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Nonabsorbing high-efficiency counter for itinerant microwave photons
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3Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA

(Received 6 May 2014; revised manuscript received 7 June 2014; published 25 July 2014)

Detecting an itinerant microwave photon with high efficiency is an outstanding problem in microwave photonics
and its applications. We present a scheme to detect an itinerant microwave photon in a transmission line via the
nonlinearity provided by a transmon in a driven microwave resonator. With a single transmon we achieve
84% distinguishability between zero and one microwave photons and 90% distinguishability with two cascaded
transmons by performing continuous measurements on the output field of the resonator. We also show how the
measurement diminishes coherence in the photon number basis thereby illustrating a fundamental principle of
quantum measurement: The decoherence rate increases as the detector is made more effective.
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Since the early theoretical work on photodetection [1,2],
both theory and technology have advanced dramatically.
Conventional photon detectors, such as avalanche photodiode
(APD) and photomultiplier tube (PMT), are widely used in
practice. However, they destroy the signal photon during
detection. There are a number of schemes for quantum
nondemolition (QND) optical photon detection [3–5], but
typically they require a high-Q cavity for storing the signal
mode containing the photon(s) to be detected, and a leaky
cavity for manipulating and detecting the probe mode. Thus,
during one lifetime of a signal photon, the probe mode
undergoes many cycles to accumulate information about the
signal. This type of detection requires repeated measurements,
and the high-Q cavity limits the photodetection bandwidth.
In the microwave regime the detection of single photons
[6–15] is more challenging, especially nondestructive detec-
tion [6,9,14,15]. Here we propose a scheme for nonabsorbing,
high-efficiency detection of single itinerant microwave pho-
tons via the nonlinearity provided by an artificial supercon-
ducting atom, a transmon [16].

Previously [15,17], we considered schemes where the
signal photon wave packet propagates freely in an open
transmission line [11,18] and encounters the lowest transition
of a transmon. The cw-probe field couples the first and second
excited states of the transmon and is monitored via continuous
homodyne detection. Displacements in the homodyne current,
due to the large transmon-induced cross-Kerr nonlinearity
[18], indicate the presence of a photon. We showed that,
in spite of the exceptionally large cross-Kerr nonlinearity it
exhibits [18], a single transmon in an open transmission line is
insufficient for reliable microwave photon detection, due to sat-
uration of the transmon response to the probe field [17]. More
recently [15], we showed that multiple cascaded transmons
could achieve reliable microwave photon counting in principle,
though the number of transmons and circulators required in this
scheme presents serious experimental challenges.

In this paper we propose a scheme that achieves reliable
photon counting with as few as a single transmon. The key
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insight is to use a cavity resonant with the probe field to
enhance the probe displacements, which depends on the signal
photon number. We quantify the measurement efficiency in two
ways: Firstly, we report the signal-to-noise ratio (SNR), and
secondly we report the distinguishability, i.e., the probability
to correctly infer the photon number. For a single transmon,
we report a SNR of 1.2, corresponding to a distinguishability
of F = 84% between 0 and 1 photons in the signal (i.e.,
the probability of correctly discriminating between these two
states). This can be improved using more transmons [15], and
we show that with two cascaded transmons the distinguishably
increases to F = 90%. An important feature of the proposal
is that the signal photon is an itinerant photon pulse, enabling
detection of relatively wide-band microwave photons.

The scheme for single microwave photon detection is shown
in Fig. 1. A transmon is embedded at one end of a waveguide, in
which the signal (itinerant) microwave propagates. The signal
field is nearly resonant with the lowest transmon transition,
|0〉 ↔ |1〉. The transmon is also coupled to a coherently-driven
microwave resonator, which is dispersively coupled with the
second transmon transition. The cavity is driven by an external
coherent probe field, which ultimately yields information
about the photon population in the signal field. This unit
(consisting of the transmon in a cavity) can be cascaded using
circulators to achieve higher detection efficiency [15].

We first analyze a single unit, and later consider cascading
several. In a rotating frame the Hamiltonian describing a
unit is

Ĥs = δ1σ̂11 + (δ1 + δ2)σ̂22 − ig12(âσ̂21 − â†σ̂12) − iE(â − â†),

(1)

where â is the cavity annihilation operator, g is the coupling
strength between the cavity field and the transmon |1〉 ↔ |2〉
transition, E is the driving amplitude, and the detunings are
δ1 = ω10 − ωs , δ2 = ω21 − ωcav. The interaction between the
cavity and the 0 → 1 transition is neglected here, since the
cavity is very far detuned from the 0 → 1 transition.

To model the itinerant signal field, we invoke a fictitious
source cavity initially in a Fock state. This field leaks out,
producing an itinerant Fock state, which ultimately interacts

1098-0121/2014/90(3)/035132(5) 035132-1 ©2014 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70607794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.90.035132


FAN, JOHANSSON, COMBES, MILBURN, AND STACE PHYSICAL REVIEW B 90, 035132 (2014)

Circulator Circulator
(a)

(b)

Signal photon

Cavity mode

1δ

2δ

Transmon A

Probe field A

HOM

Transmon B

HOM

Probe field B

Signal photon

0 100 200
−0.3

−0.2

−0.1

0

0.1

Time (1/γ
01

)

(c)

Fl
ux

 o
f s

ig
na

l p
ho

to
n

Probe
displacement

Q
ua

dr
at

ur
e 

of
 p

ro
be Single photon

FIG. 1. (Color online) Schematic of microwave photon counting.
(a) A transmon qubit coupled to a microwave cavity provides the
nonlinearity to detect the presence or absence of microwave photons
propagating in the waveguide. If the waveguide is in the vacuum
state, the transmon is transparent to the cavity field, so the probe field
experiences no displacement; for a single signal photon, coherences
in the transmon are produced, leading to a displacement of the probe
field. A second transmon-cavity unit can be cascaded through a
circulator to improve performance. (b) The energy level structure
of the transmon. (c) The response of the cavity field to the incident
single photon.

with the transmon in the real cavity driven by the probe field.
The probe field reflected from the real cavity is measured
by a homodyne detector. The resulting conditional system
dynamics are described by the cascaded, stochastic master
equation [19–22]:

dρ = dt Lρ + √
ηdW(t)H[e−iφ

√
κâ]ρ, (2)

where

Lρ = −i[Ĥs,ρ] + D[
√

γ
c
ĉ] + D[

√
γ 01σ̂01]ρ

+D[
√

γ 12σ̂12]ρ + D[
√

κâ]ρ

+√
γcγ01([ĉρ,σ̂10] + [σ̂01,ρĉ†]), (3)

and the corresponding Homodyne photocurrent is

I (t) = √
ηκ〈e−iφ â + eiφâ†〉 + dW (t)/dt, (4)

where dW is a Weiner process satisfying E[dW ] = 0,
E[d2W ] = dt , η is the efficiency of homodyne detection, ĉ

is the annihilation operator of the source-cavity mode, γc is
the decay rate of the source cavity (which determines the
linewidth of the itinerant photon), the phase angle φ is set by
the local oscillator phase, D[r̂]ρ = 1

2 (2r̂ρr̂† − ρr̂†r̂ − r̂†r̂ρ),
and H[r̂]ρ = r̂ρ + ρr̂† − Tr[r̂ρ + ρr̂†]ρ.

Prior to the arrival of the signal pulse, the cavity is driven by
the probe field to its steady state, and the transmon is initially
in its ground state. The itinerant signal photon pulse arrives

at the transmon at time t0. Since the signal pulse decays over
a finite time, the cavity field is transiently displaced from
its steady state. This transient displacement is reflected in
the homodyne photocurrent, which thus contains information
about the number of photons in the signal pulse. There are
several methods to extract this information [23], the simplest
of which is a linear filter applied to the homodyne current:

S =
∫ T

t0

I (t)h(t)dt, (5)

for some filter kernel h. The optimal linear filter takes
h(t) = Ī1(t), where Ī1 is the expected homodyne current when
there is a single signal photon. We have also implemented
more sophisticated nonlinear filters, using hypothesis testing
[23,24], which yields a small improvement, at a substantial
computational cost.

As one measure of performance, we define a signal-to-noise
ratio SNR = (S̄1 − S̄0)/

√
Var(S1) + Var(S0), where Sn is the

filter output conditioned on a signal pulse containing n = 0
or 1 photons. Due to the nonlinear interaction between the
probe field and the transmon, S1 is not a Gaussian variable,
making SNR difficult to interpret. Thus, we also report the
distinguishability F , defined as the probability of correctly
inferring from the homodyne current the correct number of
signal photons:

F = [P (S < Sth|n = 0) + P (S > Sth|n = 1)]/2, (6)

where Sth is a threshold value for S which optimally discrim-
inates between small and large probe displacement. We have
also assumed that n = 0,1 are equally likely.

To quantify the performance of a single unit as a photon
detector, we perform a Monte-Carlo study, generating many
trajectories with either n = 0 or n = 1 and computing S

for each. Here we assume η = 1, which requires quantum
limited amplifiers. This assumption sets an upper bound
on the performance of this scheme, and we briefly discuss
amplifier noise later. Figure 2 shows histograms of S for
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FIG. 2. (Color online) The histograms of filtered homodyne sig-
nal for the presence/absence of the signal photon and the correspond-
ing distinguishability. The black curve plots the distinguishability
versus threshold values. The signal photon pulse is an exponentially-
decayed pulse from a source cavity, and the linear filter function
is presented is Eq. (5). The parameters are: γ01 = 1, γ12 = 0.1,
g = 2.45, δ1 = −0.8, δ2 = −18, γc = 0.1, E = 0.032, κ = 0.037,
φ = π/2, t0 = 0, and T = 80.
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n = 0 (gray) and n = 1 (red), for system parameters chosen
to maximize F . The peaks of the histograms are reasonably
distinguished. The black trace shows F as a function of Sth.
We find SNR1 = 1.2, and F1 = 84%,1 which is a substantial
improvement over Ref. [17]. For comparison, the fidelity using
the more sophisticated hypothesis testing filter gives a slight
improvement F HT

1 = 84.6%.
We note that the optimal choice γ12 = 0.1γ01 used in

Fig. 2 requires that the microwave density-of-states (DOS)
in the transmission line be engineered to suppress emission at
ω12. Without DOS engineering, γ12 = 2γ01 [23], and we find
that the fidelity is reduced to F1 = 81%.

The lifetime for the unit cavity is chosen to optimize
single-photon induced transmon excitation. Accordingly, the
signal pulse must be relatively long, matching the cavity life
time. With a long pulse and a good cavity, during the interaction
time of the signal photon with the system, the intracavity
field changes dramatically [see Fig. 1(c)]. In comparison, for
a situation without a unit cavity, the change in the probe is
determined by the transmon coherence 〈σ̂12〉 < 〈σ̂11〉, which
decays quickly in that case. The cavity allows the probe field
to interact for a long time with the signal-induced coherence
in the transmon, resulting in the larger integrated homodyne
signal over the measurement time.

The probe amplitude used in Fig. 2 was chosen to optimize
the performance of the single-photon detector. Increasing the
probe amplitude beyond this level leads to strong saturation
effects in the transmon, consistent with the breakdown of an
effective cross-Kerr description as discussed in Ref. [17].

The peak distinguishability for a single transmon is poten-
tially useful in some applications. To increase it further, we
follow [15] and cascade multiple transmons using circulators
to engineer a unidirectional waveguide. The computational
cost of simulating a chain of transmons grows exponentially
with the number of transmons Ntr, however it was shown
in Ref. [15] that the SNR grows as

√
Ntr, as might be

expected for independent, repeated, noisy measurements of
the same system. For our purposes, we consider cascading
two transmons, A and B. Since our detection process is
nonabsorbing, and circulators suppress backscattering, the
single microwave photon will deterministically interact with
A and then B in that order, resulting in dynamical shifts for
both cavity modes. We suppose that each cavity is addressed
by a separate probe field, leading to two homodyne currents.
Again, we expect this to improve the SNR by ∼√

2.
For computational efficiency in our Monte-Carlo simula-

tions, we unravel the master equation to produce a stochas-
tic Schrodinger equation [22,25], including four stochastic
processes: three quantum diffusion processes, one each for
the cavity fields and an additional process to account for
cross relaxation of the transmon into the waveguide, and one
quantum-jump process for the signal photon pulse.2 In the
absence of a signal photon, the evolution of the unnormalized

1The subscript denotes a single cavity-transmon unit.
2We emphasize that the jump process is solely to generate the

homodyne currents (which are determined by the quantum diffusion
processes); we do not subsequently use the jump records.

system wave function |ψ̃〉 is governed by

d|ψ̃(t)〉

= dt

[
−i(Ĥs + Ĥcas) − 1

2

( ∑
j=A,B

κj â
†
j âj + Ĵ †Ĵ + Ĵ

†
2 Ĵ2

)

+
∑

i=A,B

(e−iφj
√

κj âj )I (j ) + Ĵ2I2

]
|ψ̃c(t)〉, (7)

where

Ĥs =
∑

j=A,B

[
δj1σ̂

j

11 + (δj1 + δj2)σ̂ j

22 − igj

(
âj σ̂

j

21 − â
†
j σ̂

j

12

)

− iEj (âj − â
†
j )

]
Ĥcas = − i

2

[ ∑
j=A,B

(
γcγ

j

01

)1/2
ĉσ̂

j

10 + (
γ A

01γ
B
01

)1/2
σ̂ A

01σ̂
B
10

+ (
γ A

12γ
B
12

)1/2
σ̂ A

12σ̂
B
21

]
+ H.c., (8)

where we have defined Ĵ = √
γcĉ

†ĉ + ∑
j=A,B

√
γ

j

01 σ̂
j

01 and

Ĵ2 = ∑
j=A,B

√
γ

j

12 σ̂
j

12. Upon a jump event in the signal field,
the system state evolves discontinuously:

|ψ̃(t + dt)〉 = Ĵ |ψ̃(t)〉. (9)

The homodyne signals are given by I (j ),(j = A,B) for output
of two cavities and I2 for emission from transmons to the
transmission line:

I (j ) = √
κj 〈e−iφj âj + eiφj âj 〉 + dWj/dt

I2 = 〈Ĵ2 + Ĵ
†
2 〉 + dW2/dt. (10)

We simulate 8000 trajectories using the same parameter
values as before (assuming identical transmon-cavity units),
for each choice of n, to obtain a distribution of homodyne
currents, I (A) and I (B), which we integrate according to Eq. (5)
to produce S(A) and S(B). Figure 3(a) shows a scatter plot of the
two homodyne signal pairs (S(A)

n ,S(B)
n ) for n = 0 (black) and

n = 1 (red). To distinguish between these two distributions
we project onto the sum S(AB) = (S(A) + S(B))/2, shown in
Fig. 3(b), and we calculate SNR2 = 1.7 ≈ √

2 SNR1, as
expected. Likewise, we define the distinguishability as in
Eq. (6), replacing S with S(AB). Optimizing Sth, we find F =
90%. We note that if the distributions were in fact Gaussian,
then this improvement in SNR would give a distinguishability
of 91.5%, slightly higher than what we achieve.

Achieving the performance above requires quantum limited
amplification, so that η = 1. Josephson parametric amplifiers
provide one avenue to this limit, and are rapidly improving,
recently achieving η ≈ 0.5 [26–28]. This compares very
favorably compared to HEMT amplifiers for which η ≈ 1%
[26,27]. From Eqs. (2) and (4), we see that if η < 1, the
signal is reduced by a factor of

√
η and the total noise is also

slightly reduced. Thus we estimate that for current state-of-
the-art with η = 0.5, SNR1 ≈ 0.94 which implies F ≈ 75.5%.
Anticipating η = 0.8 may be achievable in the near future, in
which case we estimate SNR1 = 1.15 and F ≈ 80%.
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FIG. 3. (Color online) (a) The scatter plot of the filtered homo-
dyne signals from two probe cavities with the presence/absence of
the signal photon. (b) The histogram of the sum homodyne signal
SAB and the corresponding distinguishability in the two cascaded
transmons case. The parameters are: γ A

01 = γ B
01 = 1, γ A

12 = γ B
12 = 0.1,

gA = gB = 2.45, δ1A = δ1B = −0.8, δ2A = δ2B = −18, γc = 0.1,
EA = EB = 0.032, κA = κB = 0.037, φA = φB = π/2, t0 = 0,
and T = 80.

In our proposed detector, there is in fact some distortion
of the signal pulse envelope, as the transmon-cavity unit
coherently interacts with the signal field, closely analogous
to the pulse envelope distortion found in Ref. [15]. This
is shown in Fig. 4(a). Here, we have allowed the detuning
δ2 to vary, in order to vary the distinguishability. We see
that the pulse envelope is maximally distorted when F is
maximal, which follows since this is the condition under
which the measurement back action is maximized. For photon
counting considered in this paper, the deterministic pulse
distortion is not a significant issue. However it may become
one if the transmon were to be used to induce gates between
photon-encoded states (e.g., in an interferometer), since the
pulse shape would encode some amount of “which-path”
information leading to a reduction in coherence between
different paths [29]. It may be possible to circumvent this
problem, albeit at the cost of significant complexity [30].

Finally, we consider what happens to a signal field that is
prepared in a superposition of Fock states. In this case, QND
measurement of the photon number should cause decoherence
between the components in the superposition, leaving popula-
tions unchanged [31,32]. Suppose r̂ is an operator acting on
the signal field. In a QND number measurement, [r̂†r̂ ,Hs] = 0,
while [r̂ ,Hs] 	= 0 so that the coherence between Fock sub-
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FIG. 4. (Color online) (a) Pulse envelope distortion. (b) Measure-
ment induced decoherence of the signal microwave photon state.
The gray dash curves denote the input signal field and the solid
curves denote the output signal field at different distinguishability.
The blue (δ2 = −6) and orange (δ2 = −18) curves represent the
output signal field after interacting with one transmon and the
green (δ2A = δ2B = −18) curves represent the output signal field
after interacting with two transmons. The other parameters are:
γ A

01 = γ B
01 = 1, γ A

12 = γ B
12 = 0.1, gA = gB = 2.45, δ1A = δ1B = −0.8,

γc = 0.1, EA = EB = 0.032 and κA = κB = 0.037.

spaces 〈r̂〉 decays during the interaction. To demonstrate this
effect, we take a superposition state |0〉 + |1〉 as the initial
state of the fictitious source cavity and see how 〈r̂〉 evolves
during the measurement process. Figure 4(b) shows the time
evolution of 〈r̂〉, for different values of distinguishability.
This confirms that when the system is tuned to maximize the
distinguishability, coherence is most rapidly suppressed.

In summary, we have demonstrated a protocol for photon
counting of itinerant microwave photons, which exploits
the large cross-Kerr nonlinearity of a single transmon in
a microwave waveguide [18]. By synthesizing results from
Refs. [15] and [17], and adding a local cavity to each
transmon, we find that we can cascade multiple such devices to
produce effective photon counters. With just two, we achieve
a distinguishability of 90%, which may be useful in certain
microwave experiments. We anticipate that three or four units
could achieve fidelities up to 95%.
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