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Abstract

We propose a method for DNS of particle motion in non-isothermal systems. The
method uses a shared set of momentum and energy balance equations for the carrier-
and the dispersed phases. Measures are taken to ensure that non-deformable entities
(solid particles) behave like rigid bodies. Moreover, deformable entities (e.g. bubbles)
as well as rarefaction effects can be accommodated. The predictions of the method
agree well with the available data for isothermal solid particles motion in the presence
of walls and other particles, natural convection around a stationary particle, solid
particles motion accompanied with heat transfer effects and isothermal solid particles
motion under rarefied conditions. The method is used to investigate the simultaneous
effects of heat transfer and rarefaction on the motion of a solid catalyst particle in an
enclosure, the interaction of a solid particle and a microbubble in a flotation cell and a
case with more than 1000 particles.

1. INTRODUCTION

In a number of industrial applications, more than two types of dispersed phases co-exist and
interact. Important examples include flotation (solid particles and bubbles in a liquid), and in-
cylinder diesel spray combustion and spray drying with particle nucleation (droplets and solid
particles in a gas). The transport of momentum and heat can be strongly coupled in these
systems, so that the motion of the dispersed phases is significantly affected by the heat transfer
and vice versa.

Furthermore, filtration of fine solid particles is important in many industrial processes, for
example in the removal of particulate matter from exhaust gases. In such systems, the events
governing the overall performance of the device are occurring on micro- or nano-scales. It is not
yet well established how particle motion and filtration are affected by non-isothermal conditions at
these small spatial scales. In addition, when the particle size is comparable to the mean free path of
the gas, rarefaction effects become important.

In the derivation of closure laws for use in numerical simulations of industrial units, direct
numerical simulations of the events on the microscale are important. The primary interest here is
thus to perform numerical investigations of the flow phenomena on the scale of the particles using
a direct numerical simulation (DNS) approach. We use the term “multiphase direct numerical
simulations (DNS)” to denote numerical simulations of multiphase flows where one resolves the
temporal and spatial scales relevant to the fluid dynamics. In the present work, we present a
comprehensive multiphase DNS framework in which all of the aforementioned physics can be
included simultaneously.

With such DNS techniques, the Navier-Stokes equations are solved directly, together with a
method for taking the presence of particles into account. Some of the most common multiphase
DNS methods include the Volume of Fluid (VOF) method (Hirt and Nichols 1981), the front
tracking method (Tryggvason et al. 2001), the immersed boundary methods (Peskin 2002; Mittal
and Iaccarino 2005; Uhlmann 2005; Kim and Choi 2006; Mittal et al. 2008), and Lagrange
multiplier/fictitious domain methods (Glowinski et al. 1999; Glowinski et al. 2001; Sharma and
Patankar 2005; Apte et al. 2009; Apte and Finn 2010). In addition, there exist methods where the
fluid flow near an immersed object is locally matched to the corresponding Stokes flow solution
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(Zhang and Prosperetti 2005). There are also several level-set methods available for capturing the
position and evolving topology of fluid-fluid interfaces (e.g. Lahey 2009). Finally, recent progress
in the development of the macro-scale pseudo-particle method (MaPPM) has enabled DNS of very
large dispersed multiphase systems to be carried out on GPU-based HPC systems (Ma et al. 2006;
Ma et al. 2009; Xiong et al. 2010).

Although direct numerical simulations of multiphase systems with simultaneous heat transfer
and solid particles motion is still an emerging field, a number of methods have already been
presented in the literature. Of these, the distributed Lagrange multiplier/fictitious domain method
(Yu et al. 2006; Wachs 2011) and the immersed-boundary method (Feng and Michaelides 2009)
have received most attention. Recently, a method in which the fluid-solid coupling is accomplished
at the level of the discrete momentum and thermal energy balance equations has also been proposed
(Deen et al. 2012).

As previously stated, simultaneous momentum, heat and mass transfer is common in industrial
gas-solid systems. Moreover, the particles might be solid or sometimes droplets, or even solid
structures with condensed material over the surface. For applications involving fluid-like particles,
the VOF multiphase model is considered an appropriate framework (Lakehal et al. 2002).
Furthermore, among multiphase DNS techniques, the VOF model is relatively simple to implement
and computationally efficient since it avoids explicit computation of the hydrodynamic force and
torque on the particles (Jakobsen 2008).

In the current work, we propose a VOF technique to handle solid particles motion coupled with
heat transfer effects. This method resolves both the temperature field of the carrier phase and that
inside the particles. No restrictions on the particle Biot number or the variations of the fluid
properties are introduced in the derivation, although the Boussinesq model is employed for
validation purposes. The model is valid for Knudsen numbers of up to unity in unbounded flow. We
herein present numerical results that constitute a validation of the method, as well as a discussion
about situations in which the currently proposed method represents a competitive choice for
performing numerical investigations of dispersed multiphase systems.

2. MODELLING AND NUMERICS

A shared set of balance equations is used for the continuous phase and the dispersed phases. These
dispersed phases can be solid particles and/or fluid particles (i.e. droplets or bubbles). For a system of
NP solid particles, the volume fraction of the carrier fluid in a computational cell is denoted gf and the
volume fraction of the i:th particle is designated gp,i,. To avoid inadvertent particle coalescence, particles
that touch each other must be interpreted as separate phases and hence exist in different volume fraction
fields. The subscript j in the variable gp,i,j thus represents the volume fraction of the i:th particle present
in the j:th volume fraction field. The total number of volume fraction fields employed is denoted NVF,
and the sum of all volume fractions in a computational cell is unity:

(1)

The herein proposed method puts no restriction on NP, and we drop the particle identity
subscript and summation for typographical reasons from this point.

The velocity field is determined from the shared continuity and momentum equations, assuming
that the flow is incompressible and that the velocity of the two phases is continuous across the
interface:

(2)

(3)

As may be seen from the gravitational term in equation (3), the Boussinesq (1903) model is
employed to describe the variation of the buoyancy force with temperature.

∑∑γ γ( )+ =
==

1f p i ji

N

j

N

, ,11

PVF

∇⋅ =u 0

ρ μ β γ ρ γ ρ
∂

∂
+ ⋅∇

⎞

⎠
⎟

⎛

⎝
⎜ = −∇ + ∇⋅ ∇ + ∇ + − − + + σ

u

t
u u P u u T T g F[ ( ( ) )] {[1 ( )] }T

f f p p0 ,0

194 DNS of Dispersed Multiphase Flows with Heat Transfer and Rarefaction Effects

Journal of Computational Multiphase Flows



The shared density and viscosity in equation (3) are determined locally using:

(4)

(5)

where rptf and mptf indicate the particle-to-fluid ratio of densities and viscosities, respectively.

The effects of rarefication can be taken into account by exchanging the particle density for an
adjusted density r* (Ström et al., 2011):

(6)

Here, Knp is the particle Knudsen number based on the particle radius. In the continuum limit,
Knp goes to zero and r* becomes equal to the particle density rp, meaning that the conventional
continuum representation of the simulation framework is recovered.

The presence of the particles is monitored by solving NVF continuity equations for the particulate
phase:

(7)

Note that the formulation in equation (7) inherently obeys the boundary conditions of matching
velocities, pressures and temperatures of the fluid and solid regions, as well as matching
momentum and heat fluxes. It is the enforcement of these boundary conditions that constitute the
core of the fictitious-domain/immersed-boundary methods. In contrast, the challenge in the VOF
framework lies in making sure that the particles behave as solid, rigid particles.

The VOF method was originally proposed by Hirt and Nichols (1981) for simulations of gas-
liquid and liquid-liquid systems. Using VOF for handling also solid particles motion requires some
additional considerations:

1) The velocity boundary condition at the interface between the solid particle and the fluid
should replicate that of no slip. Therefore, mptf in equation (5) should approach infinity in
the regions occupied by solid particles. In practice, a sufficiently high numerical value is
acceptable (Ström et al. 2011).

2) A unidirectional velocity field is enforced inside each solid particle by updating the shared
velocity field at the end of each time step according to:

(8)

where the velocity of the i:th particle is obtained from:

(9)

and uc
old is one of the velocity components in cell index c before the update, V is the volume of a

computational cell and the summation is carried out over all cells of the computational domain. The
weighting of the old and new velocity fields conserves momentum, and the computational cost of the
update loop is insignificant compared with the cost of performing a sub-iteration within a time step.

3) The term Fs in equation (3) represents a force designed to ensure that a solid particle
retains its spherical shape (Brackbill et al. 1992; Ström et al. 2011):
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(10)

Here, is the unit normal to the fluid-particle surface. The value of s, which may be interpreted
as a fictitious surface tension between the solid particle and the carrier fluid, is updated globally in
every time step using:

(11)

so that the restriction that the maximal Capillary number for the solid particle remains below 0.05
is always valid.

In the interior of the computational domain, the unit normal is calculated locally as:

(12)

To maintain the spherical shape of the particle also in the case where the particle enters the cell
layer next to the wall, the unit normal within these cells is set to approach the wall-normal unit
vector. Numerically, this is achieved by modeling the unit wall normal in this cell layer as:

(13)

while using a value of the numerical parameter q that is close to 180°. In equation (13),

represents the normal unit vector and the tangential one. As the expression for Fs is based on
the continuum surface force model (Brackbill et al. 1992), the choice of q may be physically
interpreted as a particle-wall contact angle. Consequently, it implicitly determines the degree of
particle deformation allowed upon contact or collision with a wall.

It becomes important that each solid particle exists in a different volume fraction field if two or
more particles come in close proximity of each other. Otherwise, particle coalescence could
inadvertently occur. To guarantee that solid particles in close proximity of each other always exist
in separate volume fraction fields, a control algorithm is implemented that moves the particles
between different fields as required by the current state of the solution. The procedure followed by
the volume fraction field control algorithm thus becomes:

1) Update the current particle locations.
2) Identify possible future collision partners.
3) Move any identified solid particle within another solid particle’s close proximity to

another volume fraction field.
The temperature field is obtained by solving an energy balance equation:

(14)
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In the same way as with the pressure and velocity, the continuous and dispersed phases share a
single temperature field. The local value of the thermal conductivity is determined using:

(17)

The effects of rarefaction on the heat transfer are taken into account by exchanging the particle
heat capacity for an adjusted heat capacity (Ström and Sasic, 2013a):

(18)

Equations (2), (3) and (14) are discretized on a co-located grid using the QUICK scheme for the
convection terms and a second-order accurate central-differencing scheme for the diffusion terms.
The pressure-velocity coupling algorithm is PISO, and PRESTO! is used as the pressure
interpolation scheme. Equation (7) is discretized using the CICSAM scheme (Ubbink 1997).

The temporal discretization of all balance equations is first-order implicit, with the exception of
equation (7). The solution of the latter equation is advanced in time using explicit time stepping and
a time step that is limited by the constraint that the global CFL number must remain below 0.25. 
A small CFL number, when used with explicit time stepping and a robust spatial discretization
scheme with an upwind character, counteracts numerical diffusion that could otherwise lead to
smearing of the interface profile (Darwish and Moukalled 2006). It also assists in avoiding
convergence problems, at the expense of having to take a larger number of time steps in the update
of equation (7). To maintain computational efficiency, the update of equation (7) is therefore
performed only once at the beginning of every fluid flow time step, so that the volume fraction
fields are frozen during the iterative solution of the continuity, momentum and energy balance
equations. It was also confirmed that the small CFL numbers employed imply that any effects of
this procedure on the number of sub-iterations needed within a time step are very small.

3. RESULTS AND DISCUSSION

In this section, the predictions of the current numerical method are compared to the available data
for a number of important validation cases: solid particles motion during isothermal conditions in
the presence of walls and other particles, natural convection around a stationary particle, and solid
particles motion accompanied with heat transfer effects. Finally, it is shown how the method can
be applied to investigate the simultaneous effects of heat transfer and rarefaction on the motion of
a solid catalyst particle in an enclosure and the outcome of the interaction of a solid particle and a
microbubble in a flotation cell.

The choice of variables by which to non-dimensionalize the results is not entirely
straightforward (Wachs 2011). Here, we choose the approach of Yu et al. (2002) and make the
velocity dimensionless by a characteristic velocity that is representative of
the terminal velocity, whereas the position and time are scaled by the particle diameter and the
characteristic time scale t = dp/U respectively. The drag force is made dimensionless by scaling with the
Stokes drag, F = 3pmdpU .

Since the proposed method is developed for investigations of systems of many particles in wall-
bounded domains, it is of great importance to verify that the method is capable of predicting the
interaction of a particle with a wall and other particles. In the presence of surfaces, e.g. walls or
other particles, the drag force on a particle increases in comparison to the situation when the
particle is isolated in an unbounded domain. The correct drag force can, under such circumstances,
be obtained by multiplying the Stokes drag with a drag modification function, l.

In Figure 1, a particle is settling towards a plane at its terminal velocity in the carrier fluid. The
fluid properties are chosen so that the particle motion remains within the Stokes flow regime at all
times. In this situation, the drag modification function is only a function of the distance between the
plane and the particle. Brenner (1961) derived analytically l for a sphere moving towards either a no-
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slip plane or a free-slip plane. A no-slip plane would represent either a wall or the surface of a (large)
solid particle, whereas a free-slip plane represents a free surface or the surface of a (large) bubble.

When we compare the Brenner (1961) results to the drag modification observed in three-
dimensional numerical simulations of the identical problem using the proposed method, it is found
that the current method is in very good agreement with the Brenner solution. In Figure 1, the
particle-plane distance is taken from the plane surface to the particle center and is normalized by
the particle radius (i.e. a distance equal to unity indicates that the surfaces are in contact).

The drag modification function for a particle approaching another (identical) particle was
measured experimentally by Adamczyk et al. (1983). In Figure 2, the predicted drag modification
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Proposed method, free-slip plane

Proposed method, no-slip plane

Brenner (1961), no-slip plane

Brenner (1961), free-slip plane
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Figure 1: Drag modification function (l) plotted versus the particle-plane distance. The
particle is approaching a plane where either a no-slip or a free-slip boundary condition is

imposed for fluid flow.

Figure 2: Drag modification function (l) plotted versus the particle-particle distance. The
particle-particle distance is taken from the stationary particle surface to the moving

particle center and is normalized by the particle radius (i.e. a distance equal to unity
indicates that the particle surfaces are in contact).



from the method proposed in this paper is compared to their data. The governing parameters for
this problem are the particle-particle separation and the particle-particle size ratio (the latter being
unity in our comparison). Again, the particle motion remains within the Stokes flow regime
throughout the interaction. As with the approach towards a plane, the agreement observed is very
good. The slight disagreement at the smallest particle-particle distance can be explained by the
decision not to dynamically refine the mesh in the region between the two particles.

The next validation simulation treats natural convection around a stationary particle. This is an
example of heat transfer-induced fluid motion that becomes of great importance when the particle
motion takes place simultaneously as the particle-fluid heat transfer, and when the two phenomena
have a significant impact on each other.

This case of a circular cylinder placed eccentrically in a square enclosure is used for validation
of the current model against the numerical results of several works in which different multiphase
DNS methods were used to handle the same problem and whose results all agree well (Demirdzic
et al. 1992; Pacheco et al. 2005; Yu et al. 2006; Feng and Michaelides 2009).

The computational domain is a two-dimensional square box (2.5dp ¥ 2.5dp) and the particle is
represented by a circular cylinder placed eccentrically (0.25dp above the center) in the enclosure.
The cylinder is stationary and at a constant temperature that is higher than that of the surrounding
fluid. The vertical walls are kept at the initial temperature of the fluid, whereas the top and bottom
walls are adiabatic. The steady-state solution for the natural convection inside the enclosure is
obtained and compared to the aforementioned previous studies. The governing dimensionless
numbers are Pr = 10 and Gr = 105. The result is shown in Figure 3, where the iso-contours of
temperature are depicted. The isotherms obtained by the proposed method agree very well with the
results of Feng and Michaelides (2009), and hence also with the other previous investigations
(Demirdzic et al. 1992; Pacheco et al. 2005; Yu et al. 2006). We regard this as a confirmation that
the energy balance equation is correctly implemented within the current framework.

Next, we consider the settling of a particle in an adiabatic two-dimensional enclosure 
(8dp ¥ 16dp) under the influence of gravity and heat transfer effects. The particle and the
surrounding fluid are initially of the same temperature, and the particle is positioned in the middle
of the enclosure. There is however a uniform heat source inside the particle that increases the
temperature of the particle (and eventually also its surroundings). The evolution of the particle
velocity in the vertical direction is monitored as a function of time.

The governing dimensionless parameters for these cases are given in Table 1. The results
are shown in Figure 4, together with the results obtained by Yu et al. (2006), Feng and
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Figure 3: A hot cylinder placed eccentrically in a square enclosure. Left: Current
work.Right: Feng and Michaelides (2009). The contour levels represent 0.1 units of

normalized temperature on the interval 0.05-0.95 (cold = black, hot = white). 
The isotherms agree well, the only difference being the 0.05 contour, farthest away 

from the cylinder.



Michaelides (2009) and Wachs (2011) for the same problem. The simulations predict that the
particle initially falls towards the bottom of the enclosure. However, the heating of the
boundary layer around the particle eventually gives rise to a buoyancy force that first
counterbalances and then overcomes the gravitational acceleration of the particle. The particle
therefore starts to move upwards, until the effects of the upper wall become apparent. The
particle motion is then slowed down because of the aerodynamic resistance, and because of 
the geometry that restricts and weakens the natural convection currents that carry the particle
upwards. The current model is in good agreement with all of the three previous works. The
minor differences observed are within the bounds expected due to the different choices of
coupling methods and discretization schemes, given the very sensitive thermo-mechanical
coupling of the system (Wachs 2011; Ström and Sasic, 2013b).

The case with a particle with an internal heat source in an enclosure can be thought to represent
that of a catalyst particle, catalysing an exothermic chemical reaction, inside a pore or a cavity. In
a real application, it is therefore likely that the particle will be very small; it might in fact even be
significantly smaller than the mean free path of the surrounding fluid. In such rarefied flow, 
the particle motion history is similar but delayed (slower) compared to the continuum case. Firstly,
the rarefied fluid surrounding the particle cannot resist the initial particle acceleration due to gravity
as in the continuum case. In a rarefied case, the particle therefore falls farther than in a continuum
case. Secondly, the impeded heat transfer from the particle to the fluid delays the growth of the
buoyancy force. Consequently, the particle attains a larger downward velocity before changing
direction with increasing Knp.
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Table 1. The governing dimensionless parameters used in the validation simulations.

Parameter Re
p,T

ρptf kptf cp,ptf Gr βptf Pr Knp

Value 40 1.1 or 1.6 5 or 15 1 1000 0 0.7 0

Time

V
el

oc
ity

1.5

0.5

1

0

-0.5

5 10 15 20 25

Yuet al. (2006) - pptf = 1.1 Kptf = 15

Yu et  al. (2006) - pptf = 1.6 Kptf = 5
Feng & Michaelides (2009) - pptf = 1.6 Kptf = 5
Current work - pptf = 1.1 Kptf = 15
Current work - pptf = 1.6 Kptf = 5

Wachs (2011) - pptf = 1.1 Kptf = 15

Figure 4: Settling particle with an internal heat source in continuum flow. 
Validation of the current framework to the works of Yu et al. (2006), Feng and

Michaelides (2009) and Wachs (2011).



Although the main effect of the rarefication is to delay the growth of a sufficiently large
buoyancy force for the particle downward acceleration to be fully outweighed, the net result is not
limited to merely slowing down of the same process that occurs in the continuum regime. Since
thermal levitation and/or lifting up of the particle can only occur if there is sufficient space
available for the natural convection streams underneath the particle to fully develop (Wachs 2011),
the delay observed in the rarefied regime may actually prevent the upward motion of the particle
altogether by shifting the heating-up of the fluid to a later point in time when the space underneath
the particle may have become too small. This phenomenon is illustrated by the particle vertical
trajectories plotted in Figure 5 for rptf = 20, where the particle eventually moves upward in the
continuum case but falls to the bottom of the enclosure for (Knp = 0.5, at = 1).

Next, we demonstrate the capability of the proposed method to handle rigid and deformable
particles (e.g. bubbles) simultaneously, by investigating the interaction of a settling solid particle
and a rising bubble. The interaction is illustrated in Figure 6 for a case where the two entities are
initially moving directly towards each other in the vertical direction, as the bubble is rising and the
particle is settling with their terminal velocities. The tendency to bubble deformation is varied in
this numerical experiment by employing two different values of the surface tension between air and
water. In practice, such a change could be achieved through an addition of surfactants to the water.

When the contact between a particle and a bubble is likely to occur, the particle density plays a
significant role. The interaction between a spherical bubble and a light particle is illustrated in
Figure 6a, and it is expected that there could be a contact between them. In fact, the direction of
motion of the light particle is changed before touching the surface of the bubble, and it is carried
upwards by the bubble. However, as the pair moves together towards the surface, the distance
between them decreases at all times, which might result in a contact before reaching the free surface
of the suspension. A similar behaviour may be observed for the light particle approaching the
deforming bubble (see Figure 6b).

In contrast, a heavy particle becomes entirely surrounded by the approaching deformed bubble,
as shown in Figure 6c. After that, the particle passes through the bubble. In other words, the
downward movement of a heavy particle leads to a complete distortion of the deforming bubble.
Whereas an addition of surfactants might reduce the risk of a light solid particle bouncing off or
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Figure 5: Particle vertical position versus time in continuum and rarefied flow (rptf = 20).
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sliding over a spherical bubble (by allowing the bubble to deform slightly), it is found that a heavier
particle could instead destroy the deforming bubble.

In a more general particle-bubble interaction, the approach of the two entities may not be along
the axis of symmetry. The limiting case where particle-bubble close contact may still occur
hydrodynamically in spite of an initial separation in the horizontal plane is denoted the grazing
radius configuration. The difference in behavior between a spherical and a deformed bubble in this
type of interaction is exemplified in Figure 7. Here, the grazing radius configuration corresponds
to an initial horizontal separation equal to approximately 65% of the bubble radius (Sasic et al.,
2014). The interaction of two different types of bubbles (one spherical and one deforming) with a
light particle is studied. In both cases, the interaction with the bubble causes the particle to attain a
horizontal velocity away from the bubble as the two entities are coming close to each other. Even
so, the particle collides with the spherical bubble, as shown in Figure 7a. However, there will be no
collision when the bubble deforms (Figure 7b). This further strengthens the previous conclusion
that the probability of formation of bubble–particle agglomerates is decreased for bubbles that can
easily deform.

Finally, we study the performance of the suggested modelling framework for a case in which the
number of particles is significantly increased. For this purpose, a two-dimensional enclosure
containing 1024 particles is considered. The size of the enclosure is 65dp ¥ 65dp and the
computational mesh contains 1.69 million cells (i.e. 20 cells per particle diameter). The governing
dimensionless parameters are (rptf, kptf) = (1.6, 5). Figure 8 shows a snapshot from such a
simulation after it has evolved for 22 units of dimensionless time. It is clear from the close-up view
that the method is capable of resolving the internal temperature gradients inside the particles.
Furthermore, the particles are significantly affecting each other’s boundary layers in terms of both
momentum and energy transfer. The current method is capable of handling this situation without

(a)

(b)

(c)

Figure 6: Snapshots of bubble-particle encounters: (a) a light particle and a spherical
bubble, (b) a light particle and a deforming bubble, and (c) a heavy 

particle and a deforming bubble.
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a

b

300 K

350 K

Figure 7: Snapshots at different times for a grazing radius configuration, where a light
particle interacts with (a) a spherical or (b) a deforming bubble.

Figure 8: A snapshot from a simulation with 1024 particles (rptf = 1.6, kptf = 5) moving in
a 2D square enclosure (taken at t = 22). Velocity vectors (black) are 

overlaid onto a contour plot of the temperature field.

difficulties. In the future, the method could therefore be applied to study particle clustering in non-
isothermal dispersed multiphase flows (cf. Ma et al. 2009; Agrawal et al. 2013).

4. CONCLUSIONS

In this paper we present a multiphase DNS method that can be applied to resolve the motion of solid
and deformable particles with heat transfer effects in continuum or rarefied flow. The method is
based on solving a shared set of momentum and energy balance equations for the carrier phase and
the particulate phase. Additional numerical procedures are applied to ensure that the solid particles
behave as rigid entities. The proposed method is validated against numerical data available in the
literature (Brenner 1961; Adamczyk et al. 1983; Yu et al. 2006; Feng and Michaelides 2009; Wachs
2011; Ström 2011) and very good agreement is found overall.
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The current method is inherently capable of handling liquid particles co-existing with solid
particles, and is thus well suited to handle challenging multiphase systems, such as diesel spray
combustion with soot formation, spray drying with particle nucleation, etc.
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NOMENCLATURE

Ca Capillary number (-)
cp heat capacity (J kg-1 K-1)
d diameter (m)
E energy per mass (J/kg)
ê unit normal (-)
F force (N)
g gravitational constant (m s-2)
Gr Grashof number (-)
k thermal conductivity (W m-1 K-1)
Kn Knudsen number (-)
N number (-)

unit normal (-)
P pressure (N m-2)
Pr Prandtl number (-)
Re Reynolds number
T temperature (K)
t time (s)
V volume (m3)
u velocity (m s-1)
U characteristic velocity (m s-1)

Greek letters
at thermal accommodation coefficient (-)
b thermal expansion coefficient (K-1)
g volume fraction (-)
l drag modification function (-)
q numerical parameter (°)
s surface tension (N m)
r density (kg m-3)
m viscosity (Pa s)

Subscripts
c cell index
f fluid
i, j index
max max
new new
old old
p particle
P particles
ptf particle-to-fluid
r relative

Superscripts
* adjusted

n̂
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