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Abstract 

Any attempts to apply techniques that are based on indirect measurements of parameters that are 
believed to correlate to any material properties (or state) in an in-line situation must by necessity 
identify a mathematical model of this relationship. The most conventional approach is to use some 
empirically based model. If the analysis instead is based on an analytical model of a physical ex-
planation, this trainee period can be minimized and the system is more dynamic and less sensitive 
to changes within the chain of production. A numerical solution to the inverse problem of ultra-
sonic crack detection is in this case investigated. This solution is achieved by applying optimiza-
tion techniques to a realistic model of the ultrasonic defect detection situation. This model in-
cludes a general model of an ultrasonic contact probe working as transmitter and/or receiver and 
its interaction with the defect. The inverse problem is reduced to minimization of a nonlinear least 
squares problem and is performed with a quasi-Newton algorithm consisting of a locally conver-
gent SVD-Newton method combined with a backtracking line search algorithm. The set of synthet-
ic data the model is fitted with is generated both by numerical integration and with the 
two-dimensional stationary-phase method while the forward solver in the optimization procedure 
is based on the latter. In both these cases the convergence, in terms of numbers of iterations, is 
sufficient when the initial guess is reasonable close. 
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1. Introduction 

Nondestructive testing (NDT) has many industrial applications with increasing use in reliability investigations of 

materials and components. New and stronger demands on safety, reliability and optimization have made it im-

proper to just detect a flaw or the presence of inferior material properties. The need of quantitative information 

has given rise to more fundamental approaches to nondestructive evaluation (NDE) with growing emphasis on 

theoretical modeling of the ultrasonic inspection situation.  

 

In previous research we have developed a complete mathematical model of the ultrasonic NDT situation 

(UTDefect) which has been incorporated into different simulation software (SUNDT and simSUNDT). The de-

velopment has been ongoing since almost twenty years and has been validated and described in a numerous 

journal and conference contributions (see e.g. [1-3]). The model includes a general model of an ultrasonic con-

tact probe working as transmitter and/or receiver and the interaction of the ultrasound with the defect. This real-

istic model offers the possibility of avoiding, or at least reducing, time-consuming and costly experimental 

work. It can also be useful in the design of inspection routines as it gives an estimate of weather a postulated 

defect can be detected or not.  

 

 

        Figure 1. Simulated situation versus inspection situation. 

 

The practical situation when ultrasonic NDE is used is in fact an inverse problem, i.e. based on the signals from 

transmitting and receiving probes an interpretation is performed (see Fig.1). This interpretation is then often 

based on earlier experiences or by comparing with experimental work or computer simulations. Analytical solu-

tions to the inverse problem have up today only been found for very simple situations and are often based upon a 

linearization of the inverse problem performed by the Born approximation (an extensive review discussing this 

is available by Bates et al. [4]). This linearization limits the applicability since it, at least in principle, restricts 

the problem to weak penetrable scatterers or low frequencies. Even so this assumption has actually been suc-

cessfully applied for more complex ultrasonic situations [5]. A slightly different approach, still based on the 

Born approximation, has been to retrieve a large amount of point source information and address the inversion 

by various time domain back propagation techniques (Synthetic Aperture Focussing Techniques described in 

e.g. [6] and [7]). Degtyar et al. [8] introduced an inversion procedure based on a nonlinear least-squares method 

to determine elastic constants from group or phase velocity data in orthotropic and transversely isotropic materi-

als. Corresponding approach has also been used in order to retrieve viscoelastic material properties based on ul-

trasonic experimental data (Castaings et al. [9] and [10]). 

 

To investigate its possibility we in the present paper approach the inverse problem by applying optimization 

techniques to our previous general model of the ultrasonic inspection. This choice of technique is based on a 

paper by Björkberg and Kristensson [4] where an optimization technique is successfully used to numerically 



HÅKAN WIRDELIUS 
 

 
3 

solve an electromagnetic inverse problem. This problem originates from geophysical prospecting applications 

and differs from ours in the sense that all components of the scattered field is available by measurements from 

bore holes in the ground. In ultrasonic NDT situations only two electric pulses in time, representing the incom-

ing and scattered field, respectively, are the available information from the transmitter and receiver. 

 

The aim of this paper is to investigate if it is possible to numerically solve the inverse problem that occurs in ul-

trasonic crack detection, by minimizing the mean-square error between the ultrasonic model and corresponding 

data. 

 

The plan of the present paper is the following. In the first section we briefly discuss the model of the NDT situa-

tion previously presented by Boström and Wirdelius [1]. This includes the probe model, the interaction of the 

probe field with the defect and the reciprocity argument that handles the action of the probe when it is acting as 

a receiver. The next section presents the optimization technique that is used and is followed by a section with 

numerical results based on previous sections. Finally we give some concluding remarks and suggestions for fu-

ture considerations. 

2. Model of the ultrasonic inspection 

The governing linearized equations for wave propagation in an elastic medium are the equation of motion, 

Hooke's law and the strain-displacement relation. If time harmonic conditions are assumed (time factor       is 

suppressed) these three relations can be combined into the elastodynamic equation of motion governing the dis-

placement field u 

   

  
         

                    (1) 

where  

 
  
            

  
                     

    

are the compressional and shear wave numbers, respectively ( is the density,  and  are the Lamé constants of 

the elastic half-space).  

The total displacement field is given by the sum of the incident field (u
i
) and the scattered field (u

s
) 

                   (2) 

Let us expand the incident field in terms of regular spherical partial vector waves (    ) and the scattered field 

in corresponding outgoing spherical partial vector waves (  ), i.e. 

  
           

               
           (3) 

Then it is possible to find a linear relationship between the expansion coefficients for the incident and scattered 

field and this entity is known as the transition matrix T 

                        (4) 

All information about the scatterer is contained in its transition matrix and there are various methods of evaluat-

ing it. Most common is to use the null-field approach [12] but in our case with a prescribed open penny-shaped 

crack it is more convenient to use an integral equation method previously described by Boström and Eriksson 

[13]. The T matrix of a spherical cavity is obtained by separation-of-variables.  

We now introduce a coordinate system as in Fig. 2 with the z axis normal to the scanning surface and the x axis 

chosen so that the probe beam is emitted into the third quadrant of the xz plane with the angle  with the nega-
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tive z axis. In Fig. 2 we have introduced                   as the propagation direction and    is the S 

wave polarization direction (with          and              as the unit vectors). We choose         and 

                           in order to distinguish between horizontally and vertically polarized shear 

waves.  

 

        Figure 2. Geometry of the probe with definition of coordinate system and propagation/polarization directions. 

In order to model a probe of specific type and angle, the traction vector corresponding to a plane wave of iden-

tical type and angle is taken as boundary conditions on the surface of the elastic half-space. Now let the contact 

probe be characterized by this prescribed traction on the surface of the elastic half-space and assume that this 

area, corresponding to the acting probe, is elliptic or rectangular.  

We then get 

    

          
   

                                                      

                                                                           

                
                                                                        

    (5) 

beneath the probe and t = 0 elsewhere (A represents the amplitude). The function g = g(x,y) and the constant 

        enables reduction of edge effects and varied coupling respectively (for further details see [5]).  

In order to solve this boundary value problem and combine the incident field with the transition matrix formula-

tion, we make following ansatz for the displacement field radiated from the probe 

                           

 
            (6) 

with the plane vector wave functions,         , defined as in Boström et al. [15], and with the coefficients 

       as unknowns. Then the corresponding traction on the surface can be written as  

                                
 
            (7) 

which is identified as a 2D Fourier transform with corresponding inverse transform of the applied traction vector 

(Equation (5)). This reduces the evaluation of the expansion coefficients to solving a system of equations. In or-

der to incorporate the probe model into the T matrix formulation we have to transform our displacement field 

from the plane vector waves centred at the contact area into spherical vector wave functions suitably oriented 

and centred at the defect. This involves a transformation, a translation and a rotation as discussed in Boström 

and Wirdelius [1].  
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The characterization of the probe acting as a transmitter is encapsulated in the expansion coefficients for the in-

cident field (an) and to evaluate its behaviour as a receiver we use a electromechanical reciprocity argument by 

Auld [16] and define two elastodynamic states: 

  
                                                        
                                                    

       (8) 

(each probe acting with incident power P). Then the change in the electrical response of probe b, due to the 

presence of a defect (enclosed by a control surface S), is found as  

    
  

  
               

          (9) 

Expanding the two states in spherical vector wave functions and using the Betti identities we end up with the 

following expression for the electrical signal response 

       
 

          
           (10) 

 

with  

                                             
 

                                                          

                                         
        

        

3. Optimization technique 

In the previous section the theory for the direct problem (the ultrasonic NDT model) has been presented while we 

in this section introduce the optimization techniques that are used to numerically solve the corresponding inverse 

problem (see [11] and [14] for further details).  

 

The optimization problem is to fit a set of data (yi, di), i = 1, ...,m , with a model m(x, yi).   

Let us define the residual function as 

 

 
           
                

         (11) 

 

where      is a point in parameter space, yi is the coordinate, di is the data of the ith "sampling" and ri(x) 

denotes the ith component function of R(x). Then the optimization can be stated as a minimization problem (re-

ferred to as a nonlinear least-squares problem) 

 

                   
 

 
          

 

 
      

  
          (12) 

 

A quadratic model of f(x) around the current point xc is achieved by a two term Taylor expansion 

 

 

                  
        

 

 
      

        
       

 
 

 
     

            
            

              
 

 
      

       
                   

     (13) 

 

with the Jacobian matrix        , with components                   and the second derivate matrix of 

R(x) as 

            
      

 
            (14) 

 

The next iterate x+ is then found as the minimizer of Equation (14) by applying Newton's method (see Dennis and 

Schnabel [14]), i.e. 

             
             

       
            (15) 
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This is a fast local method since it is locally (i.e. near the true minimizer xtr) q-quadratically convergent but has 

the drawback of the necessity of calculating S(x) which is usually either unavailable or inconvenient to obtain.  

 

Instead of using the quadratic model gc(x) we introduce the affine model of R(x) around the current point xc 

 

 
    

        

                       
        (16) 

 

This is an over determined system of linear equations and therefore we cannot expect to find an x+ that satisfies 

        . A logical consequence is then to choose the next iterate x+ as the solution to the linear least-squares 

problem 

              
 

 
        

                (17) 

 

If       has full rank the solution can be written as 

 

             
       

       
              (18) 

 

The only difference between the quadratic models gc(x) (Newton method) and        (Gauss-Newton method) is 

the lack of second order information of        in the latter which makes it q-quadratically convergent only if 

S(xtr) = 0 (i.e. R(x) linear or R(xtr) = 0: a zero-residual problem). If it is a small-residual problem then the con-

vergence will be q-linear. However, for large-residual problems it may not be locally convergent at all.  

 

In order to enhance the Gauss-Newton method we introduce the singular value decomposition (SVD) of the Jaco-

bian matrix (       )  

 

           
                       

                                           
                  (19) 

 

where         and         are orthogonal matrices. The diagonal elements of D (i.e. the singular 

values of J) are the nonnegative square roots of the eigenvalues of     if      (or     if    ) and the 

columns of U and V are eigenvectors of                                      .  

 

Furthermore we define a pseudoinverse of J, the Moore-Penrose inverse, as 

 

              
   
   

 

  
      

          

 

   
           

                            (20) 

 

Then the minimizer of Equation (17) is found by (i.e. SVD-Newton iterate)   

 

            
                (21) 
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In order to suppress linear dependence of the column vectors, which will occur in the case of problems that are 

insensitive to variations of, or a linear combination of, parameters, we introduce the regularized Moore-Penrose 

inverse as 

   
     

      
  

 
 

    
   

 

  
       

           

 

   
           

              
                (22) 

 

where the regularizing parameter, , has the effect of masking off directions in parameter space in which the 

problem is ill-conditioned. 

 

The previous discussed locally convergent variation of the Newton method has to be supplemented by a global 

strategy in order to also enable global convergence to the problem. The direction of the Newton step is always a 

descent direction (if       is limited this includes the Gauss-Newton) but the step may well be too large and 

therefore not globally convergent. 

  

Given this descent direction,   , and         we try to find              , with         , until we 

get  

                        
           (23) 

if also  

 

         
               

           
               (24) 

 

is satisfied. Then there can be proven that given any direction    such that  

 

       
                (25) 

 

there exists      such that any method that generates a sequence      obeying these three conditions 

       , is at each iteration globally convergent. Let us define                  and, if we need to 

backtrack, use the most current information about    to model it, and then take the value of   that minimizes this 

model as our next value of   . 

 

Initially we have;            ,               
    and               , which result in the following 

quadratic model of       
 

                                                      (26) 

then 

 

                                          
                

            (27) 

 

and       
 

 
  is our new choice of   .  

 

In order to ensure proximity we in the numerical calculations start up with a SVD-Newton step (using Equation 

(22)) and if this full step does not give an acceptable decrease in the residual we use the above described back-

tracking line search along this direction. 
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4. Numerical results 

In this section we present numerical examples of the optimization algorithm developed by Björkberg and Kris-

tensson [11] and here implemented into the elastodynamic problem of defect detection. Our choice of 

NDE-situation has been the pulse-echo measurement on a elastic half-space with the material assumed to be 

steel with compression and shear wave speeds 5940 m/s and 3230 m/s (Poison's ratio  = 0.29). A major limita-

tion of the numerical optimization is of course the necessity to postulate the defect geometry (i.e. a priori infor-

mation on the used T matrix).   

 

        Figure 3. Pulse-echo amplitude as a function of probe position (all probes operating at 1 MHz single frequency): A/Unangled 

circular (diameter 10 mm) P probe with a spherical cavity defect (diameter 10 mm) located at the depth 60 mm. B/Unangled circular 
(diameter 10 mm) P probe with a penny-shaped crack (diameter 10 mm) located at the depth 60 mm and parallel to the surface. 

C/60° angled quadratic (side 10 mm) SV probe with a penny-shaped crack (diameter 10 mm) located at the depth 60 mm and perpendicular 

to the surface. 

We have restricted our optimization to three combinations of defect geometry and scanning probe: spherical 

cavity (diameter 10 mm) detected with an unangled circular (diameter 10 mm) P probe, open horizontal 

penny-shaped crack (diameter 10 mm) detected with an unangled circular (diameter 10 mm) P probe and the 

same crack lying perpendicular to the surface scanned by a 60° angled quadratic (side 10 mm) SV probe. All 

defects are situated at a depth of 60 mm and given a radius of 5 mm and corresponding single frequency C-scans 

are found in Figures 3A, 3B and 3C with individual normalization.  

These three ultrasonic inspection situations all contributes with four parameters which we then seek in our op-

timizations. These four parameters are the x and y coordinates, the depth a (of the defect centre) and the defect 

diameter d. The deviations from the true values are given in percentages and for a and d these percentages are 

relative the values a = 60 mm and d = 10 mm. For the x and y coordinates, however, the percentages are some-

what arbitrarily given relative (-10,-15), (-10,-15) and (70,-10) mm for cases 3A-C, respectively (these are the 

distances from the defect to the lower left corner of the C-scans in Figs. 3A-C). To identify what information our 
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residual should be based upon we have done parametric studies and these are presented in Figures 4, 5 and 6. 

These show that phase information in our case is not useful as a residual which is most obvious when we vary 

depth or size of the scatterer. The residual is also shown to be more sensitive to the number of frequencies than 

to the actual number of geometrical samplings points. This effect is revealed in Fig. 5 when compared with Fig. 

4. and is most obvious for the size parameter.  

In the expression for the expansion coefficients,   
  and   

   a double integral has to be evaluated. To avoid a 

quite computer time-consuming numerical integration (i.e. Gauss-Legendre qudrature) we have chosen to evalu-

ate this with the two-dimensional stationary-phase method (the distance between defect and probe is used as the 

large parameter). In the far field this have been found to be accurate at least within the main lobe (see [1]) and in 

order to avoid what is referred to as an "inverse crime" (see Colton and Kress [17]) we have also optimized with 

a "stationary-phase solver" on a integral solution of the direct problem. It is also necessary to suppress the com-

pression part when using an angled SV probe to get the optimization successful. 

The time dependence is easy to obtain by an FFT algorithm, but even if the time window is easy to predict and 

thereby kept small this involves dealing with a waste number of points without any valid information since the 

response is a pulse in time. Therefore we have chosen to optimize in the frequency domain but with a similar 

weight function characterizing the probe as that proposed by Boström and Wirdelius [1]. In this model a sym-

metric sine square function is used as the frequency spectrum and our model of the signal response can therefore 

be written as 

                                              (28) 

with m as the product of geometrical sampling points and the number of frequencies.  

No normalization has been incorporated into the ultrasonic NDT model and therefore the actual residual value is 

individual in each case. The maximum amplitude of signal response for the three cases shown in Fig. 3 varies as 

     
       

        and      
       

     . 
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        Figure 4. Amplitude residual and phase residual as a function of deviation from correct parameter value for NDE situation 3A. 
Parameters are: x and y coordinate, the depth a and the diameter d of the defect. Based on information from 12 freq. and 12x12 geometrical 

points (m=1728). 

 

        Figure 5. Same as in Fig. 4 but based on information from 50 freq. and 6x6 geometrical points (m=1800). 
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        Figure 6. Same as in Fig. 4 and 5 but for NDE situation 3B based on information from 10 freq. and 11x11 geometrical points 
(m=1210). 

 

        Figure 7. Optimization on situation 3C based on information from 50 freq. and 6x6 geometrical points (m=1800). 
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The parameter that is limiting the optimization is the size and this is also obvious in the parametric study of the 

penny-shaped crack parallel to the scanned surface. In fact the number of frequencies had to be increased to 50 

(10 frequencies are used in Fig. 6) in order to get the optimization to converge. Even then the initial guess had to 

be within a deviation of 15 percentages in order to converge. 

Figures 7, 8 and 9 shows the result from the optimization of the situation of a 60° angled SV probe with a 

penny-shaped crack perpendicular to the surface. In Fig. 7 the initial guess of crack diameter is 85% of the cor-

rect value and all the parameters convergence rate is presented in the figure while we have chosen to present the 

diameter and depth convergence rate as a function of initial guess of diameter in Fig. 8 and 9, respectively. This 

due to the fact that these two parameters are not independent of each other. The over-estimation of the depth at 

second iterate found in Fig. 8 is as seen strongly dependent on the initial guess of diameter and critical in terms 

of convergence. The two major stopping criteria of the optimization are the distance between two steps and suf-

ficient decrease of the residual. 

In Fig. 10 we present the optimization on the same NDT situation using an asymptotic probe model on data 

achieved by the corresponding integral solution. This reduce the convergence from being q-quadratical to being 

q-linear and the number of iterates increases from 20 to 25 before the stopping criterion of step size ends the op-

timization. At the minimum all parameters are within 1% deviation from the values representing the "true" 

minimizer, except for the x parameter that ends at 96 % of its corresponding value.  

Figure 11 present the result of the optimization on the situation of an unangled P probe with a penny-shaped 

crack parallel to the scanning surface. The problem with overestimation of the depth parameter at the second it-

erate is also present for this situation. Even though this effect is more pronounced in this case, the true mini-

mizer is already found at the 10:th iterate. 

 

 

        Figure 8. The depth variation when optimization is performed as in Fig. 7 and for three initial guess of defect diameter. 
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        Figure 9. The diameter variation when optimization is performed as in Fig. 7 and 8. 

 

        Figure 10. Optimization as in Fig. 7, performed with asympt. probe model on data generated by corresponding integral solution 
(non-zero residual probl.). 
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        Figure 11. Optimization on situation 3B based on information from 50 freq. and 6x6 geometrical points (m=1800). 

In Figures 12, 13, 14 and 15 the type of defect is altered to a spherical cavity and scanned by an unangled P 

probe. For this situation the dependence between depth and diameter are even more obvious since the maximum 

signal response is dependent on the distance represented by the difference between these two. The asymptotic 

probe model is used for data in Fig. 12 while the numerical integrated solution is data in Figures 13, 14 and 15. 

The non-zero residual problem in Figures 13, 14 and 15 reduces the rate of convergence in terms of iteration as 

expected but the optimization actually becomes more insensitive to deviations from the "true" value in the initial 

guess of the size. At the minimum a cavity two percentages larger and oriented two percentages less in depth 

than that used to generate the data is found. 
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        Figure 12. Optimization on situation 3A based on information from 50 freq. and 6x6 geometrical points (m=1800). 

 

        Figure 13. Optimization as in Fig. 12, performed with asympt. probe model generated by corresponding integral solution 
(non-zero residual probl.). 
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        Figure 14. The depth variation when optimization is performed as in Fig. 13 and for three initial guess of defect diameter. 

 

        Figure 15. The diameter variation when optimization is performed as in Fig. 13 and 14. 

 



HÅKAN WIRDELIUS 
 

 1
7 

4. Concluding remarks 

In the preceding sections we have studied a numerical inverse solution to the non-destructive testing situation. 

The method we have used to achieve this has been the application of an optimization technique on a model of 

the ultrasonic inspection situation. If the inverse algorithm, described in previous sections, is to be used together 

with experimental NDT data a more general T matrix has to be implemented. Such as the T matrix for an elliptic 

or rectangular crack, oriented by three Euler angles, increases the number of parameters to eight which call for 

improvement of the convergence. One conclusion that can be made from the numerical section is that there is a 

distinct difference between global parameters compared with local (i.e. 3A/3B: a and d, 3C: x,a and d), in terms 

of convergence. 
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