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Kwanjeera Wanichthanarak 

Systems and Synthetic Biology, Department of Chemical and Biological Engineering,  

Chalmers University of Technology 

 

Abstract 

The massive amount of biological data has had a significant effect on the field of bioinformatics. 

This growth of data has not only lead to the growing number of biological databases but has also 

imposed the needs for additional and more sophisticated computational techniques to proficiently 

manage, store and retrieve these data, as well as to competently help gaining biological insights 

and contribute to novel discoveries. 

This thesis presents results from applying several bioinformatics approaches on yeast datasets. 

Three yeast databases were developed using different technologies. Each database emphasizes on 

a specific aspect. yApoptosis collects and structurally organizes vital information specifically for 

yeast cell death pathway, apoptosis. It includes predicted protein complexes and clustered motifs 

from the incorporation of apoptosis genes and interaction data. yStreX highlights exploitation of 

transcriptome data generated by studies of stress responses and ageing in yeast. It contains a 

compilation of results from gene expression analyses in different contexts making it an 

integrated resource to facilitate data query and data comparison between different experiments. 

A yeast data repository is a centralized database encompassing with multiple kinds of yeast data. 

The database is applied on a dedicated database system that was developed addressing data 

integration issue in managing heterogeneous datasets. Data analysis was performed in parallel 

using several methods and software packages such as Limma, Piano and metaMA. Particularly 

the gene expressions of chronologically ageing yeast were analyzed in the integrative fashion to 

gain a more thorough picture of the condition such as gene expression patterns, biological 

processes, transcriptional regulations, metabolic pathways and interactions of active components.  

This study demonstrates extensive applications of bioinformatics in the domains of data storage, 

data sharing, data integration and data analysis on various data from yeast S.cerevisiae in order 

to gain biological insights. Numerous methodologies and technologies were selectively applied 

in different contexts depended upon characteristics of the data and the goal of the specific 

biological question.  

 

Keywords: Bioinformatics, database design, database system, gene expression analysis, 

integrative analysis 
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1. Introduction 

Saccharomyces cerevisiae or the baker’s yeast is one of the famous model organisms and it has 

been extensively used in molecular biology, biotechnology and for study of processes related to 

human health and disease (Petranovic and Nielsen, 2008). The operating principles of 

fundamental cellular mechanisms, such as DNA replication, DNA recombination, cell division, 

protein homeostasis and vesicular trafficking, are well conserved among yeast and higher 

eukaryotes (Fields and Johnston, 2005; Winderickx, et al., 2008). Indeed, it was reported that 

yeast genes have mammalian homologues, for instance, RAS1 and RAS2 are homologues of the 

mammalian RAS proto-oncogenes (Botstein, et al., 1997). Conducting studies with yeast (either 

by classical complementation assays for human proteins that have a yeast homologue or by 

humanized yeast systems for human proteins that do not have a yeast counterpart) have 

contributed to reveal the functional roles or the biological consequences of mutations of human 

proteins (Botstein and Fink, 2011; Winderickx, et al., 2008). Nowadays yeast has relatively 

comprehensive sets of omics data such as genome, transcriptome, interactome and metabolome. 

These data facilitate research in the field of systems biology that observes more than individual 

genes and proteins but considers how these molecules interact and work together to establish the 

properties of living cells. 
 

After the development of high-throughput DNA sequencing technologies, bioinformatics became 

an essential discipline to extract information in genome sequences (Barnes, 2007). The term 

informatics has been described by Altman (2012) that “it is the study of how to represent, store, 

search, retrieve and analyze information (Altman, 2012)”. The biological data can be the 

information stored in the DNA sequences, RNA expression, three-dimensional protein structures, 

protein interactions, clinical data, and published literature. Bioinformatics thus involves beyond 

the alignment of DNA sequences. It is an area of science that uses various methodologies and 

computational technologies to structurally store biological information, to answer biological 

enquiries, to have new biological findings and to guide experimental design. Bioinformatics 

databases and software tools become indispensable parts of life sciences research these days. 
 

The main objective of this thesis is to apply key domains of bioinformatics including database 

development and data analysis on data generated by studying yeast, particularly yeast cell death, 

ageing and stress pathways. The main intention of yApoptosis (Paper I) is to show how building 

a dedicated database which stores and collects specific molecular and cell biology information 

(focus on a specific pathway) and that it can easily be accessed, searched and shared, contributes 

to the development of this particular field of research. Given the growing amount of 

transcriptome data, and the facing challenge of efficiently utilizing such data, we developed the 
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yStreX database with integrated analyses (Paper II) where readily-processed data and analyses 

are collected and can be rapidly retrieved. This database was developed to facilitate exploitation 

of transcriptome data in the area of yeast stress responses.   
 

To understand biological processes, systems biology research imposes integration of biological 

data from different levels. This issue puts challenges in data integration areas including 

establishing data standards and implementing computational tools and infrastructures. An effort 

is presented in this study by designing a database system and applying this system to build a 

yeast data repository containing multiple types of biological data (Paper III). 
 

Data analysis was a key step performed throughout this PhD study for generating data to be 

stored in the databases and for studying a specific process (i.e. yeast ageing in Paper IV) using 

several software packages e.g. Limma package (Smyth, 2004) to identify differentially expressed 

genes compared to control. The integrated analysis was conducted by using biological networks 

such as metabolic pathways, transcriptional regulatory interactions and networks of biological 

processes as a scaffold for incorporating transcriptome data which results in a reduced dimension 

and a systemic view of the data to aid biological interpretation. Besides, integrating 

transcriptome and interactome data contributed to identification of functional modules which 

illustrates how molecules interact together under the ageing condition.  

 

1.1 Thesis structure 

The thesis contains two main parts. The first part is divided into four chapters containing 

extended descriptions of the work and related information. Chapter 1 gives the short introduction 

and the objective of the work in this thesis. Chapter 2 provides background of the topics related 

to the work in this thesis. In Chapter 3, the brief summaries of background and results from all 

papers are presented. This chapter is divided into two sections on database design and 

development, and data analysis. Chapter 4 concludes key aspects and perspectives of all the 

work. The second part is the collection of the research articles with the order following the 

sections in Chapter 3. 
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2. Background 

2.1 Yeast Saccharomyces cerevisiae 

The budding yeast Saccharomyces cerevisiae is a unicellular organism that has been recognized 

as a favorite model organism for eukaryotes. It was the first eukaryotic organism that had entire 

genome completely sequenced and yeast genome has proved to be a useful reference for the 

sequences of human and other higher eukaryotic genes (Goffeau, et al., 1996; Schneiter, 2004). 

The Saccharomyces Genome Database (SGD) is the main resource for the budding yeast 

(Cherry, et al., 2012). It contains piles of information about yeast genome, proteins and other 

related features.  
 

Yeast has been used for both molecular research and industrial applications as there are several 

dominant features including ease of cultivation, well-studied organism, well-established 

molecular biology toolboxes and a bunch of molecular datasets generated from high-throughput 

technologies (Petranovic and Nielsen, 2008). Interestingly, about 40% of genes of human 

heritable disease have homologues in yeast (Oliver, 2002). This shows that yeast has a potential 

to be used in pharmaceutical and medical applications including as a platform for protein 

productions and as a toolbox for revealing biological insights of molecular mechanisms (Hou, et 

al., 2012; Munoz, et al., 2012). Examples of research on complex biological processes conducted 

in yeast include programmed cell death (PCD) and ageing (Carmona-Gutierrez, et al., 2010; 

Longo and Fabrizio, 2012). In addition, yeast genome-wide data serve as valuable resources for 

further research and applications in bioinformatics and systems biology. 

 

2.1.1 Yeast apoptosis 

Apoptosis is one form of PCD that was also reported in yeast. Yeast cells undergoing apoptosis 

show typical apoptotic features e.g. phosphatidylserine externalization, cytochrome c release, 

depolarization of mitochondrial membrane potential, chromatin condensation and DNA 

fragmentation (Madeo, et al., 2009).  
 

To ensure proper development and maintain homeostasis, apoptosis in higher eukaryotes occurs 

under certain circumstances such as during cell differentiation, response to infection, removal of 

damaged cells, ageing and response to different stresses (Sharon, et al., 2009). In a unicellular 

organism like yeast, the purpose of apoptosis is comparable to metazoan as it arises during 

ageing, mating and stress-inducing to eliminate damaged or old cells, thereby promoting survival 

of major population (Carmona-Gutierrez, et al., 2010).   
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Generally speaking, yeast apoptosis pathways include caspase-dependent and caspase-

independent pathway (Madeo, et al., 2009). The first pathway involves induction of yeast 

metacaspase by various stimuli such as H2O2, acetic acid, hyperosmotic stress, ageing and other 

agents. The gene YCA1 encodes a metacaspase which specifically catalyzes protein substrates 

and in turn triggers apoptosis (Mazzoni and Falcone, 2008). For caspase-independent process, 

the apoptosis-inducing factor 1 (AIF1) was one of implicated players (Madeo, et al., 2009). It 

translocates from mitochondria to the nucleus upon apoptotic stimulus and causes chromatin 

condensation and DNA fragmentation. The other players in caspase-independent pathways 

include NUC1, NMA111 and STE20. NUC1 is a yeast orthologue of mammalian endonuclease 

G (EndoG) and Nuc1 was found translocating to the nucleus from mitochondria upon apoptosis 

induction (Buttner, et al., 2007). Nma111 (nuclear mediator of apoptosis) localizes in the nucleus 

and Bir1, an inhibitor-of-apoptosis protein in yeast, is a substrate of its serine protease 

(Fahrenkrog, et al., 2004). Ste20 phosphorylates histone H2B at serine 10 causing chromatin 

condensation (Ahn, et al., 2005). It is also a part of pheromone-induced apoptosis resulting from 

an enhancement of mitochondrial respiration and cytochrome c release (Carmona-Gutierrez, et 

al., 2010; Pozniakovsky, et al., 2005).  
 

Mitochondria are an organelle that has been considered to play an important role in ageing and 

apoptosis. For instance, release of cytochrome c from mitochondria after acetic acid treatment 

was found to induce apoptosis in yeast (Ludovico, et al., 2002), though, it is still skeptical how 

cytochrome c leads to caspase activation and apoptosis (Carmona-Gutierrez, et al., 2010). It is 

widely known that mitochondria are a main source of reactive oxygen species (ROS) in cells. 

These ROS arise as the products of cellular metabolism during aerobic respiration (Farrugia and 

Balzan, 2012). They have deleterious effects to a wide variety of molecules, such as nucleic 

acids, proteins and lipids. Changing mitochondrial morphology can also affect ROS production. 

It was demonstrated that inhibition of mitochondrial fission by deleting Dnm1 extends lifespan, 

and increases stress tolerance (Braun and Westermann, 2011; Cheng, et al., 2008; Perrone, et al., 

2008). Mitochondrial fragmentation together with mitochondrial dysfunction and accumulation 

of ROS are general hallmarks of cell death (Braun and Westermann, 2011).  
 

In brief, apoptosis can be induced by various stimuli both externally and internally. It involves 

several genes, proteins, cellular mechanisms and organelles such as mitochondria and nucleus as 

depicted in Figure 1. Besides, homologues of mammalian were found in yeast, such as a yeast 

caspase (Yca1), nuclear mediator of apoptosis (Nma111), endonuclease G homologue (Nuc1), 

apoptosis-inducing factor (Aif1) and yeast AMID (Ndi1) (Frohlich, et al., 2007; Madeo, et al., 
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2009), which make yeast a promising research tool for elucidating cell death pathways in human 

and other higher eukaryotes. 
 

Nowadays, research in yeast PCDs yeast still undergoes. It is not only about apoptosis but also 

covers other PCDs including autophagy and necrosis, and ageing processes. It remains several 

challenges to understand, for instance, how cells switch between those different PCD subroutines 

or how cells decide to live or die. 
 

 

 

Figure 1 Components and pathways of yeast apoptosis. Upon apoptosis induction, it leads to activation 

of several apoptotic key players such as the yeast caspase Yca1. Apoptosis also engages other processes 

including mitochondrial fragmentation, cytochrome c release, DNA fragmentation and histone 

modification. Figure adapted from (Madeo, et al., 2009).   
 

 

2.1.2 Yeast ageing 

In general ageing is a process associated with progressive decline in the competence to compete 

against cellular stress and damage (Sharon, et al., 2009). It is also an endogenous stimulus of 

apoptosis. There are two ageing paradigms described in yeast: replicative lifespan (RLS) and 

chronological lifespan (CLS) (Figure 2). RLS is measured by the number of replications a 

mother cell produces before dying while CLS is the survival time of non-dividing populations in 

long-term cultivation (Longo and Fabrizio, 2012).  
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In both types, yeast cells die exhibiting markers of apoptosis such as accumulating oxygen 

radicals and caspase activation (Sharon, et al., 2009). Similar to cell death, yeast has been widely 

used as a model to study ageing processes. The yeast replicative ageing is a potential model for 

the ageing process of proliferating cells such as human stem cell, whereas chronological ageing 

serves as a model for the ageing of post-mitotic cell types such as brain and muscle 

(Rockenfeller and Madeo, 2008). In this thesis, CLS is the main focus. 

 

 

 

Figure 2 Ageing paradigms in yeast. Two ageing paradigms have been described in yeast including 

replicative (top panel) and chronological lifespan (bottom panel). 

 

Unlike RLS, CLS is directly influenced by the availability of nutrients. Lacking of nutrients 

causes cells to enter diauxic shift and stationary phase showing several physiological changes 

such as low transcription rate, reduced metabolism, low protein synthesis, thick cell walls and 

non-budding. Yeast cell also accumulates storage molecules such as glycogen, triacylglycerol, 

polyphosphate and trehalose (Galdieri, et al., 2010). Signal transduction pathways that regulate 

longevity and stress responses were identified and were found evolutionally conserved. They are 

target of rapamycin (TOR), protein kinase A (PKA) and Snf1 pathway (Fabrizio and Longo, 

2003; Galdieri, et al., 2010) (Figure 3).  
 

These signaling pathways control transcriptions of downstream genes through different 

transcription factors (TF). In particular, during exponential phase, TOR and PKA pathway 

negatively regulate Rim15 protein kinase which in turn positively controls stress response TFs 
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such as Msn2, Msn4 and Gis1 (Wei, et al., 2008). In contrast, under calorie restriction genes 

containing the stress response element (STRE) (e.g. CTT1, DDR1, HSP12 and TPS2) or post-

diauxic shift motif (PDS) (e.g. SSA3 and GRE1) in their promoters are transcriptionally induced 

by those TFs respectively as a result of deficiency in the signaling pathways (Orzechowski 

Westholm, et al., 2012; Pedruzzi, et al., 2000; Wei, et al., 2008). Snf1 is a protein kinase that 

inactive in the presence of glucose. Its target includes Adr1 (that activates transcription of genes 

implicated with utilization of non-fermentable carbon sources), and Mig1 (that represses 

transcription of genes in the presence of glucose) (Galdieri, et al., 2010).Under carbon stress, it 

was also found to regulate TFs Msn2 and Hsf1 (Hahn and Thiele, 2004).    

 

 

 

Figure 3 Stress-response and lifespan regulatory pathways. Stress responses and lifespan are regulated 

by signaling pathways (represented by rounded rectangular) including TOR, PKA and SNF1 pathway. 

Downstream components of the signal transduction pathways (represented by oval) further control genes 

involving in important processes such as stress responses, stationary growth and catabolism of non-

fermentable carbon sources (represented by square). Figure adapted from (Galdieri, et al., 2010).   

 

To summarize, longevity is determined by the capability to endure various stresses e.g. oxidative 

stress and genomic instability. It involves several lifespan regulatory pathways that control 

downstream players to exhibit, for instance, metabolic switches, anti-oxidant activities and other 

cellular protection processes to prolong the lifespan (Longo and Fabrizio, 2012).  
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2.1.3 Yeast stress responses 

Changes in environmental systems can disturb internal homeostasis of cells which then might 

result in cellular malfunctions, no growth or death. Thus, living organisms have to adapt rapidly 

in order to survive under the new environment.  
 

Yeast develops stress-response strategies by remodeling of its gene expression program to deal 

with fluctuations in, for example, pH, temperature, nutrient condition, osmotic pressure, oxygen 

level, drugs and toxic compounds (Gasch, et al., 2000). The reprogramming of gene expression 

can be captured by DNA microarrays as demonstrated in (Causton, et al., 2001; Gasch, et al., 

2000; Knijnenburg, et al., 2009). These genomic studies allow us to gain insights into the 

regulation of responses to stressful conditions.  
 

In most studies, yeast responds to environmental shifts through changes in genomic expression 

of thousands genes (Gasch and Werner-Washburne, 2002). Among those, around 900 genes 

changes commonly in diverse environments and they are denoted as the environmental stress 

response (ESR) genes. There are approximately 300 genes induced in several stresses and these 

genes are in carbohydrate metabolism (e.g. FBP26, TPS1,2,3 and GSY2), in protein folding (e.g. 

HSP26,42,78 and SSA3), in protein degradation (e.g. UBC5,8 and UBI4) and in oxidative stress 

response (e.g. CTT1 and SOD1) (Causton, et al., 2001; Gasch, et al., 2000; Gasch and Werner-

Washburne, 2002). Most of these ESR genes contain STRE motif (AGGGG) in their promoters 

targeted by Msn2 and Msn4, which may be considered as general stress transcription factors. 

However, genes in the ESR are regulated by different TFs which are condition-specific, e.g. 

Yap1 and Hsf1 regulate ESR genes in response to oxidative stress or heat shock, respectively 

(Gasch, et al., 2000; Gasch and Werner-Washburne, 2002). Furthermore, around 600 common-

repressed genes involve in RNA metabolism, ribosomal proteins and protein synthesis indicating 

that cells try to reserve energy during their adaptation to new conditions (Causton, et al., 2001; 

Gasch and Werner-Washburne, 2002).  
 

The expression of ESR genes has been reported to be mediated by a number of signaling 

pathways which are activated by specific upstream signals, such as MAPK HOG pathway is 

active in response to osmotic stress. In contrast, pathways like PKA and TOR as shown in Figure 

3 have been implicated to repress ESR genes. The capability of the cell to withstand and 

response appropriately is certainly vital and required to determine its cellular lifespan. 
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2.2 Bioinformatics and systems biology 

Nowadays bioinformatics becomes a major part of most life sciences research (Marcus, 2008). 

Bioinformatics is a highly interdisciplinary field that drives knowledge discovery from biological 

data using computational-based analysis. It applies concepts and methods from many areas such 

as mathematics, statistics, genetics, computer science, physics, chemistry, medicine and biology 

to dig into information embedded in various biological data including data from high-throughput 

technologies, 3D protein structures, clinical data and scientific literature (Marcus, 2008).  
 

The main aims of bioinformatics can be described in three areas: 1) to facilitate data 

management, access and sharing by structurally collecting biological data and existing 

information in the form of databases, such as GenBank DNA sequence database (Benson, et al., 

2013), ArrayExpress functional genomics database (Rustici, et al., 2013) and BioGRID 

interaction database (Stark, et al., 2011), 2) to develop algorithms and tools for solving biological 

questions, for example a reporter feature algorithm for identifying enriched biological features of 

a gene list (Oliveira, et al., 2008), Cytoscape for visualization of interaction networks (Shannon, 

et al., 2003) and metaMA for meta-analysis (Marot, et al., 2009), and 3) to apply tools and 

methods for extracting useful knowledge from the data, for instance genome annotations, 

pathway reconstruction and genome-wide expression analysis (Luscombe, et al., 2001). In this 

thesis, my work focuses on two roles of bioinformatics including database development and data 

analysis. 
 

Availabilities of high-throughput experiments these days have leaded us to consider cells as 

systems where systems properties ascend from the whole rather than individual parts (Palsson, 

2006). Systems biology can be considered as an approach to understand biological systems that 

underlie with networks of interacting components (Munoz, et al., 2012). It also brings together 

biologists, mathematicians, computer scientists, engineers and physicists to explore complex 

biological systems.  
 

The main objective of systems biology is to obtain a quantitative representation of the system of 

interest which can be in the form of a mathematical model. This model is used in behavior 

prediction under different conditions or it is used as a scaffold for integrative analyses (Kohl, et 

al., 2010; Munoz, et al., 2012). The model may then be improved in an iterative fashion. To 

achieve these, it involves the exploitation of biological datasets including those generated from 

high-throughput technologies (metabolomics, transcriptomics and interatomics) and the uses of 

computation approaches to integrate these products for the model reconstruction and for further 

analyses (Figure 4). 
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Figure 4 Bioinformatics and systems biology. Bioinformatics and systems biology are closely related 

with the ultimate goal to gain insights into biological systems. Systems biology studies biological systems 

as the integration of interacting components e.g. genes, proteins, metabolites and reactions. To integrate 

and analyze varied data from multiple sources, computational frameworks are required. This is where 

bioinformatics comes into play. 

 

2.3 Biological database design and development 

In the era of high-throughput technologies, we have seen an explosion of biological data in both 

the amount of data and types of data. Efficient computational infrastructure such as database 

system and web application for managing such data is unsurprisingly required (Berger, et al., 

2013). There are a large number of public biological resources available these days and the 

development of such repositories continually grows.  
 

Biological databases contain information from life sciences research ranging from raw high-

throughput data to results from various analyses. Such databases can be classified in to different 

categories as listed in Nucleic Acids Research online Molecular Biology Database Collection 

(Fernandez-Suarez, et al., 2014), for instance nucleic acid sequence and structure databases (e.g. 

GenBank), protein sequence and structure databases (e.g. UniProt (Apweiler, et al., 2004)), 

metabolic and signaling pathways databases (e.g. KEGG, http://www.genome.jp/kegg/), 

organism-specific databases (e.g. SGD), and microarray and gene expression databases (e.g. 
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ArrayExpress). These databases are important resources for systems biology research to obtain 

biological insights. Proficient data management, storing and retrieving are important matters for 

progressing data integration and analyses (Berger, et al., 2013), however building a biological 

database is not a trivial task.  
 

Biological data are complex (e.g. hierarchical structures of gene ontology), heterogeneous (i.e. 

composing of different types) and highly dynamic (e.g. data updates and new discoveries) 

(Ozsoyoglu, et al., 2006). These characteristics pose challenges in choosing existing technologies 

and designing database schema. In several biological databases, relational databases are used 

since a standard query language (SQL) is very well known and well standardized (Stein, 2013). 

The relational database, however, requires a predefined schema. Changing data contents might 

need revision of the database schema. Besides, complex and heterogeneous data result in a 

sophisticated schema which reduces query performance afterword. Recently NoSQL databases 

(e.g. document-oriented databases, graph databases and object-oriented databases) have emerged 

particularly for big data applications, heterogeneous data contents and data structures with 

complex relationships (Stein, 2013). Though such next generation databases are not much used 

in current biological databases (i.e. Cellular Phenotype Database (http://www.ebi.ac.uk/fg/sym) 

is only one example found), they become promising technologies for handling the massive 

amount of next generation sequencing data in this era.  
 

Because high-throughput data are important for systems research to gain meaningful 

information. Different strategies, databases and software applications have been designed and 

developed toward facilitating integration of those data from various sources. Gene ontology 

(GO) (Ashburner, et al., 2000), Biological Pathway Exchange (BioPAX) (Demir, et al., 2010), 

Proteomics standards initiative molecular interaction XML format (PSI-MI) (Kerrien, et al., 

2007) and Systems Biology Markup Language (SBML) (Hucka, et al., 2003) are examples of 

standards for representation and exchanges of biological information in which ontologies are for 

controlling a vocabulary of terms (Ashburner, et al., 2000) and the rest are for pathway data 

exchanges (Stromback and Lambrix, 2005). 
 

The models used to integrate data in several databases and web applications include centralized 

and distributed model (Sreenivasaiah and Kim do, 2010). The former model has a unified 

schema and transfers data from diverse resources into one central repository, whereas the later 

has central interface to automate access across resources without data transfer. The centralized 

model is widely used in data warehouse (e.g. BioWarehouse (Lee, et al., 2006), cPath (Cerami, et 

al., 2006) and Pathway Commons (Cerami, et al., 2011)) because of its key advantages including 

performance and data consistency. However, its major problems are an issue on data update and 
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database expansion. Federated databases such as BioMart (Kasprzyk, 2011) apply the distributed 

model which resolve mentioned issues, instead they are limited by query speed over internet and 

facing interoperability of exchange protocol among data sources (Lee, et al., 2006; Sreenivasaiah 

and Kim do, 2010). Figure 5 illustrates the architecture of centralized and federated databases. 

 

 

 

Figure 5 Architecture of centralized and federated databases. Figure on the left is the architecture of 

centralized system where data are transferred to store in one central repository. Figure on the right is the 

federated system that contains uniform interface for accessing data at remote sources. 

 

2.4 Gene expression analysis 

According to the central dogma of molecular biology, gene expression is the process when DNA 

sequence is transcribed into a gene product or RNA. Microarray and recently RNA sequencing 

(RNA-seq) are extensively used to measure gene expression levels which have been applied in 

several contexts including investigating gene functions, revealing regulatory patterns, studying 

co-expression and identifying putative markers.  
 

Transcriptome data are accessible in several public databases such as ArrayExpress (Rustici, et 

al., 2013) and Gene Expression Omnibus (GEO) (Barrett, et al., 2013). Computational and 

statistical methods play an important role in processing and retrieving information in expression 

datasets. One of the most famous platforms is Bioconductor which contains R software packages 

for analysis of microarray and other high-throughput genomic data (Reimers and Carey, 2006). 

Table 1 lists resources and software packages used in this study for gene expression analysis. 
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Table 1 List of software packages and resources for gene expression analysis 

Name Description Reference 

Affy R package for low-level analysis of Affymetrix GeneChip (Gautier, et al., 2004) 

PLIER R package for normalizing Affymetrix probe-level expression 

data 

(Hubbell, et al., 2005) 

Limma Linear model for differential expression analysis (Smyth, 2005) 

metaMA R package for effect size and p-value combination method in 

meta-analysis 

(Marot, et al., 2009) 

Piano R package for integrative analysis including various methods 

for gene set analysis 

(Varemo, et al., 2013) 

BioNet R package for the integrative analysis of gene expression data 

in the context of biological networks to identify functional 

modules 

(Beisser, et al., 2010) 

GEO Database of raw/processed functional genomic data including 

microarray and next-generation sequencing data 

(Barrett, et al., 2013) 

ArrayExpress Functional genomic data repository including raw/processed 

microarray and next-generation sequencing data. Data are 

imported from GEO and from direct submission 

(Rustici, et al., 2013) 

 

Typical types of gene expression analyses include the identification of differentially expressed 

genes in conditions of interest comparing to reference condition using methods such as t-test 

statistic. Gene clustering is for pattern finding and genes grouped together are highly correlated 

in terms of expression profiles. Gene set enrichment analysis or gene set analysis (GSA) is an 

approach to discover significant biological themes or gene sets under specific states based on the 

incorporation of differential expression evidence to priori biological knowledge such as 

biological processes and metabolic pathways (Varemo, et al., 2013). This analysis helps the 

biological interpretation of a large gene list. There are a number of GSA methods available these 

days, for instance the mean of gene-level statistics (e.g. t-values) is simply set as a gene set 

statistic, and the reporter feature algorithm combines gene-level statistics (e.g. p-values) for a 

gene set (Oliveira, et al., 2008).  
 

Nowadays there are a large number of gene expression data generated providing an important 

chance to increase statistical power, reliability and generalizability of analysis results. Meta-

analysis is a statistical method which combines results from multiple-related studies to obtain 

homogeneous effects and heterogeneity across related studies (Ramasamy, et al., 2008). Several 

meta-analysis techniques have been implemented, for example vote counting, p-value 
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combination and effect size combination, the choice of which is subject to an objective of study. 

For the effect size combination approach which was used in this thesis, an effect size is a degree 

of the strength of an event or effect. In the meta-analysis, the effect size is calculated from each 

study and then combined to an overall size of the effect for each gene (Choi, et al., 2003; 

Feichtinger, et al., 2012). This method is preferential over p-value combination because it 

provides the magnitude of the effect.    
 

Furthermore, availability of interactome data such as protein-protein interaction (PPI), genetic 

interaction and protein-DNA interaction (PDI) or transcription factor bindings allows us to 

perform analysis in the context of network-based analysis. Integration of transcriptome data to 

the network scaffold can contribute to module or subnetwork discovery. Here, gene expression 

results are the input for calculating the score of a module. With a search algorithm active 

modules with high score can be identified (Dittrich, et al., 2008). Such analysis aids our 

understanding of how molecules work together to drive cellular processes under a particular 

condition (Berger, et al., 2013).  

 

2.5 Biological networks 

Complex biological processes are executed from interactions and regulations of a number of 

molecules. Through high-throughput experiments, various large-scale datasets have been 

generated and they have been assembled into different biological networks. Biological networks 

compose of nodes which are biological components such as gene or protein, and edges that 

represent interactions among the nodes. Thus far, about five types of biological networks have 

been characterized: protein–protein interactions (PPIs), protein phosphorylation networks, 

transcription factor binding networks, metabolic pathways and genetic interactions (Zhu, et al., 

2007). PPIs and transcription factor binding networks are briefly described below. 
 

PPIs are usually represented as undirected graph. They can be identified by a variety of methods 

such as yeast two-hybrid (Y2H), affinity purification mass spectrometry (AP-MS) and X-ray 

crystallography (Koh, et al., 2012). Y2H is capable to identify a huge number of binary 

interactions while AP-MS is to screen interactions between several proteins. X-ray 

crystallography provides very detailed structure of chosen interactions. Several interaction 

databases are available to date. STRING database includes protein interactions from both 

experiments and computational predictions (Franceschini, et al., 2013). BioGRID database 

contains both protein and genetic interactions. It comprehensively curates interaction data 

generated from both low- and high-throughput experiments (Stark, et al., 2011).  
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Transcription factor-binding networks have been identified from direct experiments including 

combining chromatin immunoprecipitation with microarrays (ChIP-chip) and combining ChIP 

with DNA sequencing (ChIP-seq). They can also be discovered by predicting targets of a 

transcription factor (TF) based on binding site preferences and the sequence of promoter (Blais 

and Dynlacht, 2005). YEASTRACT database is an online resource that contains regulatory 

associations among TFs and their target genes in yeast (Teixeira, et al., 2013). This information 

was deducted from ChIP-chip assays and from genome-wide expression analysis where TFs 

were knocked out (Teixeira, et al., 2006). 
 

Generally speaking, cellular networks are huge and complex. They can be decomposed into 

groups of interacting components or modules. Network modules are densely connected 

molecules that are formed to achieve specific functions (Kwoh and Ng, 2007; Zhu, et al., 2007). 

Modules can be concluded into two types: a protein complex and a functional module (Spirin 

and Mirny, 2003). A protein complex (e.g. complexes of TFs) comprises groups of proteins 

forming molecular machinery to perform a specific activity, whereas functional modules are 

groups of molecules that orchestrate a particular process. Functional modules can be identified 

by incorporating gene expression data to locate active subnetworks that have significant 

expression changes under specific conditions (Aittokallio and Schwikowski, 2006). The concept 

of network motifs is to explain patterns of subgraphs that occur recurrently in complex networks 

(Zhang, et al., 2005). Motifs have been investigated for better understanding of network 

architecture. 
 

Though incompleteness and errors in interaction networks may limit and bias results from 

network analyses, the exploration of these biological networks still contributes to novel insights 

in understanding how cellular mechanisms are driven by underlining molecular components.  
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3. Results and discussion 

In this chapter, I will summarize the publications that are the basis of this thesis. They can be 

divided in to two main parts. The first part is about the design and implementation of yeast 

databases. The second part presents the application of bioinformatics approaches for the analysis 

of yeast ageing microarray data. 

 

3.1 Design and development of yeast databases 

Yeast is a model organism that has been used extensively to study essential cellular processes 

such as apoptosis, ageing and stress responses. As a result, a large amount of yeast-related data 

including comprehensive knowledge and genome data is available these days. Three yeast 

databases in Paper I-III were designed and developed by addressing different issues. Paper I 

focuses on collecting and structurally organizing related-information of a specific cell death 

pathway. Paper II facilitates exploitation of transcriptome data. Paper III concerns the integration 

of multi-level data.  

 

3.1.1 Paper I: Yeast apoptosis database 

Since apoptotic markers in yeast including DNA fragmentation, chromatin condensation and an 

exposure of phosphatidylserine at the cytoplasmic membrane were discovered by Madeo et al. 

(Madeo, et al., 1997), yeast has been used as a model organism for studying apoptosis 

subsequently. Apoptosis can be triggered by both endogenous triggers such as ageing and 

external stimuli including chemical and physical stress. The apoptotic core machinery and 

related pathways have been described and some have been found conserved in yeast such as 

apoptosis-inducing factor (AIF), endonuclease G and caspase pathway (Munoz, et al., 2012). 

Novel knowledge and important components are continually identified. Though, this information 

is dispersed in literature.  
 

A yeast apoptosis database (yApoptosis) was implemented concerning a need of the research 

community for well organization of information. So that vital information can easily be shared, 

accessed and enhance research in yeast cell death areas. It also introduces a collaborative channel 

among research groups. The database was designed to collect information of curated apoptotic 

and related genes such as supported literature, human homologues, genome and functional 

information. In particular, a gene will be included into the database if it follows at least one of 

the following criteria:  

1) It is annotated to the GO term ‘apoptotic process’ (GO: 0006915). There are 29 genes in 

the database that are assigned with this GO term. 
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2) It directly regulates the basic machinery of apoptosis. For example, PDS1 was included 

in the database because after apoptosis is induced, the caspase-like protease Esp1 is 

released from the anaphase inhibitor Pds1 (Yang, et al., 2008). 

3) It belongs to another pathway that induces apoptosis downstream. For instance, we 

included RAS2 since it was reported that osmotin-induced cell death is regulated by 

PHO36 via a RAS2 signaling pathway (Narasimhan, et al., 2005).  
 

Vital information for each gene such as detailed description, pathway information, protein 

sequence, GO annotations, links to original literature explaining the role of this gene in apoptosis 

and crucial external links are provided. These links to external resources facilitate exploration of 

other biological contexts of apoptosis genes. They include links to SGD for comprehensive 

biological information, UniProt for functional information of proteins, InterPro for information 

on protein families and domains (Hunter, et al., 2012), PSICQUIC View for molecular 

interactions (Aranda, et al., 2011), and Gene Expression Atlas for expression profiles in various 

conditions (Kapushesky, et al., 2010). This information is manually curated.  
 

Based on extensive curation, the functional network of yeast apoptosis was drawn and also 

included to illustrate activities and relations between apoptotic-related components (e.g. triggers, 

genes and processes) in different locations (Figure 6A). Apart from cytoplasm, we found that the 

most number of apoptosis genes locate in mitochondria, nucleus and vacuole respectively. 

Mitochondria not only play a role in supplying cellular energy, it has also been accepted that 

mitochondria are important in execution of apoptosis both yeast and mammalian. Mitochondrial 

events triggering apoptosis in both mammals and yeast include mitochondrial fragmentation, 

collapse of membrane potential and release of AIF and cytochrome c, however the sequence of 

these incidences have not been confirmed (Eisenberg, et al., 2007). Components of 

mitochondrial death pathways in yeast (e.g. NDI1, MMI1 and DNM1) and their human 

orthologous (red boxes) are displayed in Figure 6A. In mammalian cells, activation of caspase by 

cytochrome c through caspase-9-Apaf1 pathway is well defined. Though yeast has a metacaspase 

Yca1 as an orthologue of mammalian caspases, yeast orthologue of Apaf1 has not been 

identified (Mazzoni and Falcone, 2008). An observation of how yeast caspase is activated would 

contribute to a complete picture of apoptosis process.     
 

The relational database management system MySQL was applied and the friendly web interface 

was provided. We included typical functions to facilitate data query such as ‘browse’, ‘quick 

search’ and ‘search’ which allows specifying cellular location or process to constrain the query. 

The interactive representation of apoptosis networks was addressed to aid data visualization. 
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The apoptosis genes were further used in two analyses. The first analysis is predicting protein 

complexes from PPIs to find the complexes where apoptosis genes are a subunit using the 

algorithm ClusterONE (Nepusz, et al., 2012). The algorithm uses a greedy growth procedure to 

grow a cohesive group and calculates the cohesiveness score from edge weights to determine the 

possibility for a group of proteins to be a protein complex. The algorithm can also detect 

overlapping protein complexes based on the assumption that proteins might possess multiple 

functions. We found 11 apoptosis genes encoding protein subunits in 9 protein complexes. 5 

complexes such as nuclear cohesin complex, small nucleolar ribonucleoprotein complex, 

decapping enzyme complex, chromatin silencing complex and GID complex were included in 

the MIPS benchmarks (Pu, et al., 2009). Apoptosis protein subunits of those complexes are 

Mcd1, Lsm1-4, Dcp1-2, Sir2 and Fyv10, respectively. Figure 6B shows an example of predicted 

complexes, GID complex, involving in proteasomal degradation of gluconeogenic enzymes: 

phosphoenolpyruvate carboxykinase and fructose-1,6-bisphosphatase (Santt, et al., 2008). Fyv10 

is a protein subunit of the complex and it was also reported to have an anti-apoptotic role 

(Khoury, et al., 2008) suggesting that Fyv10 may possess dual roles. 
 

The second analysis is to identify network modules in the integrated network of PPIs and 

transcription regulation interactions of apoptosis genes. We used the algorithm CyClus3D which 

use different types of network motifs to query the integrated network (Audenaert, et al., 2011). It 

allows us to find more realistic modules and investigate functional relationships between 

interaction types. Using this method we found 7 modules that have the same pattern of 

interactions. This simple pattern indicates transcriptional co-regulation of pairs of apoptosis 

proteins interacting together to perform their function (Figure 6C). For instance, it was reported 

that an oxidative stress-induced cell death in yeast is sensed by the Dre2-Tah18 complex (Vernis, 

et al., 2009). Higher doses of H2O2 destabilize its interaction causing delocalization of Tah18 to 

mitochondria and cell death afterword. This protein pair is regulated by Yap1, TF responds to 

oxidative stress. It can be seen from the network that different TFs control common pair of the 

proteins. This aspect supports the fact that cells have condition-specific TFs (such as Gcn4 acts 

in response to amino acid starvation) but they maintain common responses downstream (Gasch 

and Werner-Washburne, 2002).   
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Figure 6 Networks of apoptosis genes. A) Functional network of yeast apoptosis. Human orthologues 

are in red boxes while yeast genes are in yellow boxes. Diagram legends can be found in detail from 

yApoptosis webpage (http://ycelldeath.com/yapoptosis/index.php). B) GID protein complex. An 

apoptosis-related gene, FYV10 is in purple box. C) Identified motif clusters. A directed edge represents 

transcriptional regulation while undirected edges are PPIs. Color of edges presents members of a cluster.  

A) 

 

 

 

 

 

 

 

 

 

 

 

 

B)                                            C) 
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Programmed cell death (PCD) is considered as a complex process under tightly molecular 

controls. Based on morphological studies, there are three different phenotypes defined for PCD: 

apoptosis, necrosis and autophagy (Zappavigna, et al., 2013). As mentioned in the previous 

section, typical features of apoptosis include phosphatidylserine externalization, the 

condensation of chromosome and DNA fragmentation. Cell death by necrotic program shows 

important morphologies including increase in cell volume and plasma membrane rupture causing 

release of intracellular contents. Necrosis in yeast occurs after brutally exposing cells to chemical 

or physical substances. It also has been described to be the last fate of an apoptotic dead cell that 

has the loss of plasma membrane integrity due to the collapse of cellular system (Ludovico, et 

al., 2005). Besides necrosis is suggested to have correlations with ageing as markers of necrosis 

were found among dead cells in chronologically ageing colonies (Eisenberg, et al., 2010). 

Autophagy is a catabolic process that is conserved in eukaryotic cells. It involves the degradation 

of cytoplasmic components by lysosome in mammalian or vacuole in yeast to generate an 

amount of molecules to be recycled. Therefore, autophagy is induced in nutrient-limited 

conditions and it is crucial for regulation of organelle homeostasis such as degrading damaged 

mitochondria (Cebollero and Reggiori, 2009). In addition, an ageing process has been associated 

with autophagy in particular through TOR pathway (i.e. increasing autophagy results in lifespan 

extension.). It can be seen that autophagy itself serves a cytoprotective process (Madeo, et al., 

2010; Rubinsztein, et al., 2011).   
 

Research in yeast PCD is still ongoing. As mentioned in the previous paragraph, there are 

opening questions that need to be resolved. Studies on yeast necrosis are also at very beginning 

comparing to apoptosis and autophagy. Figure 7 illustrates molecular components in yeast PCD 

subroutines derived from published literature (Carmona-Gutierrez, et al., 2010; Cebollero and 

Reggiori, 2009; Eisenberg, et al., 2010). It can be seen that some components are shared among 

PCD types e.g. NUC1 and RAS2. Investigation of interplay among cell death machineries may 

contribute to understanding of how a cell decides its fate. Key players of mammalian PCD are 

presented in yeast genome supporting the use of yeast as a simple model for observing complex 

scenarios of mammalian PCD. The list of yeast orthologues of mammalian apoptosis 

components was retrieved from the database and summarized in Table 2.    
 

In conclusion, yApoptosis is the first part of a yeast cell death database (yCellDeath) that has 

been established to gather information on various aspects of yeast PCD. yApoptosis represents a 

kind of specific repositories for sharing information and communicating between scientific 

communities. The total number of visitors after publishing the paper in October 2013 until May 

2014 is 360 visitors. Among them, 45.6% are new visitors while 54.4% are returning visitors. An 
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overview of visitors is shown in Figure 8. The relational database was chosen by considering its 

ease of use and well standardization. We also performed network analyses using the collected 

genes as seed nodes to illustrate the applications of the database. The database structure of 

yApoptosis and data generation processes can be a blueprint for developing other PCD databases 

in the yCellDeath compendia. 

 

Table 2 Yeast apotosis genes and human orthologues 

Yeast Mammalian Function in apoptosis 

AIF1 AIF Lead to chromatin condensation and DNA degradation (Wissing, 

et al., 2004) 

AIM14 NADPH oxidases Control non-mitochondrial ROS production (Rinnerthaler, et al., 

2012) 

BIR1 XIAP Inhibitor of apoptosis protein (Walter, et al., 2006) 

BXI1 Bax inhibitor-1 (BI-1) Inhibitor of BAX protein (Cebulski, et al., 2011) 

CDC48 VCP Mutation causes ER stress (Carmona-Gutierrez, et al., 2010) 

CDC6 CDC6 Require for DNA replication (Blanchard, et al., 2002) 

CPR3 Cyclophilin D Participate in refolding protein after import into mitochondria 

(Liang and Zhou, 2007) 

DNM1 DRP1 Mitochondrial fragmentation (Fannjiang, et al., 2004) 

DRE2 Ciapin1 Anti-apoptosis by binding to Tah18 (Vernis, et al., 2009) 

ESP1 Separin Caspase-like protease targets Mcd1 (Yang, et al., 2008) 

MCD1 RAD21 (human cohesion) Decrease mitochondrial membrane potential (Yang, et al., 2008) 

NDI AMID Increase ROS production in mitochondria (Li, et al., 2006) 

NMA111 Omi/HtrA2 Serine protease targets anti-apoptotic protein Bir1 (Walter, et al., 

2006) 

NUC1 Endonuclease G (EndoG) Major mitochondrial nuclease (Buttner, et al., 2007) 

PET9  VDAC  Mitochondrail permeabilization (Pereira, et al., 2007) 

POR1 ANT Mitochondrail permeabilization (Pereira, et al., 2007) 

RNY1 RNASET2 Cleave tRNA (Thompson and Parker, 2009) 

Tat-D Nuclease DNA degradation (Qiu, et al., 2005) 

YCA1 Caspases Caspase-like enzymatic activity (Mazzoni and Falcone, 2008) 
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Figure 7 Networks of yeast PCD. The figure illustrates three modes of PCD: apoptosis (blue), necrosis 

(green), and autophagy (yellow). Different phenotypes represent in grey boxes. Nodes marked in red 

involve in more than one mode of PCD. Solid edges denote either triggering or inhibition. Dashes denote 

putative genes or interactions that have not been confirmed. Figure adapted from (Munoz, et al., 2012). 

 

 
 

 
 

Figure 8 Overview of visitors to yApoptosis. A) The number of visitors in weeks. B) The number of 

visitors by countries. The color-scale is based on the number of visitors. Visiting statistics were generated 

from Google Analytics (http://www.google.com/analytics/) starting from October 2013 to May 2014.  

A) 

 

 

 

B)                                                   
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3.1.2 Paper II: Yeast stress expression database 

Similar to other organisms, yeast has to face several kinds of changes in its environments, for 

example fluctuations in pH, temperature, nutrient level, osmotic pressure, amount of oxygen, and 

the presence of various agents like toxic compounds and drugs. Appropriate responses to these 

variations are inevitably required for competitive fitness and cell survival. It was found that the 

stress-response schemes in yeast count significantly on genome-wide transcriptional changes 

(Causton, et al., 2001). As a result several studies used genome-wide expression experiments 

such as microarray to measure gene expression levels of yeast under different environments 

(Causton, et al., 2001; Gasch, et al., 2000). Nowadays, most gene expression data are deposited 

in public repositories such as ArrayExpress (Rustici, et al., 2013) and GEO (Barrett, et al., 2013). 

Even though these data are made available online, efficient utilization of the data from those 

databases is not straightforward. 
 

We therefore developed a yeast stress expression database (yStreX) showing an effort to enhance 

exploitation of transcriptome data in the area of yeast stress responses. We adapted the concepts 

of Experimental factors (EFs) and EF values used in Gene expression atlas database 

(Kapushesky, et al., 2010) to describe experimental conditions in a united way allowing 

comparison between independent experimental setups and meta-analyses among related studies). 

Figure 9 shows the workflow of data preparation and analysis.  

 

 

 

 

Figure 9 Analysis workflow. The diagram shows the workflow of data preparation and analyses. 

Microarray datasets were retrieved from GEO and ArrayExpress database and were preprocessed before 

curated into defined experimental classes and sub-classes. Statistical analyses were performed including 

DEA, GSA and meta-analysis. Data sources and tools used are also listed in the boxes.  
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Typical tasks of gene expression analyses including differential expression analysis (DEA), gene 

set analysis (GSA) and meta-analysis were performed on microarray datasets generated from 

different stress-induced conditions. R is the main platform for statistical computing in this study. 

Limma R package (Smyth, 2005) was used to calculate gene-level statistics (including fold-

changes, t-values and p-values) for each gene on each experimental condition. For GSA, 

Reporter algorithm (Oliveira, et al., 2008) was used to compile significant gene sets on three 

classes of existing biological knowledge: GO, TF and pathway (PTW) in each experimental 

condition. Meta-analysis was performed on datasets from two or more independent, but relevant 

studies using a moderated effect size combination in metaMA R package (Marot, et al., 2009). 

The effect size was calculated for each gene in each study and then was combined before 

assessing for DE genes of a specific condition. The resulting test statistics, or we call meta-z-

scores, were used in GSA for computing significant gene sets. Detailed descriptions about 

statistical analyses can be found in Paper II. 
 

The document-oriented database MongoDB (Chodorow and Dirolf, 2010) was used to store 

dataset information and results from the analyses as JavaScript object notation (JSON) 

documents. The web interface with different functions to access and explore the analysis results 

including statistical values of genes and enriched biological features was provided. Mainly there 

are two approaches to query the data: 1) searching by a gene or a set of genes for conditions 

where the queried genes significantly expressed, and 2) querying by a condition to retrieve a set 

of differentially expressed genes from the meta-analysis of related studies.  
 

Two examples were included to show applications of the database. The first example illustrated 

concurrent query of 51 apoptosis-related genes from yApoptosis database to find significant 

genes under oxidative stress induction by H2O2. It also showed database features and navigations 

between different pages such as Gene summary, Condition summary and GSA result (Figure 10). 

The second example showed the results from the meta-analysis, which combines gene expression 

data from independent, but related experiments. In this example, these experiments compared 

Rapamycin treated (TOR complex 1 (TORC1) inhibition) to untreated condition. It has been 

described TOR pathway coordinate signals with other signaling pathways including Sch9 and 

PKA pathway to regulate stress response, cell growth, ribosome biogenesis, and other cellular 

processes (Cheng, et al., 2007; Wei, et al., 2009). In accordance with the report in literature, 

common stress response TFs such as Gis1, Msn2 and Msn4 were found enriched in up-regulated 

genes. The consensus heatmap of TFs gene sets is shown in Figure 11.  
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Figure 11 Part of the consensus heatmap of TF gene sets. The heatmap is a result from GSA on TF 

gene sets. The studies compared Rapamycin treated to untreated condition. The color-scale is based on 

the consensus score represented also by a number. Significant gene sets (p-value < 0.05) are marked with 

an asterisk. Each column indicates the gene expression directionality of the genes belonging to the TF 

gene sets. 
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In summary, yStreX is an online repository that highlights the needs to efficiently utilize and 

distribute gene expression data. It includes not only readily-analyzed gene expression but also 

enriched biological features of gene lists which would help scientists in the field to make sense 

of the data. A friendly web interface provided enables fast access and assists inference from 

these resulting data. Besides, creating the specific compendia of transcriptome data is enable us 

to perform meta-analyses regardless of different platforms and laboratories which can enhance 

statistical power, reliability and generalization of results.  
 

The database aims to serve experimental molecular biologists who do not wish to re-analyze 

data. This aspect is usually a limiting factor for databases that just have a collection of raw data. 

Though such databases can be used in broader applications, they expect users to know in 

advance how to process the data and how to carry out data analysis. To compromise this issue, a 

link back to the original data was provided allowing users to access raw data and achieve 

additional work which might not be in the extent of the yStreX.  
 

yStreX was developed on a document-oriented NoSQL database showing the use of a next 

generation database. The NoSQL database was chosen as it has appeared to be a preferred 

database choice for big data applications and a predefined schema is not needed in contrast to 

typical relational databases (Couchbase, 2013). The last aspect benefits for scaling out the 

database when the amount of data grows in the future. 
 

We also demonstrated by two examples how the database can be exploited. In addition to these, 

pre-analyzed gene expression data can be broadly applied, for instance integrating to network 

scaffolds for identification of functional modules or using as additional information to improve 

PPI confidence (Bader, et al., 2004; Beisser, et al., 2010). 
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3.1.3 Paper III: Yeast data repository 

The main aim of systems driven research such as systems biology is to understand how 

molecules, pathways and networks organize to drive complex biological systems (Sreenivasaiah 

and Kim do, 2010). This is usually done by integration of data from different levels including 

genome, transcriptome, proteome, metabolome, interactome and reactome to formulate a model 

that describes how the systems work (Ideker, et al., 2001). Advances in high-throughput 

technologies these days have resulted in explosive generation of multi-level of omics data which 

is, therefore, beneficial for driving systems biology research. However it is a challenging issue 

for data integration when facing with complex, heterogeneous, highly dynamic, incomplete and 

disassembling characteristics of those data.  
 

With those in mind, a database system for handling multi-level data was developed. The database 

system aims to solve the vital issues in data management and to facilitate data integration, 

modeling and analysis within a single database. The database schema was adapted from ontology 

classes of BioPAX (Demir, et al., 2010) and implemented using an object-oriented concept. This 

concept represents a biological component as an object containing important attributes and a 

variety of relationships. It is applicable for heterogeneous and sophisticated biological data 

(Cooray, 2012; Okayama, et al., 1998).  
 

A yeast data repository was then developed on top of the database system to represent a sole 

database environment or a centralized database underlining with multiple levels of yeast data 

(e.g. genome information, annotation data, interaction data and metabolic model) from different 

resources. List of the data is summarized in Table 3 and Figure 12 illustrates the database 

architecture. 
 

We demonstrated usability and applications of the yeast data repository to achieve different 

tasks. A simple web interface was provided including a basic query interface which allows 

searching for different objects such as gene, protein and metabolite. Search results include not 

only the matched object but also other essential objects related to the resulting object. Figure 

13A schematically presents results from querying a gene INO1. In general, it has been described 

that DNA makes RNA and RNA encodes protein. A protein then performs its function e.g. as an 

enzyme in a biochemical reaction. Based on yeast data in the database, related objects such as 

interacting partners of INO1-encoded protein, metabolites of the reaction catalyzed by INO1-

encoded protein and TFs regulating expression of INO1 were reported as the part of the queried 

results. Furthermore, two research cases were conducted. First, the pheromone pathway segment 

was retrieved from PPI data using a protein receptor Ste3 as a starting protein and a TF Ste12 as 

an ending point. Reconstruction of PPI networks can contribute to identification of unknown 
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components and paths in signaling pathways. A vital issue of the PPI data is the dominance of 

false positives. Several efforts have been made to improve the confidence of the interactions 

including integration of GO annotations and gene expression data (Arga, et al., 2007). To 

simplify the case, specific GO terms were used as constraints to exclude proteins that are not 

relevant to the pheromone response pathway. The resulting pathway is displayed in Figure 13B. 

Secondly we identified downstream metabolic reactions that are regulated by TF targets of Snf1. 

This was done by first querying for TFs phosphorylated by Snf1 from kinase interaction data. 

Then from the transcriptional regulatory network, we retrieved gene targets of the 

phosphorylated TFs and we further identified metabolic reactions where these protein-encoding 

genes participate in (Figure 13C). These genes are involved in the glyoxylate cycle, amino acid 

biosynthesis, glycolysis / gluconeogenesis, acetate transport and oxidative phosphorylation. 
 

In brief, we established the yeast data repository as an integrated platform of multi-level data. 

Different applications were demonstrated showing capabilities and effectiveness to perform 

specific tasks on a single database environment. The database was populated and managed using 

the implemented database system that was designed to handle complex data ensuring data 

integrity, consistency and reliability, and to facilitate data integration. Nonetheless, its major 

issues as a centralized database are data update and database expansion, its key advantages 

includes performance and data consistency. The data consistency is one of the key matters that 

needs to be addressed in data integration.   

 

Table 3 List of yeast data in the yeast data repository and resources 

Biological object Physical object Resource Total 

Chromosome DNA NCBI GenBank (Benson, et al., 2013) 17 

Gene DNA region Ensembl (Flicek, et al., 2013) 7126 

RNA Transcript RNA Ensembl (Flicek, et al., 2013) 7126 

Protein Protein UniProt (Magrane and Consortium, 

2011) 

6617 

Metabolite Small molecule iTO977 (Osterlund, et al., 2013) 484 

Metabolic reaction Biochemical reaction iTO977 (Osterlund, et al., 2013) 717 

Protein-protein interaction Molecular interaction BioGRID V3.2 (Stark, et al., 2011) 72453 

TF-binding interaction Control YEASTRACT (Teixeira, et al., 2013) 

and (Harbison, et al., 2004) 

48548 

Kinase interaction Control (Breitkreutz, et al., 2010) 1333 

Phosphorylase interaction Control (Breitkreutz, et al., 2010) 254 
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Figure 12 Yeast data repository architecture. The yeast data repository was implemented as the 

application on top of the database system. This database system composes of database management 

functions to manage operations between developers and the system, an object-oriented data model to 

represent biological objects, and a physical storage. The yeast data repository contains simple query 

interface and specific scripts to demonstrate two sample cases: querying the pheromone pathway in 

protein interaction networks and finding metabolic reactions regulated by Snf1 kinase.   
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Figure 13 Resulting queries from the yeast data repository. A) Resulting objects from querying gene 

INO1 include TFs, interacting proteins and the list of metabolites. B) Pheromone pathway segment. C) 

Metabolic genes regulated by Cdc14, a TF target of Snf1. Green box is a queried term while blue rounded 

squares are the results of the query. A purple oval is the constraint of the query. 

A) 
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3.2 Bioinformatics applications in transcriptome analysis 

Gene expression profiling is often used as a channel to study expression and regulatory patterns 

in different contexts. Computational approaches are inevitably required to make sense of such 

data. Paper IV outlined different bioinformatics methods used to analyze gene expression data of 

yeast aged chronologically. 

 

3.2.1 Paper IV: Genome-wide expression analyses of the stationary phase model of 

ageing in yeast 

Yeast has been used as a model to study two ageing processes in eukaryotes: replicative lifespan 

(RLS) and chronological lifespan (CLS). This is not only because it obtains easily manipulable 

genome, but conserved lifespan-regulatory components have been identified in yeast (Longo and 

Fabrizio, 2012). These include Sch9, Ras/PKA and TOR pathway. In this study, yeast CLS was 

the main focus. The yeast CLS has been considered to be an ageing model of post-mitotic cells 

of higher eukaryotes. To measure CLS, yeast is grown in synthetic complete medium (SD) 

without replenishing which leads to cell cycle arrest (Longo and Fabrizio, 2012). Under this 

condition, yeast cells are stressed from nutrient depletion and accumulation of toxic substances 

which promotes reprogramming of transcription machineries by several signal transduction 

pathways to maintain viability of major population (Galdieri, et al., 2010). DNA microarray has 

been extensively used to capture the transcriptional state of cells under different conditions. Gene 

expression assays have been included in ageing research to study transcription program under 

extreme calorie restriction that accounts for lifespan extension (Cheng, et al., 2007). 
 

To explore changes in transcriptional regulations, biological processes and metabolisms of yeast 

in stationary phase, we grew S. cerevisiae wild type strain 113-7D in 2%-glucose medium (SD) 

and collected at log phase (Log), 2 (D2), 6 (D6) and 10 (D10) days of incubation, each in 

triplicate for microarray assay. Typical tasks of gene expression analysis performed in this study 

include: 1) identification of genes differentially expressed between aged yeast cells (D2, D6 or 

D10) against logarithmic growth cells (Log) with the linear model fitting procedure of the limma 

package (Smyth, 2005), 2) gene set analyses using a reporter features method in the Piano 

(Oliveira, et al., 2008; Varemo, et al., 2013) to identify enriched biological processes (BP), TFs 

and metabolic pathways of differentially expressed genes in each day relative to Log, and 3) 

integrated analysis to characterize active subnetworks of yeast at each day using BioNet R-

package (Beisser, et al., 2010). Identification of genes significantly changed between two 

samples may supply putative markers and contribute to understanding of the molecular basis of 

varied conditions. However it usually comes with high dimension of the data or long list of 

genes. The gene set analysis helps reducing data dimensionality and biological interpretation of 
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the large gene lists. Existing biological information can be used to outline gene sets such as GO 

terms, TFs and pathways. Different types of gene sets provide information in different features. 

Assimilating information from these different gene sets provided a more comprehensive 

overview of the cellular changes under specified conditions. Integrating transcriptome data to 

network scaffold is to identify active modules or subnetworks revealing connected regions of the 

network that components significantly change in expression and enable us to identify key 

components based on network topology. 

 

 

 

Figure 14 Venn diagram of significant genes and enriched functional terms. Significant genes were 

identified from comparing D2, D6 or D10 cells to Log phase cells. Functional terms enriched in the 

significant genes are listed. The red color is up-regulation while green indicates down-regulation and gray 

indicates equal number of up- and down-regulated genes associated to that functional term. 

 

When comparing the gene expression of yeast cultured in stationary phase for several days to the 

log phase cells, we found in total 882 significant genes (cutoff adjusted p-value < 1e-09). The 

largest number of changes in gene expression was observed in D6 compared to Log, while the 

least was in D10. We then used the tool ClueGO (Bindea, et al., 2009) which is based on 
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hypergeometric test to acquire an overview of enriched biological processes among the list of 

significant genes compared to the Log. The results are shown in Figure 14. It can be seen that 

among up-regulated genes in D2, cytogamy, trehalose biosynthetic process and pyruvate 

metabolic process were enriched. Genes involving negative regulation of gluconeogenesis and 

glycogen metabolic process were up-regulated in both D2 and D6, and genes associated with 

tricarboxylic acid cycle (TCA) were up-regulated in D6. Though in D6, genes involved in bases 

biosynthetic processes, rRNA export from nucleus and cytoplasmic translation were mostly 

down-regulated, indicating that cell growth decreased. Most of genes participating the alcohol 

catabolic process, fatty acid beta-oxidation, and glyoxylate metabolic process were up-regulated 

in all cultures (D2, D6 and D10), compared to Log.  
 

An important issue of ClueGO is that it requires a predefined list of genes which may cause 

information loss. To aid data interpretation and dig into what processes are affected during the 

aging in stationary phase, we therefore performed gene set analysis using the reporter feature 

method to investigate into three levels of biological information including biological processes 

(BP), TFs and metabolic pathways. The method incorporates gene-level statistics and considers 

directionality of gene expression changes (Varemo, et al., 2013).  
 

We considered only gene sets of distinctly up- or down-regulated genes. As found in metabolic 

pathway-GSA, for stationary phase cells there was the expression of metabolic genes. These 

genes, which were all up-regulated, affected metabolic pathways such as TCA cycle, fatty acid 

degradation and glycerol metabolism (Figure 15). By integrating information from these 

different gene sets, we also summarized crucial physiologies from different types of gene sets in 

Table 4. For instance, stationary phase yeast was slowly growth or mostly no growth. This is 

inferred from the following gene sets: translation (BP), ribosome biogenesis (BP), nucleotide 

biosynthetic process (BP), Ifh1 (TF), tRNA synthesis (pathway), pyrimidine metabolism 

(pathway), and purine metabolism (pathway), which genes were all down-regulated. 
 

Integrative analysis was performed to identify active subnetworks from an integrated network of 

PPIs and transcriptional regulatory network. Adjusted p-values at each day (D2, D6 and D10, 

each vs Log) were integrated to the network for calculation of high-scoring subnetworks based 

on the signal-noise decomposition and heuristic search (Dittrich, et al., 2008). The top 10 

connected nodes (hubs) were retrieved using the ‘degree sorted circle’ layout in Cytoscape 

(Shannon, et al., 2003). A network of gene-metabolic pathways was then incorporated. The 

results showed that the sizes of active subnetworks are ranging from D10, D2 and D6 indicating 

highest expression activities on D6. This is also in accordance with our differential expression 

analysis results. From the active subnetworks identified on D2, D6 or D10, we found most of the 
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hubs were TFs for nutrient responses (e.g. Yap1, Xbp1 and Hsf1) and stress responses (e.g. 

Adr1, Gis1 and Pgm2). The active subnetworks comprised components of signaling pathways, 

for instance GPG1, GPA2, RAS1, TPK1, FUS1 and FUS3. The metabolic pathways that 

prominently change in all subnetworks are carbon metabolism (e.g. TCA cycle, fatty acid 

degradation, glycolysis/gluconeogenesis, oxidative phosphorylation, starch and sucrose 

metabolism, and trehalose metabolism) and amino acids metabolism. Most of genes for amino 

acids metabolism were down-regulated whereas most of genes for carbon metabolism were up-

regulated. In addition, the genes involved in nucleotide synthesis were down-regulated in every 

subnetwork. 

 

 
 

Figure 15 Heatmap of enriched metabolic pathways from GSA. P-value is also written as a number 

and determines the color intensity. On each column, gene expression directionality is as following: 

D2_distDN (down-regulated genes in D2), D6_distDN (down-regulated genes in D6), D10_distDN 

(down-regulated genes in D10), D2_distUP (up-regulated genes in D2), D6_distUP (up-regulated genes 

in D6) and D10_distUP (up-regulated genes in D10). 
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Mainly, signals are passed through components of signal transduction pathways (GPA2 and 

GPG1) to downstream TFs (Gis1, Yap1, Adr1 and Xbp1). The TFs transcriptionally regulate the 

expression of several stress-respond genes (SNO4, SSE2 and HSPs) and metabolic genes (POX1, 

FOX2 and GSC2) as shown in Figure 16. TFs found in all subnetworks include Ste12, Xbp1 and 

Tos8 implying putative TFs regulating genes during stationary aging in yeast. Ste12 is the TF 

part of the mitogen-activated protein kinase (MAPK) pathway. It has also been reported that the 

filamentous growth MAPK pathway are activated under nutrient limitation (Cullen and Sprague, 

2012). Xbp1 is a TF found induced in quiescent cells after glucose depletion (Miles, et al., 2013). 

We found that Xbp1 regulates genes involving β-oxidation indicating its role in controlling 

metabolic adaptation. Tos8 is a TF controlling cell cycle regulation (Horak, et al., 2002) and we 

found it was regulated by both Ste12 and Xbp1. 
 

To summarize, in this study we applied different analysis methods on gene expression profiles of 

yeast at different days during starvation to obtain information in various viewpoints such as gene 

expression activities, transcriptional regulations, biological processes, affected metabolisms and 

structure of underlying components. The signaling pathways including Ras/PKA, TOR and Snf1, 

pathways were explained to responsible for sensing the level of nutrients (Galdieri, et al., 2010; 

Ring, et al., 2012). They together regulate genes involving in stress and metabolic responses 

through several TFs (e.g. Msn2, Msn4, Gis1 and Hsf1) which cause, for instance, aerobic 

utilization of fatty acid, ethanol and glycerol. Our results are in accordance with previous reports. 

Furthermore, Ste12 and Xbp1 were found as highly connected nodes in all subnetworks 

implicating that they are important transcription factors in the stationary phase model of ageing 

yeast. We also show in this work that incorporating information from several methods and from 

various data would provide a more thorough basis of the condition of interest. 
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4. Conclusions and perspectives 

The ultimate goal of bioinformatics is to facilitate data management and analysis to obtain 

biological insights from the biological data (Moore, 2007). In this thesis, the key roles of 

bioinformatics in database design, database development and data analysis were addressed. In 

particular the main works were conducted for S. cerevisiae since a comprehensive set of yeast 

genome data is greatly available. 
 

Different yeast databases were designed and developed for specific purposes. Diverse 

technologies ranging from a typical-relational database to NoSQL databases were applied to 

these databases based on data characteristics and the objectives of the databases.  
 

MySQL relational database was applied in yApoptosis since it is has a well-standardized query 

language and relatively easy to use which is suitable for databases without complicated and 

heterogeneous data. In addition, the defined database schema of yApoptosis can further be 

applied to implement databases of other PCDs such as autophagy and necrosis. On the other 

hand, NoSQL databases have arose as next generation databases that allow the development of 

databases for complex and large datasets (e.g. sequencing data). yStreX was thus managed under 

MongoDB, a document-oriented database, because its schemaless feature allows conveniently 

scaling out the database when more gene expression data are included in the future. It not only 

represents a next generation database in life science research, but it also contains pre-analyzed 

gene expression data that can extensively be applied. Moreover, the development of a database 

system was performed to manage and integrate multi-level data from different sources into a 

single database contributing to extensive applications. This system applied an object-oriented 

concept to represent biological components and it was then used to build a yeast data repository 

representing a centralized database or a single access point to answer various questions.    
 

Because biological data are mounting in size and complexity, database design and development 

are an active area of bioinformatics. It is important to both understand the data to be stored and 

purposes of the database so that programming logic and biological focus can be harmonized to 

produce successful databases. 
 

In term of data analysis, we applied various bioinformatics approaches to analyze data in 

different contexts, for instance gene expression analyses of transcriptome data from stress-

induced conditions and from chronologically ageing yeast to observe changes in transcriptional 

regulations, biological processes and metabolic pathways in particular conditions, and the 

network-based analysis for module discoveries. Biological information obtained ranges from the 

list of key genes, to networks of interacting components and to significant pathways depended 
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upon level of integrated datasets. It can be seen from the Paper IV that incorporating more kind 

of information provides a more thorough picture of the condition of study. 
 

In conclusion, diverse genome-scale data have been generated shifting life science research 

towards integrative methodologies to examine cellular processes on a systems level over the past 

several years. The constant improvement and development of effective algorithms, databases and 

technologies for large-scale and multi-dimensional data is to reduce the gap between data 

generation and computing capability. It is still challenging and bioinformatics is a research area 

that immensely ongoing with the ideal goal to fully understand biological systems.  
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