQUATE pulse sequence technique.

When reporting assignments of NMR signals, the data for the

phenyl moiety are identified by a prime. The EI mass spectra

(70 eV) were obtained on a Q-Tof Premier instrument (Waters).

Column chromatography was performed as flash chromatog-

raphy on Silica Gel 60 (E. Merck, 0.063–0.200 mm). The IR

spectra (ATR) were measured using a Nicolet 6700 FTIR spec-

trometer. Thin-layer chromatography was performed on pre-

coated Silica Gel 60 F254 plates (E. Merck). Visualisation was

achieved by spraying the plates with 5% (v/v) solution of

H2SO4 in ethanol and heating at ca 200 °C.

Synthesis of methyl (5R)-2,3-O-isopropylidene-5-C-(2-

methylphenyl)-α-D-lyxofuranoside (4), methyl (5S)-2,3-O-

isopropylidene-5-C-(2-methylphenyl)-α-D-lyxofuranoside

(5), methyl 6-deoxy-2,3-O-isopropylidene-6-phenyl-α-D-

mannofuranoside (6), and methyl 6-deoxy-2,3-O-isopropyli-

dene-6-phenyl-β-L-gulofuranoside (7)

Method A: Methyl 2,3-O-isopropylidene-α-D-lyxo-pentodi-

aldo-1,4-furanoside (3) (2.02 g, 10.0 mmol) in diethyl ether
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(30 mL) was added dropwise into benzylmagnesium chloride

(1, 1.0 M solution in diethyl ether, 13 mL, 13 mmol) at ambient

temperature in the course of 30 min. Subsequently, the mixture

was stirred and heated under reflux for 3 h. After cooling, it was

poured into a saturated NH4Cl solution pre-cooled to 5 °C. The

organic layer was separated and the aqueous layer was

extracted with diethyl ether (3 × 50 mL). The combined organic

layers were dried (Na2SO4), filtered and evaporated under

reduced pressure to give a crude oily product which was puri-

fied on a column of silica gel using EtOAc/hexane 1:4 as an

eluent, affording a mixture of alcohols 4–7 (Rf = 0.44, 0.62 g,

21%).

Method B: Benzylmagnesium bromide (2, 1.0 M solution in

diethyl ether, 13 mL, 13 mmol) pre-cooled to −5 °C was added

dropwise to a magnetically stirred solution of aldehyde 3

(2.02 g, 10.0 mmol) in diethyl ether (30 mL) under cooling at

−25 °C in the course of 30 min. Subsequently, the mixture was

stirred at ambient temperature for an additional 1.5 h and

poured into a saturated NH4Cl solution pre-cooled to 5 °C. The

organic layer was separated and the aqueous layer was

extracted with diethyl ether (3 × 50 mL). The combined organic

layers were dried (Na2SO4), filtered and evaporated under

reduced pressure to give a crude oily product which was puri-

fied on a column of silica gel using EtOAc/hexane 1:4 as an

eluent, affording a mixture of alcohols 4–7 (Rf = 0.44, 1.37 g,

46%).

Method C: Benzylmagnesium bromide (2, 1.0 M solution in

diethyl ether, 25 mL, 25 mmol) and aldehyde 3 (2.02 g,

10.0 mmol) in diethyl ether (30 mL) were allowed to react

under the same reaction conditions as in method B to give (after

column chromatography) a mixture of alcohols 4–7 (Rf = 0.44,

1.17 g, 39.5%).

Method D: Benzylmagnesium bromide (2, 1.0 M solution in

diethyl ether, 13 mL, 13 mmol) and aldehyde 3 (2.02 g,

10.0 mmol) in diethyl ether (30 mL) were allowed to react at

ambient temperature applying the reaction mixture work-up

procedure as in method B to give (after column chromatog-

raphy) a mixture of alcohols 4–7 (Rf = 0.44, 0.82 g, 28%).

Method E: Benzylmagnesium chloride (1, 1.0 M solution in

diethyl ether, 13 mL, 13 mmol) and aldehyde 3 (2.02 g,

10.0 mmol) in diethyl ether (30 mL) were allowed to react

under the same reaction conditions as in method B to give (after

column chromatography) a mixture of alcohols 4–7 (Rf = 0.44,

0.96 g, 33%).

Synthesis of methyl 2,3-O- isopropylidene-5-C-(2-

methylphenyl)-α-D-lyxo-pentodialdo-1,4-furanoside (8) and

methyl 6-deoxy-2,3-O-isopropylidene-6-phenyl-α-D-lyxo-

hexofuranosid-5-ulose (9): A mixture of alcohols 4–7 (1.47 g,

5.0 mmol) in CH2Cl2 (25 mL) was added dropwise to a magnet-

ically stirred solution of pyridinium dichromate (PDC, 2.45 g,

6.5 mmol) and acetic anhydride (1.3 mL) in CH2Cl2 (25 mL)

under cooling in an ice-water bath followed by heating under

reflux for 3 h. The greater part of CH2Cl2 was evaporated and

the chromic salts were precipitated by the addition of a mixture

of EtOAc/hexane 1:1. After filtration and evaporation of the

solvents under reduced pressure, the product thus obtained was

purified on a column of silica gel using EtOAc/hexane 1:4 as an

eluent, affording ketone 8 (Rf = 0.6) and ketone 9 (Rf = 0.7)

with a total yield of 94–96% (percentage of 8 and 9 together in

oxidation step). These were recrystallised from methanol. The

overall isolated yields of 8 and 9 (depending on the method

used for preparation of the starting mixture of alcohols 4–7)

from two reaction steps (Grignard reaction and PDC oxidation)

starting from 10 mmol of aldehyde 3 are summarised in

Table 2.

8: colourless solid; mp 105–106 °C;  +12 (c 1, MeOH);
1H NMR (600 MHz, CDCl3) δ 7.60–7.22 (m, 5H, Ph), 5.26 (d,

J3,4 = 4.3 Hz, 1H, H-4), 5.12 (s, 1H, H-1), 4.99 (dd, J2,3 = 5.7

Hz, J3,4 = 4.3 Hz, 1H, H-3), 4.58 (d, J2,3 = 5.7 Hz, 1H, H-2),

3.41 (s, 3H, OCH3), 2.48 (s, 3H, CH3), 1.41 and 1.21 (2s, each

3H, Me2C) ppm; 13C NMR (150 MHz, CDCl3) δ 196.7 (C-5),

138.6 (C-2′), 136.7 (C-1′), 131.8 (C-6′), 131.2 (C-4′), 127.4

(C-3′), 125.3 (C-5′), 113.3 (CMe2), 107.2 (C-1), 84.4 (C-2),

83.8 (C-4), 81.0 (C-3), 55.1 (OCH3), 25.8 and 25.0 [(CH3)2C],

20.3 (CH3) ppm; EIMS m/z (Ir/%): 292 (5), 277 (20), 261 (10),

203 (20), 192 (100), 173 (38), 161 (34), 145 (16), 119 (95), 115

(11), 113 (6), 91 (18), 43 (50); IR (ATR) ν: 2987, 2928, 2834,

1695 (C=O), 1602, 1569, 1487, 1453, 1379, 1278, 1205, 1163,

1110, 1088, 1072, 1011, 964, 922, 886, 856, 825, 784, 761, 729,

659, 647, 619, 591 cm−1; anal. calcd (%) for C16H20O5

(292.33): C, 65.70; H, 6.90; found (%): C, 65.56; H, 6.81.

9: colourless solid; mp 72–73 °C;  +5 (c 1, MeOH); 1H

NMR (600 MHz, CDCl3) δ 7.33–7.21 (m, 5H, Ph), 5.07 (s, 1H,

H-1), 4.99 (dd, J2,3 = 5.7 Hz, J3,4 = 4.2 Hz, 1H, H-3), 4.56 (d,

J2,3 = 5.7 Hz, 1H, H-2), 4.50 (d, J3,4 = 4.2 Hz, 1H, H-4), 3.91

(s, 2H, H-6), 3.32 (s, 3H, OCH3), 1.45 and 1.28 (2s, each 3H,

Me2C) ppm; 13C NMR (150 MHz, CDCl3) δ 203.7 (C-5), 133.5

(C-1′), 129.9 (C-3′, C-5′), 128.5 (C-2′, C-6′), 126.9 (C-4′), 113.1

(CMe2), 107.6 (C-1), 84.4 (C-4), 84.2 (C-2), 81.0 (C-3), 55.0

(OCH3), 47.1 (C-6), 25.8 and 24.5 [(CH3)2C] ppm; EIMS m/z

(Ir/%): 292 (5), 277 (5), 203 (36), 192 (21), 173 (13), 161 (15),

115 (20), 113 (19), 99 (21), 91 (100), 87 (17), 85 (14), 83 (6),

65 (11), 59 (16), 55 (8), 45 (31), 43 (30), 41 (9); IR (ATR) ν:

2992, 2937, 2868, 2838, 1722, 1600, 1493, 1456, 1433, 1377,

1263, 1238, 1209, 1154, 1121, 1091, 1060, 1029, 996, 968, 874,
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798, 753, 720, 699, 658, 611, 560, 513 cm−1; anal. calcd (%)

for C16H20O5 (292.33): C, 65.70; H, 6.90; found (%): C, 65.52;

H, 7.01.

Crystallographic data for structures 8 and 9 have been deposited

with the Cambridge Crystallographic Data Centre as supple-

mentary publication nos. CCDC 1001956 and 1001957. Copies

of the data can be obtained, free of charge, on application to

CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +

44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk or via:

http://www.ccdc.cam.ac.uk).
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