
Timing- and Power-Driven ALU Design Training
Using Spreadsheet-Based Arithmetic Exploration

Per Larsson-Edefors
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

e-mail: perla@chalmers.se

Kjell Jeppson
Department of Microtechnology and Nanoscience

Chalmers University of Technology
Gothenburg, Sweden

e-mail: jeppson@chalmers.se

Abstract—We describe master-level design training that com-
bines ALU design exercises based on commercial synthesis tools
and arithmetic explorations based on spreadsheets. Despite its
limited complexity, the ALU has a few important properties
that make it suitable for our training; 1) the ALU subcircuits
are diverse and contain both short and long timing paths, 2)
timing-driven design is called for, since the ALU is a performance
bottleneck, and 3) the ALU is continuously used, making power
dissipation an important design parameter. After enforcing strict
timing constraints during synthesis of the ALU, the students need
to reconsider how to implement the arithmetic block, which
initially is too slow. Here, performing arithmetic explorations
inside an innovative spreadsheet environment helps to visualize
circuit implementation tradeoffs. The final phase in the design
training focuses on power analysis and demonstrates that the
choice of timing constraint impacts power dissipation.

I. INTRODUCTION

The implementation of an electronic system under con-
straints on timing, power dissipation, area, etc. typically
involves several different tasks which need to be carefully
planned and prioritized. As the implementation flow reaches
a certain stage it may suddenly, despite the planning, become
clear that the timing goal is not met. While the designer with
the help of the Electronic Design Automation (EDA) tools
may be able to resolve this timing problem by simply resizing
the gates inside the critical circuit, the problem can be more
challenging. For example, the designer may have to replace
a slow block with one that has a different, inherently faster
microarchitecture, and this may force the designer to make a
detour and revisit early implementation phases to efficiently
reconcile the required changes. In this example, the designer
is becoming agonizingly aware of a common problem known
as timing closure.

If timing were the only important implementation parameter
the designer could consistently use fast logic and circuit
solutions throughout the implementation. This is, however,
not the case. In general, fast circuits and microarchitectures
dissipate more power than slow ones. Since power dissipation
is important, the designer needs to implement the electronic
system with the slowest and least complex circuits that still
meet the system’s timing goal. The need for power-efficient

The authors want to thank the students who have given constructive
feedback on the ALU design exercises during 2007-2013.

circuits makes the implementation procedure complex since
the designer continuously has to respect two conflicting re-
quirements: Using small and simple circuits for power effi-
ciency, or large and complex circuits for timing efficiency.

The university training of design engineers for electronics
and electronic system needs to address not only the circuit and
logic structures that deliver performance and power efficiency,
but also methods for design and exploration. This paper
describes a series of design exercises, which target the design,
implementation and verification of a processor Arithmetic
Logic Unit (ALU), using state-of-the-art EDA tools, explicitly
considering methodology for timing- and power-driven design.

II. SPREADSHEET-BASED DESIGN EXPLORATION

The ALU design exercises (Sec. III) are preceded by a set
of adder design exercises in which students learn adder basics.
These adder design exercises are performed within the frame-
work of the Introduction to Integrated Circuit Design (IICD)
course. Here, an exploration environment is set up in Excel,
in which students can test different arithmetic implementations
in the context of an 8-bit datapath.

The spreadsheet format has two properties that makes it a
good learning tool: First, the cell organization, in which each
cell can be made to represent a standard cell in the layout, and
the row height, which represents the standard-cell pitch, give a
feel for the size of the adder design in the CMOS technology
of choice. Second, the inherent logical AND/OR functions give
the student a chance to instantly check the correctness of the
design and the principles behind it [1].

A= 32 <<<<< ENTER TWO NUMBERS
ADD(0)/SUB(1) CTRL: 1 B= 45 <<<<< -128 < NUMBER < 128

SUM= -13
a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0

COUT<< 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 <<CIN

SUM converted back to decimal: -13 Both SUMs are equal? YES
OVERFLOW? NO

ADD/SUB logic

111 1 1 1 0 0

Fig. 1. Ripple-carry adder spreadsheet design template.

The 8-bit ripple-carry adder design template shown in
Fig. 1 is given to the students to implement the ADD/SUB
logic, the ripple-carry logic and the SUM logic. As an ex-
ample, the ADD/SUB logic for bit B0 can be written as

978-1-4799-4016-5/14/$31.00 ©2014 IEEE 151

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70607956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

=IF(SUB;NOT(B0);B0)*1, where SUB is the field to the
right of ADD(0)/SUB(1) CTRL in Fig. 1. Assume two decimal
numbers A and B that are to be added or subtracted. A and B
are converted to binary numbers and placed in the A7:0 and
B7:0 positions, after which the spreadsheet adder performs an
addition or subtraction. The result from the spreadsheet adder
is compared to A+B (if SUB = 0) or A−B (if SUB = 1). If
equal, the adder design is correct for the chosen numbers and
the student is given a green go-ahead YES.

An early exercise performed in the IICD course is one
where the students design and implement an 8-bit ripple-carry
adder by using the full-adder cell found in the reference 65-nm
CMOS cell library. The full-adder functionality is added to the
spreadsheet using its built-in logic functions and, by means of
the click-and-drag function, eight instances of the full-adder
cell will be made to form a ripple-carry Iterative Logic Array
(ILA). Ideas for how to implement the logic expressions of a
full adder can be found in most textbooks (Fig. 2).

A
B
C S SCout

Cout

A
B
C

Fig. 2. Full adder for ripple-carry operation (reproduced from [2]).

Parallel to this design exercise, there is a separate set of
lab exercises in the IICD course where the emphasis is on
circuit design aspects of adders; including the design of pull-
up and pull-down MOSFET networks to implement carry
functionality, and the introduction to commercial circuit-level
EDA tools for schematic capture, layout, design rule checking,
and layout-vs-schematic verification. The understanding of
schematic and layout issues and their impact on performance
and power dissipation is pivotal for the ensuing ALU design
exercises, which take place at the standard-cell level.

III. ALU DESIGN EXERCISES

We will describe the flow of the ALU design exercises
arranged in our computer lab, inside the Methods for Elec-
tronic System Design and Verification course. In terms of
the spreadsheet-based design exploration initially described in
Sec. II, there is a focus on the design of the adder circuit as
this can be implemented in very different ways, demonstrating
to the students the virtue of making design explorations.

A. Initial Processor ALU Specification

Since it constitutes the core of nearly all electronic systems,
a processor ALU is an interesting block to consider when
teaching embedded electronics. There are three reasons as to
why designing an ALU is a suitable challenge in the context
of this paper: First, since the ALU is a likely performance
bottleneck of a processor pipeline, timing considerations are
critically important. Second, since the ALU is active on all
clock cycles, power dissipation considerations too are critically
important. Third, although a block of limited complexity, the

ALU has a relatively heterogeneous collection of functions
(arithmetic, logic, shift, and multiplexing), which makes both
timing and power considerations quite complex.

The following are the initial specifications for the ALU that
the students are assigned to develop:

1) The following OP codes are to be used in order to
comply with a 32-bit MIPS-like processor [3]:
0000: add A+B (signed)
0001: add A+B (unsigned)
0010: sub A-B (signed)
0011: sub A-B (unsigned)
0100: bitwise AND
0101: bitwise OR
0110: bitwise NOR
0111: bitwise XOR
1000: shift left
1010: shift right (logical)
1011: shift right (arithmetical, signed)
1110: SLT (Set on Less Than)
1111: SLTU (Set on Less Than Unsigned)

2) The interface to the processor pipeline in which the ALU
is integrated is strictly defined as:
entity ALU is
port(
clk : in std_logic;
reset : in std_logic;
Ain : in std_logic_vector(31 downto 0);
Bin : in std_logic_vector(31 downto 0);
OPin : in std_logic_vector(3 downto 0);
Outs : out std_logic_vector(31 downto 0));

end ALU;

3) To simplify the synthesis phase, the ALU should have
registers on both the input and the output.

4) Initially the students should implement the arithmetic
circuit using a ripple-carry adder (for reasons that later
will become obvious).

B. ALU and Test Bench Coding

The students initially develop an ALU block schematic from
the specifications in Sec. III-A. The visual representation of
a block schematic, such as the one in Fig. 3, is important
to guide the VHDL coding. Without this proper preparation,
our experience is that the resulting VHDL code, due to being
written in an improvised manner, tends to be of poor quality.

When the ALU code has been developed, a test bench is
developed. Based on test vectors for Ain, Bin, and OPin
stored in files, the test bench allows the ALU to be instantiated
and input vectors to be applied, after which the results of the
ALU operations are compared to reference vectors for Outs.

A
dd

er
Sh

ift
er

Lo
gi

c

SL
T

D
FF

D
FF

D
FF

D
FF

Outs

XOR

OP

A
OP

B

flags

OP

OP

OP

OP

Fig. 3. ALU block schematic.

152

C. Timing-Driven Synthesis
Once the ALU has been functionally verified, using logic

simulation for a set of diverse test vectors obtained using tools
from our research frameworks [4], the students begin synthe-
sizing the ALU to a CMOS cell library. The overall timing
goal of the ALU depends on the technology node chosen; for
a 65-nm process technology, a 1-ns timing constraint can be
reasonable for the synthesis phase.

It soon turns out that it is impossible for the ripple-carry
adder to sustain an ALU performance around 1 GHz. As
mentioned in Sec. II, the students have studied adder structures
in the previous IICD course. Thus, the fact that the delay of a
ripple-carry adder depends linearly on the input word length
should not come as a surprise. At this stage in the exercises,
the students study the resulting netlist via the GUI of the
synthesis tool and identify the logic depth for the different
ALU subcircuits. This step reinforces that the ripple-carry
adder structure is very bad from timing point of view.

To fulfil the timing goal of the design exercises, the students
now need to revisit their ALU code and redesign the adder
component. They are encouraged to consider prefix adders,
such as the logarithmic-depth adders that were briefly intro-
duced in the previous IICD course.

D. Timing-Driven Adder Considerations
Now, let us return to the spreadsheet-based design explo-

ration of Sec. II, but with the focus moved from functionality
to performance in terms of timing. What information is needed
for the student to estimate the carry propagation delay along
the worst case critical path, including identifying this critical
path? A good start would be a unit-delay model, since only
very few logic cells are used; but how should the unit delay
be estimated? As students learn more about circuit design, the
delay model can be gradually improved as concepts like input
capacitance, output driving capability, parasitic capacitances,
sizing, etc., are introduced. The unit-delay model evolves into
the linear RC-delay model, the slope-dependent linear delay
model, and on to nonlinear delay models and possibly also
current source models stored in look-up tables.

A= 32 <<<<< ENTER TWO NUMBERS
ADD/SUB CTRL: 1 B= 45 <<<<< -128 < NUMBER < 128

SUM= -13
a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0

1 <<CIN
0 1

0 1
0 1

0 1
0 1

0 1
0 1 Both SUMs are equal? YES

COUT<< 0 1 OVERFLOW? NO

SUM converted back to decimal: -13
1

1

1

0

1

ADD/SUB logic

1
1

0
TIME
AXIS

PROPAG-
ATION
DELAY

Fig. 4. Adder design template with time axis.

What can be done in the spreadsheet environment to clarify
timing aspects is to include a timing axis. We then abandon
the layout view of the spreadsheet template, and prepare
for an understanding of the more advanced tree-adder PG
networks [2]. An example of how a time axis can be included
to illustrate the linear ripple-carry delay is shown in Fig. 4.

Once timing has been considered and included in the
spreadsheet, students can start exploring the adder design
space by playing around with parameters like sizing. Beyond
sizing, what if they could simplify the ripple-carry cell; would
that make the adder faster? What if the input data to the
ripple-cell could be prepared in a way such that less complex,
faster ripple-cells could be used? What if an input setup layer
could be introduced in a such way that the ripple-cell delay
is halved? The original 8 unit delays for the carry to ripple
from the input to the output would then be reduced to a 5-unit
delay, the setup delay plus 8 half-unit ripple delays. For a 32-
bit adder, the reduction would be even more dramatic, from
32 unit delays to 17 unit delays.

From this starting point, the inputs to the carry logic can be
prefixed by use of bit-propagate and bit-generate setup logic.
Together with the dot operator implementation of the carry
cell, not only are the correct bit sums produced but the adder
microarchitecture is also extended with the block propagate
and block generate facility.

After this design exploration exercise, where different ap-
proaches for optimizing the ripple-carry adder have been
evaluated, time is now appropriate for the student to reflect
over the reasons why we chose the ripple-carry approach in
the first place. What if there are other solutions where the
delay does not increase linearly with the input word length
N , but slower? Of course, the initiated student is aware of the
fact that for binary tree solutions the delay grows as log2N .
As an example, an 8-bit AND gate can be built as a 3-stage
binary tree of AND2 gates, a solution that can be used for
implementing the 8-bit zero detect logic, or the 8-bit equal
condition when two words A and B are equal.

Actually, the same logarithmic structure is useful for the
barrel shifter of the ALU. For a SHIFT7 operation, the bits do
not have to ripple through seven layers of shift/no_shift muxes,
but three layers of SHIFT4, SHIFT2, and SHIFT1 muxes are
enough as illustrated in Fig. 5.

a7 a6 a5 a4 a3 a2 a1 a0
1 1 0 0 1 0 1 0

MASK AND LOGIC/ARITHMETIC SHIFT LOGIC

SHIFT LEFT/RIGHT SETUP LAYER
SHIFT 4 STEPS LAYER
SHIFT 2 STEPS LAYER
SHIFT 1 STEPS LAYER

TIME
AXIS

Fig. 5. Basic barrel-shifter microarchitecture with time axis.

Whether the adder can be implemented as a binary tree now
depends on the availability of an idempotent and associative
logic cell, where bits can be treated two and two in parallel, to
generate the appropriate signals, and where the data from less
significant bits can be included after the operation, instead of
being available before. As it turns out, the already considered
dot operator has these properties suitable for implementing a
tree adder. This opens up the world of prefix tree-adders [5],
like the Kogge-Stone, Han-Carlson, Sklansky, Ladner-Fischer,
and Brent-Kung adders, to the student.

The students are encouraged to try the Sklansky adder

153

structure in their first prefix-tree adder design. As they return
to the design exercises, they discover that the synthesis of
the Sklansky adder means that the timing goal can be accom-
plished and, thus, this step closes the timing-driven synthesis.

E. Power-Driven Synthesis

Due to its long delay, the ripple-carry adder had to be dis-
carded in the timing-driven design in Sec. III-C and Sec. III-D.
But this simple adder does have some advantages and in the
implementation phase when power dissipation is addressed,
the students are to find this out.

Power dissipation in CMOS circuits has been introduced in
the previous IICD course. The well-known switching power
function is written as

Psw =
∑

i

f VDD
2 (αi Ci), (1)

in which we can find system parameters like clock rate f
and supply voltage VDD. The switching activity α and the
switched capacitance C are given for each node i of the circuit.
In these exercises, the design exploration will assume that 1)
the supply voltage is constant (nominal VDD is 1.2 V for this
cell library), 2) α = 0.2 for all primary inputs (Ain, Bin, and
OPin), and 3) the system is operated at the lower performance
corner of the evaluated range, that is, 200 MHz.

Timing constraint (ns)
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
o
w

e
r

d
is

s
ip

a
ti
o
n
 (

u
W

)

0

100

200

300

400

500

600

Sklansky RCA

Fig. 6. Adder power dissipation as function of ALU timing constraint. 0.77
ns and 1.82 ns corresponds to the maximal performance for the Sklansky and
the ripple-carry ALU, respectively. Below these constraints, the synthesis tool
produces netlists with negative slack.

What is varied in this investigation is the timing constraint
for synthesis; from the most relaxed one 5 ns (200 MHz)
down to the constraint that corresponds to the maximal speed
of each ALU type. Fig. 6 shows the result of an exploration
done for two different ALUs; one based on the ripple-carry
adder (RCA) and one based on the Sklansky adder. To clearly
bring out the power trend for the adders, the timing constraint
is applied on the whole ALU, while the power dissipation is
for the adder circuit only.

The figure shows that the power dissipation of the simple
ripple-carry adder is relatively low when the ALU timing
constraint is relaxed. As we make the constraint stricter, the
power increases rapidly because the long logic depth must be
compensated for by increased gate drive strengths and costly

logic reorganizations, which lead to an increase in switched
capacitance. For timing constraints slightly below 2 ns, the
ripple-carry adder even dissipates more power than the more
complex Sklansky adder. As it approaches its operational limit,
the ripple-carry adder clearly is not a good alternative.

The students are also encouraged to make a graph showing
the area for different timing constraints. As is shown in Fig. 7,
the area and power dissipation trends are similar. However,
since the switching activities on individual nodes downstream
from the primary inputs depend strongly on the logic gates
used, the heuristic algorithms employed in the timing-driven
logic reorganization can impact power and area data points
somewhat differently.

Timing constraint (ns)
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
re

a
 (

u
m

^2
)

0

250

500

750

1000

1250

1500

Sklansky RCA

Fig. 7. Adder area as function of ALU timing constraint.

IV. CONCLUSION

We have described a design training concept in which we
combine commercial EDA tools with spreadsheet-based design
exploration. As the students work with the ALU design they
come to the point when they need to make a decision whether
to use a simple and slow or a large and fast adder for the
arithmetic circuit of the ALU. At this stage, they can use
a spreadsheet-based adder template (known from a previous
course) to explore tradeoffs such as speed versus area. The
outcomes of the exploration and the synthesis are similar; for
strict performance requirements, fast circuits have to be used.
However, the power analysis done at the end of the design ex-
ercises demonstrates that designing electronic systems means
considering more parameters than timing: Slow circuits are
attractive in systems with lower performance requirements.

REFERENCES

[1] K. Jeppson and P. Larsson-Edefors, “Exploring Prefix-Tree Adders Using
Excel Spreadsheets: Setting Up an Explorative Learning Environment,” in
Proc. 2013 IEEE Int. Conf. on Microelectronic Systems Education (MSE),
Jun. 2013, pp. 48–51.

[2] N. Weste and D. Harris, Integrated Circuit Design, 4th ed. Pearson
Education Inc., 2011.

[3] D. A. Patterson and J. L. Hennessy, Computer Organization & Design,
The Hardware/Software Interface, 2nd ed. Morgan Kaufman Publishers
Inc., 1998.

[4] M. Själander and P. Larsson-Edefors, “FlexCore: Implementing an Ex-
posed Datapath Processor,” in Proc. IEEE Int. Conf. on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS
XIII), Jul. 2013, pp. 306–313.

[5] S. Knowles, “A Family of Adders,” in Proc. 15th IEEE Symp. on
Computer Arithmetic, 2001, pp. 277–281.

154

