
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Symbolic Supervisory Control of
Resource Allocation Systems

ZHENNAN FEI

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70606485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Symbolic Supervisory Control of
Resource Allocation Systems
ZHENNAN FEI
ISBN 978-91-7597-007-3

c© ZHENNAN FEI, 2014.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 3688
ISSN 0346-718X

Department of Signals and Systems
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone + 46 (0)31 – 772 1000

Typeset by the author using LATEX.

Chalmers Reproservice
Göteborg, Sweden 2014

To my family

Abstract
Supervisory control theory (SCT) is a formal model-based methodology for verifica-
tion and synthesis of supervisors for discrete event systems (DES). The main goal is
to guarantee that the closed-loop system fulfills given specifications. SCT has great
promise to assist engineers with the generation of reliable control functions. This is,
for instance, beneficial to manufacturing systems where both products and production
equipment might change frequently.

The industrial acceptance of SCT, however, has been limited for at least two
reasons: (i) the analysis of DES involves an intrinsic difficulty known as the state-
space explosion problem, which makes the explicit enumeration of enormous state-
spaces for industrial systems intractable; (ii) the synthesized supervisor, represented
as a deterministic finite automaton (FA) or an extended finite automaton (EFA), is
not straightforward to implement in an industrial controller.

In this thesis, to address the aforementioned issues, we study the modeling, syn-
thesis and supervisor representation of DES using binary decision diagrams (BDDs), a
compact data structure for representing DES models symbolically. We propose differ-
ent kinds of BDD-based algorithms for exploring the symbolically represented state-
spaces in an effort to improve the abilities of existing supervisor synthesis approaches
to handle large-scale DES and represent the obtained supervisors appropriately.

Following this spirit, we bring the efficiencies of BDD into a particular DES appli-
cation domain – deadlock avoidance for resource allocation systems (RAS) – a problem
that arises in many technological systems including flexible manufacturing systems
and multi-threaded software. We propose a framework for the effective and computa-
tionally efficient development of the maximally permissive deadlock avoidance policy
(DAP) for various RAS classes. Besides the employment of symbolic computation,
special structural properties that are possessed by RAS are utilized by the symbolic
algorithms to gain additional efficiencies in the computation of the sought DAP. Fur-
thermore, to bridge the gap between the BDD-based representation of the target DAP
and its actual industrial realization, we extend this work by introducing a procedure
that generates a set of “guard” predicates to represent the resulting DAP.

The work presented in this thesis has been implemented in the SCT tool Suprem-
ica. Computational benchmarks have manifested the superiority of the proposed
algorithms with respect to the previously published results. Hence, the work holds
a strong potential for providing robust, practical and efficient solutions to a broad
range of supervisory control and deadlock avoidance problems that are experienced
in the considered DES application domain.

i

Acknowledgments

I didn’t have time to write a short letter, so I wrote a long one instead.
– Samuel Langhorne Clemens (Mark Twain)

In retrospect, coming to study at Chalmers and pursuing PhD in the Automation
research group are probably the best decisions I’ve ever made. Without them, I would
never have come cross a lovely girl who later became my wife; I wouldn’t have met
these good friends who brought me unforgettable joy. Moreover, I wouldn’t have had
this opportunity to express my deep gratitude to many individuals below who helped
me one way or the other in this thesis.

The foremost to mention among others, of course, is my supervisor Prof. Knut
Åkesson. I am grateful to him for his guidance, caring, patience, ideas and supervision
through the course of my PhD studies. Knut is not just my advisor on research, but
also my mentor on my career and many aspects beyond.

I have had the greatest pleasure of being co-supervised by Prof. Spyros Reveliotis
from Georgia Tech. I would like to thank him for his excellent guideline and invaluable
feedback on the thesis. My deepest appreciation also goes to Prof. Bengt Lennartson
for his continuous encouragement and support, and Prof. Martin Fabian for always
letting his door open for all kinds of discussions about research and life.

Martin, Knut and Spyros have proofread almost every word of this thesis to make
sure that all the pieces are put in the right places with the right sides up. I am very
grateful for that.

All of my colleagues at the division of Automatic Control, Automation and Mecha-
tronics deserve a word of appreciation. My special thanks go to the “DK” members
in the Automation research group. They are (in alphabetic order): Amir, Daniel,
Kristofer, Maziar, Mohammad, Mona, Nina, Oscar, Patrik, Petter, Sahar, Sathya.
Also, I wish to express my deep appreciation to Sajed for the inspiring discussions
and the sharing moments we have had while visiting Georgia Tech in 2012. Moreover,
I would like to acknowledge all the administration staff, with special thanks to Lars,
Madeleine, Natasha, Christine and Ingemar.

My life would have been dull if it were not the great friends I met here at Göteborg.
I wish to thank Meiling, Jan-Erik, Xiangrui, Xiaolu, Songhe, Binru, Bo, Tong, Jun,
Wei, Wanlu, Jingya, Gongpei, Xiaoming, Xinlin, Yutao, Yinan, Yujiao, Li, Yixiao,
Xiaosong, Xiaodong, Xuezhi and many others, for all the good times we enjoyed
together. I am also indebted to my best friends in China (6385.71 km away), Zhiqiang,
Junlong, Xiaoping, Tong, Chao and Wei for always believing in me and backing me

iii

Acknowledgments

up there.
Finally, I would like to extend my deepest gratitude to my parents and grandma

for their never-ending source of love, belief, and encouragement. Last, but certainly
not least, my most generous love goes to my wife, Xuan. Words cannot express how
grateful I am to you for accompanying me through these years. If I didn’t have you,
my life would be null. I would be a binary decision diagram without the one-terminal.

Zhennan Fei
Göteborg, May 2014

This work was carried out within the Wingquist Laboratory VINN Excellence Centre
at Chalmers University of Technology. It was supported by the Vinnova/FFI project
“Virtual commissioning of manufacturing systems including PLC logic”.

iv

List of Publications

This thesis is based on the following appended papers:

Paper 1 Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson. Symbolic
State-Space Exploration and Guard Generation in Supervisory Control Theory.
Agents and Artificial Intelligence – Communications in Computer and Informa-
tion Science, by Joaquim Filipe and Ana Fred (eds), Springer, vol. 271, pp.
161–175, 2013.

Paper 2 Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson. Efficient Sym-
bolic Supervisor Synthesis for Extended Finite Automata. IEEE Transactions
on Control Systems Technology, in press, 2014.

Paper 3 Zhennan Fei, Spyros Reveliotis, Sajed Miremadi, Knut Åkesson. A BDD-Based
Approach for Designing Maximally Permissive Deadlock Avoidance Policies for
Complex Resource Allocation Systems. Submitted for a possible journal publi-
cation (under review), 2014.

Paper 4 Zhennan Fei, Spyros Reveliotis, Knut Åkesson. Symbolic Computation of Bound-
ary Unsafe States in Complex Resource Allocation Systems using Partitioning
Techniques. Submitted for a possible journal publication (under review), 2014.

Paper 5 Zhennan Fei, Knut Åkesson, Spyros Reveliotis. Symbolic Computation and Rep-
resentation of Deadlock Avoidance Policies for Complex Resource Allocation
Systems with Application to Multithreaded Software. Submitted to the 53rd
IEEE Conference on Decision and Control (CDC), 2014.

Other publications
The following publications, authored or co-authored by the author of this thesis, are
relevant but not included in the thesis:

• Martin Fabian, Zhennan Fei, Sajed Miremadi, Bengt Lennartson and Knut
Åkesson. Supervisory Control of Manufacturing Systems using Extended Finite
Automata. Formal Methods in Manufacturing, by J. Campos, C. Seatzu and X.
Xie (eds), CRC Press / Taylor and Francis, pp. 295–314, 2014.

v

List of Publications

• Sajed Miremadi, Zhennan Fei, Knut Åkesson, Bengt Lennartson. Symbolic
Representation and Computation of Timed Discrete Event Systems. IEEE Trans-
actions on Automation Science and Engineering, vol. 11, no. 1, pp. 6–19, 2014.

• Sajed Miremadi, Zhennan Fei, Knut Åkesson, Bengt Lennartson. Symbolic
Supervisory Control of Timed Discrete Event Systems. IEEE Transactions on
Control Systems Technology, conditionally accepted, 2014.

• Bengt Lennartson, Francesco Basile, Sajed Miremadi, Zhennan Fei, Mona
Noori Hosseini, Martin Fabian, Knut Åkesson. Supervisory Control for State-
Vector Transition Models–A Unified Approach. IEEE Transactions on Automa-
tion Science and Engineering, vol. 11, no. 1, pp. 33–47, 2014.

• Zhennan Fei, Spyros Reveliotis, Knut Åkesson. A Symbolic Approach for Max-
imally Permissive Deadlock Avoidance in Complex Resource Allocation Systems.
Proceedings of the 12th IFAC - IEEE International Workshop on Discrete Event
Systems (WODES), 2014.

• Zhennan Fei, Knut Åkesson, Bengt Lennartson. Modeling Sequential Re-
source Allocation Systems using Extended Finite Automata. Proceedings of the
7th IEEE International Conference on Automation Science and Engineering
(CASE), pp. 444–449, 2011.

• Zhennan Fei, Knut Åkesson, Bengt Lennartson. Symbolic Reachability Com-
putation using the Disjunctive Partitioning Technique in Supervisory Control
Theory. Proceedings of IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 4364–4369, 2011.

• Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson. Efficient
Symbolic Supervisory Synthesis and Guard Generation. Proceedings of the 3rd
International Conference on Agents and Artificial Intelligence (ICAART), vol.
1, pp. 106–115, 2011.

• Sajed Miremadi, Zhennan Fei, Knut Åkesson, Bengt Lennartson. Symbolic
Computation of Nonblocking Control Function for Timed Discrete Event Sys-
tems. Proceedings of the 51th IEEE International Conference on Decision and
Control (CDC), pp. 7352–7359, 2012.

• Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson. A Symbolic
Approach to Large-Scale Discrete Event Systems Modeled as Finite Automata
with Variables. Proceedings of the 8th IEEE International Conference on Au-
tomation Science and Engineering (CASE), pp. 502–507, 2012.

• Bengt Lennartson, Sajed Miremadi, Zhennan Fei, Mona Noori Hosseini, Mar-
tin Fabian, Knut Åkesson. State-Vector Transition Model Applied to Supervisory
Control. Proceedings of the 17th IEEE International Conference on Emerging
Technologies & Factory Automation (ETFA), pp. 1–8, 2012.

vi

List of Acronyms

BDD – Binary Decision Diagram
CF – Characteristic Function
DAP – Deadlock Avoidance Policy
DES – Discrete Event System
D/C RAS – Disjunctive/Conjunctive Resource Allocation System
EFA – Extended Finite Automata
EFSC – Extended Full Synchronous Composition
EST – Explicit State Transition
FA – Finite (State) Automata
FSC – Full Synchronous Composition
OBDD – Ordered Binary Decision Diagram
PLC – Programmable Logic Controller
PN – Petri Nets
RAS – Resource Allocation System
ROBDD – Reduced Ordered Binary Decision Diagram
R/W RAS – Resource Allocation System with Reader/Writer Locks
SCT – Supervisory Control Theory
TDES – Timed Discrete Event System

vii

Contents

Abstract i

Acknowledgments iii

List of Publications v

List of Acronyms vii

Contents ix

I Introductory Chapters

1 Introduction 1
1.1 Challenges . 3
1.2 Objectives . 4
1.3 Contributions . 4
1.4 Outline . 5

2 Supervisory Control Theory 7
2.1 Modeling Formalisms . 8

2.1.1 Deterministic Finite Automata 8
2.1.2 Extended Finite Automata . 10

2.2 Supervisory Control Theory . 13
2.2.1 Supervisor Synthesis for Deterministic FA 14
2.2.2 Transformation of EFA to FA 19

2.3 Extensions of the basic SCT . 20
2.3.1 Combating State-Space Explosion 20
2.3.2 Supervisor as Guards . 22
2.3.3 Other Extensions . 23

2.4 Closing Remarks . 24

3 Deadlock Avoidance for Resource Allocation Systems 25
3.1 Resource Allocation System . 26
3.2 Supervisory Control of RAS . 28

3.2.1 FA-based Modeling of RAS Dynamics 29

ix

CONTENTS

3.2.2 EFA-based Modeling of RAS Dynamics 30
3.2.3 The Target Maximally Permissive DAP 32

3.3 Dealing with the NP-Hardness of the Maximally Permissive DAP . . 34
3.4 Closing Remarks . 37

4 Symbolic Representation and Computation 39
4.1 Binary Decision Diagram . 40
4.2 Representations of DES Models . 42

4.2.1 Characteristic Functions . 42
4.2.2 Single Model Representation 43
4.2.3 Composed Model Representation 45

4.3 Symbolic State-Space Exploration . 47
4.3.1 Symbolic Safe State Synthesis 48
4.3.2 State-Space Exploration on Partitioned BDDs 50
4.3.3 Partial State-Space Exploration for RAS 51

4.4 Experimental Results . 54

5 Case Study 57
5.1 The Manufacturing System . 57

5.1.1 The Plant . 57
5.1.2 The Specification . 59

5.2 The Model . 59
5.3 Synthesis and Guard Extraction . 66
5.4 Summary . 68

6 Contributions 71

7 Conclusions and Future Work 75

References 77

II Included Papers

Paper 1 Symbolic State-Space Exploration and Guard Generation in
Supervisory Control Theory 91
1 Introduction . 91
2 Motivating Example . 92
3 Preliminaries . 95

3.1 Supervisory Control Theory 95
3.2 Binary Decision Diagrams (BDD) 96

4 BDD-Based Partitioning Computation 97
4.1 Efficient State Space Search 98
4.2 Workset Based Strategies . 99

5 Supervisor as Guards . 101

x

CONTENTS

5.1 Computation of the Basic State Sets 101
5.2 Guard Generation . 102

6 Case Studies . 103
6.1 Benchmark Examples . 103
6.2 Approach Evaluation . 104

7 Conclusions . 106
References . 106

Paper 2 Efficient Symbolic Supervisor Synthesis for Extended Finite
Automata 111
1 Introduction . 111
2 Preliminaries . 113

2.1 Extended Finite Automata . 113
2.2 Binary Decision Diagrams . 115
2.3 Supervisory Control . 116

3 A Motivation Example . 117
4 Partitioning of the full synchronous composition 118
5 Efficient Reachability Computation 121

5.1 Event-based Reachability Algorithm 121
5.2 Proof for the correctness of Algorithm 11 in Section 5 123
5.3 Algorithm Efficiency . 124

6 Case Studies . 125
7 Conclusions . 126
References . 128

Paper 3 A BDD-Based Approach for Designing Maximally Permis-
sive Deadlock Avoidance Policies for Complex Resource Allocation
Systems 133
1 Introduction . 133
2 Preliminaries . 136

2.1 Resource Allocation Systems and the corresponding problem of
Deadlock Avoidance . 136

2.2 Extended Finite Automata . 138
2.3 Binary Decision Diagrams . 140

3 Modeling the considered RAS as an EFA 141
4 Computing the minimal boundary unsafe states 147

4.1 An extension of the standard SCT synthesis algorithm for the
computation of reachable boundary unsafe states 148

4.2 An alternative algorithm for the computation of feasible bound-
ary unsafe states . 149

4.3 Computing the minimal boundary unsafe states 156
5 Computational Results and Evaluation 158
6 Conclusions . 162
References . 164

xi

CONTENTS

Paper 4 Symbolic Computation of Boundary Unsafe States in Com-
plex Resource Allocation Systems using Partitioning Techniques 171
1 Introduction . 171
2 Preliminaries . 173

2.1 Extended Finite Automata . 173
2.2 Binary Decision Diagrams . 175

3 The Main Algorithm . 178
4 Extensions . 186
5 Conclusions . 186
References . 187

Paper 5 Symbolic Computation and Representation of Deadlock Avoid-
ance Policies for Complex Resource Allocation Systems with Appli-
cation to Multithreaded Software 191
1 Introduction . 191
2 Modeling Gadara Nets as EFA . 193

2.1 Gadara Nets . 193
2.2 Extended Finite Automata . 194
2.3 Modeling Gadara Nets as EFA 195

3 Computing the Minimal Boundary Unsafe States 197
3.1 Binary Decision Diagrams . 198
3.2 Computation of the Minimal Boundary Unsafe States 200

4 Representing the Target DAP as Guards 203
5 Conclusion . 206
References . 206

xii

Part I

Introductory Chapters

Chapter 1

Introduction

In the aftermath of the revolution in computer technology, society nowadays is de-
pendent on dedicated computer-aided systems more than ever to assist us in almost
every aspect of daily life. From the very moment of waking up in the morning, we
are surrounded with different hardware and software systems such as mobile phones,
transportation facilities, communication tools, e-commerce systems, etc.

As such computer-aided devices and automation systems are widely used, de-
signing reliable control logic is of paramount importance. While we may afford minor
malfunctioning behavior occurring in our phones or personal computers, high demand
on dependability and safety must be put in the design phase of certain critical sys-
tems such as air planes, industrial production systems or power plants, where failures
might lead to loss of life and economic damages. A recent example of such a failure is
the Ariane-5 rocket [1], that exploded on June 4, 1996, less than forty seconds after it
was launched. The accident was caused by a software error in the computer that was
responsible for calculating the rocket’s movement. During the launch, an exception
occurred when a large 64-bit floating-point number was converted to a 16-bit signed
integer. The floating-point number that was converted had a value greater than what
could be represented by a 16-bit signed integer. This resulted in an operand error.
The same error also caused the backup computer to fail. As a result, incorrect atti-
tude data was transmitted to the on-board computer, which caused the destruction
of the rocket.

The increasing reliance on safety- and business-critical applications necessitates
the development of formal methods for the rigorous modeling of the considered sys-
tem and the accurate assessment of its associated properties. With respect to the
modeling, classical control theory deals with systems whose behavior can be modeled
using differential or difference equations. On the other hand, at a certain level of
abstraction, the logical behavior of systems like automated manufacturing systems,
computer networks and embedded control systems can be modeled as sequences of
events. A system, characterized by a set of states, where the state evolution depends
entirely on the occurrence of asynchronous events at discrete points in time, is re-
ferred to as a discrete event system (DES) [2], which is the scope of this thesis. A
comprehensible example is the traffic light system, that can be modeled as a DES

1

Chapter 1. Introduction

consisting of three states denoting either green, yellow or red, and a series of events
indicating the alternation between the lights, e.g., the light turns green to yellow.

In the last two decades, research in formal methods has led to some promising
methodologies that ease the burden of designing reliable systems. One approach to-
wards the correctness of computer-based systems is model checking [3, 4], a formal
verification technique allowing for properties of the considered system to be automat-
ically verified on the basis of its model. Model checking usually terminates with a
yes or no answer to the satisfiability of the model with respect to given specifica-
tions. Synthesis, on the other hand, can directly construct a desirable system where
specifications are fulfilled. In 1987, Ramadge and Wonham proposed a model-based
framework called supervisory control theory (SCT) [5, 6] for the automatic generation
of reliable control logic, referred to as the supervisor, for DES. Having a model of
the system to be controlled, the plant, and the model of the intended behavior of the
controlled system, the specification, a supervisor can be automatically synthesized to
control the plant according to the specification. In SCT, a supervisor is assumed to
be maximally permissive in the sense that it restricts the plant behavior only when
it is necessary. Furthermore, the SCT framework is facilitated by adopting graphical
modeling formalisms such as Petri nets (PNs) [7], finite automata (FA) [2], extended
finite automata (EFA) [8], that connect more explicitly the representation of the sys-
tem behavior to the underlying system structure, and they are, thus, more compact
and more amenable to processing during the synthesis phases.

In this thesis, besides studying and developing efficient supervisor synthesis in
SCT for general DES, we also focus on a particular DES application domain – dead-
lock avoidance for resource allocation systems (RAS) [9]. In its basic positioning,
this problem concerns the coordinated allocation of the system resources to a set of
concurrently executing processes so that every process can eventually proceed to its
completion. In particular, by utilizing the information about the current allocation of
the system resources and the available knowledge about the structure of the execut-
ing process types, the applied control policy avoids the visitation of RAS states from
which deadlock is inevitable. From an application standpoint, the need for deadlock
avoidance arises in many contemporary systems, including material flow control of
flexible automated production systems [10, 11, 12], traffic management of unmanned
discrete material handling systems [13, 14, 15], traffic control of railway and urban
monorail transport systems [16], and the lock allocation that takes place among the
various threads of parallelized computer programs [17, 18].

The deadlock avoidance problem can be characterized in the classical SCT frame-
work in a straightforward manner, through (i) expressing the underlying resource
allocation dynamics into a deterministic finite automaton, and (ii) requesting the
confinement of the RAS behavior to the subspace of this FA that is defined by its
maximal strongly connected component that contains the system state where the
RAS is idle and empty of any jobs. In fact, this characterization of the problem and
its solution establishes also a notion of optimality for the considered problem, since
the resulting policy prevents the formation of deadlock while retaining the maximum
possible behavior for the underlying RAS.

2

1.1. Challenges

1.1 Challenges

SCT has gained a lot of focus within the academic community, though its industrial
acceptance has been scarce. This is a pity, since SCT has showed great promise
when it comes to aiding the design and development of industrial control systems.
We believe that the reasons for the scarce industrial acceptance of SCT are two-fold.
One reason is the necessity to be able to treat systems of industrially interesting sizes.
The other is how to efficiently represent the synthesized supervisor.

While normally a given DES application can be modeled as interacting compo-
nents with each having a manageable size, the standard synthesis needs to consider
the interactions of all components in order to explore possible global states, also re-
ferred to as the state-space. However, industrial systems nowadays are becoming
more and more complex and each subsystem may consist of many interacting com-
ponents. Synthesizing supervisors for such complex applications through the explicit
state-space enumeration quickly becomes a serious impediment. As a matter of fact,
the supervisor synthesis problem is NP-hard [19], and thus, it suffers from an inher-
ent difficulty known as the state-space explosion problem, which makes the explicit
enumeration of enormous state-spaces for industrial systems intractable due to lack
of memory and time. To alleviate the state-space explosion problem, a well-known
strategy is to represent the state-space of the considered DES symbolically. Here
symbolic representation implies that the state-space is expressed by means of logic
constraints or special data structures, which makes it possible to manipulate sets of
states rather than single states. One such compact and efficient data structure that
is employed in the thesis is the binary decision diagram (BDD) [20, 21], which, under
the right conditions, can reach logarithmic compression of the involved state-spaces
[21]. Nevertheless, the effective deployment of BDD-based symbolic computation in
supervisory control remains a non-trivial task. A straightforward transformation from
the explicit state-space enumeration into a BDD-based computation scheme does not
result in a synthesis procedure that performs well on relevant problems. Hence, there
is a need to develop more intelligent symbolic algorithms where the modularity and
structure of DES are exploited more thoroughly.

In addition, even if the computation efficiency brought by the application of BDD
makes it possible to synthesize the supervisor for a given industrial application, the
supervisor will be symbolically represented as a BDD. Conceptually this symbolic rep-
resentation of the obtained supervisor lies very far from the actual implementation in
an industrial controller, such as a programmable logic controller (PLC). Since the orig-
inal system models have been reformulated and encoded, it is cumbersome to relate
each state with the corresponding BDD variables. Furthermore, the resultant control
logic is of centralized nature, a feature that can be deemed as limiting/undesirable in
the context of certain applications. These unsolved issues regarding the representa-
tion of the synthesized supervisor further prevents acceptance by industrial engineers
who are typically not accustomed to DES or SCT. Therefore, it would be better if
the representation of the supervisor lies closer to its actual implementation.

3

Chapter 1. Introduction

1.2 Objectives
Many contemporary computer-aided systems such as flexible manufacturing systems,
communication systems and transportation systems can at some level of abstraction
be described by events that model the transitions between different discrete states.
Normally, industrial systems are complex and manual approaches are time-consuming,
error prone and not practically feasible. Therefore, automated methodologies such as
SCT are desired. On the other hand, to be able to design and implement consistent
and reliable control functions for complex industrial applications, it is necessary to
develop algorithms that have good performance and scalability.

The first objective of this thesis is to develop and enhance BDD-based symbolic al-
gorithms for the computationally efficient development of control logic for large-scale
DES to guarantee that the behaviors of systems fulfill given specifications. Having
modeling the considered plant and specifications by using the provided modeling for-
malisms, the proposed symbolic algorithms encode the obtained model and represent
its global behavior as a number of BDDs. The SCT analysis such as verification and
synthesis then can be performed symbolically on these BDDs through the usage of
the techniques developed in the thesis.

While the approaches mentioned above are targeted for the supervisor synthesis
of general DES, this thesis also focuses on one particular DES application domain,
i.e., deadlock avoidance for RAS. Briefly speaking, RAS characterize a broad class of
applications where the underlying operations can be abstracted to a set of processes
that contest for the engagement of the system reusable resources. In this thesis, we
aim at developing a framework for the efficient synthesis of the maximally permissive
DAP for RAS. Besides the employment of symbolic computation, additional efficien-
cies for the proposed symbolic algorithms are obtained through the exploitation of
the structural properties possessed by the considered RAS classes.

The second objective of the thesis is to represent the result obtained from the
proposed symbolic algorithms in a more comprehensible and transparent manner.
On a basis of the previously developed procedure that generates Boolean conditions,
referred to as guards, to represent the behavior of the synthesized supervisors, the
thesis achieves this objective in two directions. For general DES, the guard generation
procedure is tailored to work with the proposed symbolic algorithms in order to make
it more applicable for industrial systems. By exploiting the structural properties of
RAS, the guard generation procedure is extended to generate more comprehensible
guards from the maximally permissive DAP.

1.3 Contributions
In the light of the above objectives for tackling the mentioned challenges that prevent
SCT from having an industrial breakthrough, the thesis has the following contribu-
tions:

• It suggests and benchmarks several ways to partition and explore the symbolic

4

1.4. Outline

representation of state-space under full synchronous composition of determin-
istic FA and/or EFA, such that the intermediate blow up of internal nodes in
the BDD representation is kept small (Paper 1 and Paper 2).

• It adapts the suggested symbolic synthesis algorithms to the guard generation
procedure, making them more applicable for industrially interesting applica-
tions. That is, simplified guards can be directly generated from the partitioned
presentation of the state-space and attached to the original DES model (Pa-
per 1).

• It introduces a modeling procedure for recasting the dynamics of RAS instances
into the EFA modeling framework. This procedure is extended for transforming
a special class of Petri nets, Gadara nets [22], that model the primitive lock ac-
quisition and release operations of multithreaded programs, into the equivalent
EFA models (Paper 3 and Paper 5).

• It proposes a series of BDD-based symbolic algorithms for the effective and
computationally efficient development of the maximally permissive deadlock
avoidance policy (DAP) for various RAS classes (Paper 3 and Paper 4).

• It extends the guard generation procedure by utilizing a monotonicity property
possessed within the structure of RAS. By attaching them to the original RAS-
modeling EFA, the generated predicates guard transitions to the RAS states
that dominate some elements in the underlying state set (Paper 5).

• It implements all the proposed approaches and algorithms in Supremica [23,
24, 25], a software tool for automatic verification, synthesis and simulation of
discrete event systems.

1.4 Outline
The thesis is divided into two parts. Part I serves as a general introduction to this
field and puts the appended papers in context. Part II contains the appended papers
that constitute the base of the thesis. In Part I, Chapter 2 presents the background
material on discrete event systems in general, with focus on the supervisory control
theory. Chapter 3 focuses on one discrete event system application domain, deadlock
avoidance for resource allocation systems. Chapter 4 gives a overview of symbolic
computation using binary decision diagrams for supervisor computation and repre-
sentation. Through illustrating a number of examples, the chapter informally presents
some of the symbolic algorithms that are introduced in the appended papers. A sum-
mary of contributions in the appended papers is provided in Chapter 6. Finally, some
concluding remarks and future work are given in Chapter 7.

5

Chapter 2

Supervisory Control Theory

Discrete event systems (DES) are abstractions of real systems such as manufacturing,
traffic control, material handling and embedded systems. DES behaviors are typically
modeled in terms of states and events; states represent certain situations under which
specific properties hold, while events represent significant occurrences that change
those properties. A DES occupies a single state out of its many possible ones at each
time instant, and transits to another on the occurrence of an event. Modeling DES
has been facilitated by formalisms such as finite automata (FA) [2], extended finite
automata (EFA) [8], Petri nets (PNs) [26, 2] and process algebra [27, 28] that connect
more explicitly the representation of DES to the underlying system structure.

A main purpose of having DES models is the analysis and design of control func-
tions to achieve some desired behavior. A supervisor is a control device for DES that
through interaction with the controlled process dynamically restricts events from oc-
curring, so as to keep the closed-loop system within a desired specification. In this
way, the supervisor is a safety device; certain activities (events) are hindered from
occurring in order to guarantee the safety of the considered system. However, at the
same time as it prevents bad things from occurring, the supervisor must allow good
things to occur.

Supervisory control theory (SCT) [5, 6, 29, 2], initiated by Ramadge and Wonham
in the 80’s, is a model-based formal framework for the automatic design of supervisors
for DES, such that this supervisor interacting with the plant forms a closed-loop
system that is, according to a given specification, correct by construction.

Though SCT has gained a lot of attention within the academic research com-
munities, its industrial acceptance has been scarce. This is a pity, since SCT has a
lot to offer when it comes to structuring and supporting the development of control
functions for industrial applications. Probable reasons for the scarce industrial accep-
tance of SCT are two. One is the necessity to be able to model and analyze systems
of practical sizes. The other is the representation of the synthesized supervisor.

This chapter introduces a set of preliminaries that are used in this thesis to model
DES and synthesize supervisors. In particular, Section 2.1 starts with a discussion
of two modeling formalisms. This is followed by Section 2.2 explaining supervisory
control theory and the basic algorithms for synthesizing supervisors. With respect

7

Chapter 2. Supervisory Control Theory

to the issues that prevent SCT from having an industrial breakthrough, Section 2.3
overviews a number of various approaches and techniques developed by the research
communities aiming for addressing these issues. Finally, Section 2.4 closes the chapter
with a short summary and some comments on the appended papers that are related
to the discussions of this chapter.

2.1 Modeling Formalisms
There are a certain number of modeling formalisms that can be used to model DES.
In this thesis we focus on two of them, finite automata (FA) and extended finite au-
tomata (EFA). FA are intuitive, easy to use, since states and transitions are explicitly
represented. As used originally in [5], they not only conform well with SCT but also
have strong theoretical and practical properties developed over years. EFA are a vari-
ant of ordinary FA where integer variables are introduced to improve the compactness
of DES models. This richer structure, though with equal expressive power, enables
the representation of the DES behavior in a conciser manner than the ordinary FA.

In general, DES can be non-deterministic, meaning that the occurrence of an event
may lead the considered system to different states due to some internal, unobservable
behavior. For DES with deterministic behaviors, on the other hand, next states are
uniquely determined by the current states of the system and the events that are
enabled from them. In this thesis, we are interested in deterministic systems, and
hence, all models used in this work are considered to be deterministic.

2.1.1 Deterministic Finite Automata
Definition 2.1. [2] A deterministic finite automaton, denoted by A, is a six-tuple

A = (Q,Σ, δ,Γ, q0, Q
m)

where:

- Q is the finite set of states.

- Σ is the finite set of events, also known as the alphabet of A.

- δ : Q × Σ → Q is the transition function: δ(q, σ) = q′, means that there is a
transition labeled by event σ from source state q to target state q′; in general,
δ is a partial function.

- Γ: Q→ 2Σ is the active event function; Γ(q) is the set of all events σ for which
δ(q, σ) is defined and it is called the active event set of A at state q.

- q0 is the initial state.

- Qm ⊆ Q is the set of marked states.

8

2.1. Modeling Formalisms

For the sake of convenience, the word automata will be used to refer to determin-
istic finite automata in the sequel.

In Definition 2.1, the inclusion of Γ in A is superfluous in the sense that Γ can
be derived from δ. For this reason, we will sometimes omit explicitly writing Γ when
specifying an automaton if the active event set function is not central to the discussion.

For computational considerations, the transition function δ of an automaton A
sometimes is better to be formulated as the transition relation. The elements 〈q, σ, q′〉
are said to be related if and only if there is a transition from q to q′ by the event σ.
Therefore, the transition relation of automaton A, denoted by 7→, can be defined as
follows:

7→ = {〈q, σ, q′〉 ∈ Q× Σ×Q | δ(q, σ) = q′}.

A finite sequence of events is called a string of events. An empty string is denoted
by ε and all possible strings consisting of events from the alphabet Σ is denoted by
Σ∗. Through the usage of strings of events, we can conveniently extend δ from domain
Q× Σ to domain Q× Σ∗ in the following recursive manner:

δ(q, ε) = q

δ(q, sσ) = δ(δ(q, s), σ) for s ∈ Σ∗ and σ ∈ Σ.

Frequently, a DES can be modeled by a set of FA. The monolithic system is then
a composition of these subsystems. We will model the composition of two FA A1
and A2 by the full synchronous composition (FSC) [30], denoted by A1||A2. In the
FSC of two FA, a common event is enabled if and only if it is enabled by each of the
composed FA.

Definition 2.2. [30] LetA1 = (Q1,Σ1, δ1,Γ1, q
1
0, Q

m
1) andA2 = (Q2,Σ2, δ2,Γ2, q

2
0, Q

m
2)

be two automata. The full synchronous composition, FSC, of A1 and A2 is defined as

A1||A2 = (Q1 ×Q2,Σ1 ∪ Σ2, δ1||2,Γ1||2, (q1
0, q

2
0), Qm

1 ×Qm
2)

where δ1||2 is defined as

δ1||2((p, q), σ) =

(p′, q′) if σ ∈ (Σ1 ∩ Σ2), δ1(p, σ) = p′, δ2(q, σ) = q′.

(p′, q) if σ ∈ (Σ1\Σ2), δ1(p, σ) = p′.
(p, q′) if σ ∈ (Σ2\Σ1), δ2(q, σ) = q′.
undefined otherwise.

The active event set Γ1||2 follows from the definition of δ1||2 and is given by

Γ1||2((p, q)) = (Γ1(p) ∩ Γ2(q)) ∪ (Γ1(p)\Σ2) ∪ (Γ2(q)\Σ1).

The FSC operator is both associative and commutative [2], and hence, can be
extended to compose an arbitrary number of automata in a straightforward way.

We should notice from Definition 2.2 that after composition, the size of A1||A2,
in terms of the number of reachable states, in the worst case is |Q1| × |Q2|. Suppose
that we compose n automata with the number of states in each automaton being

9

Chapter 2. Supervisory Control Theory

Stick5 Stick4 Stick3 Stick2 Stick1 Stick0

player1rm1
player2rm1

player1rm1
player2rm1

player1rm1
player2rm1

player1rm1
player2rm1

player1rm1
player2rm1

player1rm2
player2rm2

player1rm2
player2rm2

player1rm2
player2rm2

player1rm2
player2rm2

(a) Stick automaton where the state Stick0 is marked.

Player1 Player2

player1rm1
player1rm2

player2rm1
player2rm2

(b) Player automaton where the state Player2 is marked.

Figure 2.1: FA model of the stick-picking game in Example 2.1

k. The number of states of A1|| . . . ||An in the worst case is then equal to kn. This
means that the number of states grows exponentially as the number of components
increases. We will now illustrate how FA can be used to model a simple game.

Example 2.1. DES modeling using deterministic FA is exemplified by a simple strat-
egy game, called the stick-picking game. There are five sticks on the table, and two
players take turns by removing one or two sticks from the table. The winner is the
player who takes the last stick.

Figure 2.1 shows a way to model the stick-picking by deterministic FA. The de-
picted FA model consists of two automata that respectively capture the dynamics
of the sticks and the turn-taking between two players in the game. As an exam-
ple, the Stick automaton in Figure 2.1a models the way the number of sticks de-
creases as the game progresses, and it operates as follows. It starts in the initial
state Stick5 representing the initial five sticks. Upon the occurrence of an event
in Γ(Stick5) = {player1rm1, player1rm2, player2rm1, player2rm2}, the automaton
will either transit to state Stick4 or state Stick3 depending on one or two sticks are
picked from the table. This process then continues until the marked state Stick0 is
finally reached. The complete (monolithic) behavior can be acquired by performing
the FSC on the two automata, as shown later in Figure 2.4.

2.1.2 Extended Finite Automata
Extended finite automata (EFA) [8] are an augmentation of the ordinary FA with
integer variables that are employed in a set of guard predicates and are maintained
by a set of actions. A transition in an EFA is enabled if and only if its corresponding

10

2.1. Modeling Formalisms

guard is true. Once a transition is taken, updating actions on the set of variables
may follow. By utilizing these two mechanisms, an EFA can represent the modeled
behavior in a conciser manner than the ordinary FA.

Definition 2.3. Let v = (v1, . . . , vn) be a set of global variables, with each variable
vi ∈ v having the finite domain Di. An extended finite automaton over the variable
set v, denoted by E, is a five-tuple

E = (Q,Σ,→, q0, Q
m)

where:

- Q : L × D is the extended finite set of states. L is the finite set of the model
locations and D = D1 × . . .×Dn is the finite domain of the model variables v.

- Σ is the finite set of events, also known as the alphabet of E.

- → ⊆ L×Σ×G×A×L is the transition relation, describing a set of transitions
that take place among the model locations upon the occurrence of certain events.
However, these transitions are further qualified by G, which is a set of guard
predicates defined on D = D1 × . . . × Dn, and by A, which is a collection of
actions that update the variables as a consequence of an occurring transition.
Each action a ∈ A is an n-tuple of functions (a1, . . . , an), with each function ai
updating the corresponding variable vi.

- q0 = (`0, v0) ∈ L ×D is the initial state, where `0 is the initial location, while
v0 denotes the vector of the initial values for the variables v.

- Qm ⊆ Lm × Dm ⊆ Q is the set of marked states. Lm ⊆ L is the set of the
marked locations and Dm ⊆ D denotes the set of the vectors of marked values
for the variables v.

In the following, we shall use the notation `
σ→g/a `′ as an abbreviation for

(`, σ, g, a, `′) ∈ →. Also, the symbol ξ will be used to denote neutral actions that
do not update the value of the corresponding variables; i.e., if ai = ξ, action ai does
not update the variable vi in v.

For analysis and synthesis purposes, the EFA model in Definition 2.3 is now for-
mulated as an explicit state transition model according to the following definition.

Definition 2.4. The explicit state transition model of EFA E = (Q,Σ,→, q0, Q
m)

over v = (v1, . . . , vn), denoted by EST(E), is a five-tuple

EST(E) = (Q,Σ, 7→, q0, Q
m)

where 7→ ⊆ L×D × Σ× L×D is an explicit state transition relation defined as:

7→ = {(`, v, σ, `′, v′) | ` σ→g/a `
′ ∈→, v |= g, v′ = a(v)}.

11

Chapter 2. Supervisory Control Theory

That is, if g holds for the current values of the variables v, i.e., v |= g, the transition
`

σ→g/a `
′ can be taken and the values of v are consequently updated by the action a,

i.e, v′ = a(v). Note that if variable vi ∈ v is not updated, i.e., ai = ξ, then v′i = vi.
For notational convenience, we shall let 7→

`
σ→g/a`

′ denote the explicit representation
for the transition ` σ→g/a `

′ ∈→.

An EFA E is deterministic, if whenever there exist (`, v, σ, `′, v′) ∈ 7→E and
(`, v, σ, `′′, v′′) ∈ 7→E, then we always have (`′, v′) = (`′′, v′′). As mentioned ear-
lier, since we merely focus on deterministic systems, in the sequel, we simply write
EFA for deterministic EFA for brevity.

Player1

Player2

player1rm2
stick > 1

stick = stick − 2

player1rm1
stick > 0

stick = stick − 1

player2rm2
stick > 1

stick = stick − 2

player2rm1
stick > 0

stick = stick − 1

Figure 2.2: EFA model of the stick-picking game where the number of sticks is mod-
eled as a variable stick with 5 as the initial value and 0 as the marked value.

Example 2.2. Figure 2.2 shows an EFA model for the stick-picking game introduced
in Example 2.1. The depicted EFA contains two locations representing the respective
turn of the two players in the game. Each location has two outgoing transitions labeled
by events corresponding to the options of removing one or two sticks. Furthermore,
an integer variable stick is introduced to count the number of sticks on the table.
The guard predicates over the variable stick determine when the respective events
are possible; the actions update the values of this variable when players remove sticks.

To illustrate how a transition of an EFA is represented as its explicit state transi-
tion(s), we take the upper right transition of Figure 2.2 as an example. This transition
can lead to the following four explicit transitions:

(Player1, stick = 5, player1rm2,Player2, stick = 3),
(Player1, stick = 4, player1rm2,Player2, stick = 2),
(Player1, stick = 3, player1rm2,Player2, stick = 1),
(Player1, stick = 2, player1rm2,Player2, stick = 0).

Analogous to the FSC for FA in Definition 2.2, the composition of two EFA is
defined as the extended full synchronous composition. It is assumed that the variables
are shared by all EFA with the same initial and marked values.

12

2.2. Supervisory Control Theory

Definition 2.5. Let E1 = (Q1,Σ1,→1, q
1
0, Q

m
1) and E2 = (Q2,Σ2,→2, q

2
0, Q

m
2) be two

EFA with a common variable set v = (v1, . . . , vn). The extended full synchronous
composition (EFSC) of E1 and E2 is defined as

E1||E2 = (Q1||2,Σ1 ∪ Σ2,→1||2, (q1
0, q

2
0), Qm

1||2)

where Q1||2 : L1×L2×D, Qm
1||2 : Lm1 ×Lm2 ×Dm, q1

0 = (`1
0, v

1
0) and q2

0 = (`2
0, v

2
0) with

v1
0 = v2

0, and the transition (`1, `2) σ→g/a (`′1, `′2) ∈→1||2 is defined by the following
three rules:

- If σ ∈ Σ1 ∩ Σ2 and `1
σ→g1/a1 `′1 ∈→E1 and `2

σ→g2/a2 `′2 ∈→E2 are action
consistent, then

– g = g1 ∧ g2,
– each action function ai of a is defined as

ai =

a1
i if a1

i 6= ξ and a2
i 6= ξ,

a1
i if a1

i 6= ξ and a2
i = ξ,

a2
i if a1

i = ξ and a2
i 6= ξ,

ξ if a1
i = ξ and a2

i = ξ.

- If σ ∈ Σ1\Σ2 and `1
σ→g1/a1 `′1 ∈→E1 then g = g1 and a = a1 and `′2 = `2.

- If σ ∈ Σ2\Σ1 and `2
σ→g2/a2 `′2 ∈→E2 then g = g2 and a = a2 and `′1 = `1.

The transitions `1
σ→g1/a1 `′1 ∈→E1 and `2

σ→g2/a2 `′2 ∈→E2 are action consistent
if a1

i 6= ξ and a2
i 6= ξ, then a1

i (v) = a2
i (v) for all v ∈ D, i = 1, . . . , n. Note that if two

transitions update any variable vi to different values, then the composed transition is
not defined. A good modeling practice is that for each variable and for each event,
only one EFA is allowed to update the variable with the event, while the same variable
can be updated in different EFA with any other event. In this case, the actions are
structurally action consistent. Furthermore, the EFSC operator is both commutative
and associative [31], and thus it can be extended to handle an arbitrary number of
EFA.

2.2 Supervisory Control Theory
Given a model of the system to be controlled, the plant, and a specification of the
desired controlled behavior, supervisory control theory (SCT) [5, 6, 29, 2] provides
a formal framework to automatically compute, that is, synthesize, a supervisor that
interacts with the plant to restrict the behavior such that the specification is satisfied.

Typically a plant is described by a number of sub-plants G1, . . . , Gn, and the
monolithic plant G is then given by G1|| . . . ||Gn. Similarly, the specification K is
typically described as a set of sub-specifications, K = K1|| . . . ||Km.

An important feature of the SCT is the partitioning of events as controllable or
uncontrollable. The alphabet of a system thus can be partitioned into two disjoint

13

Chapter 2. Supervisory Control Theory

subsets Σc and Σu, which denote the set of controllable events and the set of uncon-
trollable events, respectively. Note that only controllable events can be prevented
from occurring by the supervisor.

Supervisor

Plant

Σ = Σc ∪ Σu f(·)

Figure 2.3: The feedback loop of the plant and the supervisor in SCT

Figure 2.3 shows the feedback loop of the plant and the supervisor. In SCT, the
plant is assumed to generate all events; the supervisor, as a function f(·) of the ob-
served sequence of events, can enable or disable any controllable event activated by
the plant. Typically it is possible to supervise a given system in many ways, and
thus, the supervisor to be synthesized can have multiple realizations depending how
restrictive or permissive it is. For instance, supervisors that do not allow anything to
happen might also fulfill the specification in the sense that the plant is not allowed
to do anything outside the specification. However, such supervisors are not useful.
Supervisors in SCT are assumed to be maximally permissive, which means that plants
are given the greatest amount of freedom to generate events and controllable events
are only disabled when necessary in order to prevent systems from reaching undesir-
able states where a specification is violated. The relevant literature has established
conditions under which such a supervisor exists and it is unique with respect to a
given plant and specification [32]. Unless otherwise noted, in this work we will only
consider synthesis of supervisors with maximally permissive closed-loop behavior.

2.2.1 Supervisor Synthesis for Deterministic FA
In the Ramadge & Wonham work [5], the supervisor was realized as a control map
Γ : Q → 2Σ. Unfortunately, the presented method for realizing such control map is
inefficient. In [33] it was shown that the interaction between the plant and the super-
visor can be modeled by the FSC defined in Definition 2.2. That is, the supervisor can
also be considered as a deterministic FA. When a supervisor S supervises a plant G,
the behavior that S will try to enforce is G||S. Notably, if S is not designed properly,
some parts of the plant may not be amenable to the control imposed by S, so the
actual behavior may be different. This is the reason why S should be synthesized
using formal methods that guarantee that S never tries to control the parts of the
plant that can not be controlled or, in other words, that the closed-loop behavior
really is G||S. In this thesis, we assume that the supervisor always refines the plant,
that is, S is structurally equivalent to G||S.

14

2.2. Supervisory Control Theory

In addition to the basic property that the plant G under the control of the su-
pervisor S should fulfill the given specification K, typically, there are two additional
properties that supervisors are desired to have: non-blocking and controllable.

Non-blocking

Let A = (Q,Σ, δ, q0, Q
m) be a deterministic finite automaton. A state q ∈ Q is said

to be coreachable to Qm if

∃s ∈ Σ∗ and qm ∈ Qm, such that δ(q, s) = qm.

An automaton is said to be non-blocking if all of its states are coreachable to Qm. In
other words, an automaton is non-blocking if for every state there exists a path to
some marked state.

Controllability

Let G and K be two deterministic finite automata and Σu be the set of uncontrollable
events. A state (p, q) ∈ QG ×QK is controllable if

∀σ ∈ Σu : σ ∈ ΓG(p)⇒ σ ∈ ΓG||K((p, q)).

K is controllable with respect to G if every state (p, q) in the composed system G||K
is controllable.

Synthesis

Given a plant G and a specification K modeled by deterministic FA, the synthesis
algorithm first builds a supervisor candidate S0 by computing the closed-loop system
G||K. Subsequently, the algorithm removes all the undesired states from QS0 until the
remaining states are both coreachable and controllable. In this thesis, the synthesis
algorithm that is used to calculate the maximally permissive supervisor is called the
safe-state-synthesis, which was introduced in [34].

Given a set of initial forbidden states Qx that is the union of the explicitly for-
bidden states and the initially uncontrollable states according to the controllability
explained above, the algorithm presented in Algorithm 1 executes as follows. Algo-
rithm 1 iteratively expands the forbidden state set Qx by adding all the states that
can uncontrollably reach the existing forbidden states and/or non-coreachable states,
until a final fix-point is reached. In particular, taking as input the state set Qx

i−1,
which is computed from the previous iteration, Algorithm 1 uses Algorithm 2 to com-
pute all the states that are coreachable to the marked states in Qm but do not belong
to Qx

i−1. We denote by Q′ the set of these coreachable states computed at Line 4.
It can be inferred that the complement of Q′ with QS0 , i.e., QS0\Q′, contains all the
states that are blocking at the current iteration. Subsequently, Algorithm 3 is uti-
lized to identify from QS0 all the states that can reach these blocking states through
uncontrollable events, and collects them into the set Q′′, which later is contained in

15

Chapter 2. Supervisory Control Theory

the set Qx
i . After the fix-point computation depicted in Lines 2-7 of Algorithm 1

terminates, the safe state set QS can be obtained by removing the states in Qx
i from

the set QS0 . However, this state set may contain some unreachable states that need
to be excluded. Hence, a forward reachability search, depicted in Algorithm 4, is
employed to remove these safe states that are not reached from the initial state of
S0. The synthesis of a supervisor using the safe-state-synthesis is demonstrated in
the following example.

Algorithm 1: Safe-State-Synthesis
Input: Qx, Qm, S0
Output: The set of reachable safe states QS

1 i := 0, Qx
0 := Qx;

2 repeat
3 i := i+ 1;
4 Q′ := Restricted-Backward(Qm, Qx

i−1, S0);
5 Q′′ := Uncontrollable-Backward(QS0\Q′, S0);
6 Qx

i := Qx
i−1 ∪Q′′;

7 until Qx
i = Qx

i−1;
8 QS = Restricted-Forward(Qx

i , q
S0
0 , S0);

9 return QS;

Algorithm 2: Restricted-Backward
Input: Qm, Qx and S0
Output: The set of states that are coreachable to Qm but not in Qx

1 i := 0, Q0 := Qm\Qx;
2 repeat
3 i := i+ 1;
4 Qi := Qi−1 ∪ {q ∈ QS0 | ∃q′ ∈ Qi−1,∃σ ∈ ΣS0 s.t. δS0(q, σ) = q′}\Qx;
5 until Qi = Qi−1;
6 return Qi;

Algorithm 3: Uncontrollable-Backward
Input: Qx and S0
Output: The set of expanded uncontrollable states

1 i := 0, Qx
0 := Qx;

2 repeat
3 i := i+ 1;
4 Qx

i := Qx
i−1 ∪ {q ∈ QS0 | ∃q′ ∈ Qx

i−1,∃σu ∈ Σu
S0 s.t. δS0(q, σu) = q′};

5 until Qx
i = Qx

i−1;
6 return Qx

i ;

16

2.2. Supervisory Control Theory

Algorithm 4: Restricted-Forward
Input: Qx, q0 and S0
Output: The set of states that are reachable from q0

1 i := 0, Q0 := {q0};
2 repeat
3 i := i+ 1;
4 Qi := Qi−1 ∪ {q′ ∈ QS0 | ∃q ∈ Qi−1,∃σ ∈ ΣS0 s.t. δS0(q, σ) = q′}\Qx;
5 until Qi = Qi−1;
6 return Qi;

Example 2.3. Let us consider again the FA model of the stick-picking game in-
troduced in Example 2.1. The objective is to design a strategy for controlling how
Player1 picks sticks, in order to win the game. On the other hand, the number of
sticks taken by Player2 cannot be controlled. Therefore, all events associated with
Player2 are modeled as uncontrollable events, and thus, they cannot be disabled by
the supervisor.

As stated earlier, a first candidate of the supervisor is the composed automaton
S0 = Player||Stick, shown in Figure 2.4. Initially, we notice that no forbidden state
is included in the set Qx, i.e., Qx = ∅, because (i) there are no explicitly forbidden
states, and (ii) no specification is involved in the considered FA model. We then apply
Algorithm 1 to the automaton Player||Stick. In the first iteration, the sets Q′, Q′′ and
Qx

1 are:

Q′ = Restricted-Backward({(Player2, Stick0)}, ∅) = {(Player2, Stick0),
(Player1, Stick1), (Player1, Stick2), (Player2, Stick2), (Player2, Stick3),
(Player2, Stick4), (Player1, Stick5), (Player1, Stick3)}.

Q′′ = Uncontrollable-Backward({(Player2, Stick1), (Player1, Stick0)})
= {(Player2, Stick1), (Player1, Stick0), (Player2, Stick2)}.

Qx
1 = {(Player2, Stick1), (Player1, Stick0), (Player2, Stick2)}.

Since Qx
0 6= Qx

1 , a fix-point has not been reached, and the second iteration will be
carried out:

Q′ = Restricted-Backward({(Player2, Stick0)}, Qx
1) = {(Player2, Stick0),

(Player1, Stick1), (Player1, Stick2), (Player2, Stick3), (Player2, Stick4),
(Player1, Stick5)}.

Q′′ = Uncontrollable-Backward({(Player2, Stick1), (Player1, Stick0),
(Player2, Stick2), (Player1, Stick3)}) = {(Player2, Stick1),
(Player1, Stick0), (Player1, Stick3), (Player2, Stick2), (Player2, Stick4)}.

17

Chapter 2. Supervisory Control Theory

(Player1,Stick5) (Player2,Stick4) (Player1,Stick3)

(Player2, Stick3) (Player1, Stick2) (Player2, Stick1)

(Player1, Stick1) (Player2, Stick2) (Player1, Stick0)

(Player2, Stick0)

player1rm1 !player2rm1

!player2rm1 player1rm1

!player2rm1 !player2rm2

player1rm2 !player2rm2 player1rm2

!player2rm2 !player2rm1player1rm1

player1rm2

player1rm1

Figure 2.4: The supervisor candidate S0 = Player||Stick where all the unreachable
states are omitted for brevity. Events prefixed with exclamation marks are uncon-
trollable.

Qx
2 = {(Player2, Stick1), (Player1, Stick0), (Player2, Stick2), (Player1, Stick3),

(Player2, Stick4)}.

The fix-point has not been reached and thus the computations depicted in Lines
2-8 of Algorithm 1 continue as follows.

Q′ = Restricted-Backward({(Player2, Stick0)}, Qx
2) = {(Player2, Stick0),

(Player1, Stick1), (Player1, Stick2), (Player2, Stick3), (Player1, Stick5)}.

Q′′ = Uncontrollable-Backward({(Player2, Stick1), (Player1, Stick0),
(Player2, Stick2), (Player1, Stick3), (Player2, Stick4)})

= {(Player2, Stick1), (Player1, Stick0), (Player2, Stick2), (Player1, Stick3),
(Player2, Stick4)}.

Qx
3 = {(Player2, Stick1), (Player1, Stick0), (Player1, Stick3), (Player2, Stick2),

(Player2, Stick4)}.

The set of forbidden states Qx
3 computed from the third iteration is the same as

Qx
2 , and thus, the fix-point is reached. After removing these forbidden states and their

associated transitions, the supervisor is obtained, as shown in Figure 2.5. The reader
should notice that the depicted supervisor in Figure 2.5 is essentially a sub-automaton
of the supervisor candidate S0 = Player||Stick. Also, the supervisor is controllable
with respect to the plant, since it never disables any of the uncontrollable events
during supervision.

For a more formal and detailed explanation of the conventional supervisor syn-
thesis, we refer readers to [6, 29, 2, 35].

18

2.2. Supervisory Control Theory

(Player1,Stick5) (Player2, Stick3) (Player1, Stick2)

(Player1, Stick1) (Player2, Stick0)

!player2rm1player1rm2

!player2rm2 player1rm2

player1rm1

Figure 2.5: The non-blocking and controllable supervisor for the stick-picking game.

2.2.2 Transformation of EFA to FA
In the previous subsection, we explained the basic synthesis algorithm defined on
DES modeled as deterministic FA, where transitions are represented explicitly by
their states and events. However, due to the introduction of variables, the SCT syn-
thesis performed on FA cannot be applied directly to EFA where states are implicitly
represented. Two ways to address the issue are: (i) define a new theoretical frame-
work for EFA, which conforms with the conventional SCT synthesis, or (ii) transform
EFA to the corresponding FA and use the existing SCT framework.

In [36], the authors proposed a theoretical framework where, given a plant and a
specification both modeled by EFA, the maximally permissive supervisor, represented
as another EFA, can be directly synthesized.

In [8] and [37], the authors proposed an algorithm that transforms any EFA model
to the corresponding FA model, such that the SCT analysis defined on FA can be
reused. In particular, two kinds of automata, referred to as location automata and
variable automata, are constructed by the algorithm during the transformation. The
location automata preserve the same structure as the original EFA without consider-
ing the guards and actions. The variable automata, on the other hand, capture how
variables are evaluated and updated for the corresponding transitions in the origi-
nal EFA. More formally, given N(= N1 +N2) EFA defined over n variables, with N1
sub-plants EG1 , . . . , EGN1

and N2 sub-specifications EK1 , . . . , EKN2
, the corresponding

plant and specification FA, denoted by AG and AK , respectively, can be computed as
follows:

AG = (AlocG1|| . . . ||A
loc
GN1

)||(Av1|| . . . ||Avn),

AK = (AlocK1|| . . . ||A
loc
KN2

)||(Av1|| . . . ||Avn),

where AlocG1 , . . . , A
loc
GN1

and AlocK1 , . . . , A
loc
KN2

denote the transformed location FA for the
EFA EG1 , . . . , EGN1

and EK1 , . . . , EKN2
, and Av1 , . . . , Avn are the transformed variable

FA for the n variables.
Subsequently, based on AG and AK , the conventional SCT can be applied to the

model. Recall that in Examples 2.1 and 2.2, we have modeled the sticking-picking
game by FA and EFA, respectively. By applying the transformation algorithm in [8]
and [37] to the EFA model shown in Figure 2.2, we will get the deterministic FA
shown in Figure 2.4, which is actually the composition of the automata shown in
Figure 2.1.

19

Chapter 2. Supervisory Control Theory

Although the algorithm introduced in [8] provides the convenience for reusing
the standard SCT synthesis for DES modeled as EFA, its transformation procedure
can be very time consuming, especially for complex models with many guards and
actions. This is because when constructing the variable automata, the algorithm will
first convert guards into the equivalent disjunctive normal forms, and then create
one transition for each term of each disjunctive normal form. In the worst case,
the number of transitions created by the algorithm for the variable automata can be
exponential in the number of transitions included in the considered EFA. In [38] and
[Paper 2], two different approaches have been introduced for directly converting an
EFA model to the binary decision diagrams (BDDs) that symbolically represent the
transition relation of the corresponding FA model.

2.3 Extensions of the basic SCT

This section gives an overview of different approaches and extensions of the basic
supervisory control formulation.

2.3.1 Combating State-Space Explosion

The main obstacle in the analysis of DES is the state-space explosion problem. The
problem arises when one tries to reason about the global behavior of a DES with little
interaction among the components. Since standard synthesis algorithms always build
the explicit state-space of the considered system S0 = G||K and store all states and
transitions in the memory, they are limited by the state-space explosion problem.

The following discussion gives a number of representative approaches and tech-
niques developed by the research community to circumvent the limitations arising
from the state-space explosion problem. We notice, however, that the computational
complexity of supervisor synthesis is NP-hard [19], given multiple sub-plants and sub-
specifications. This means that in the worst case we cannot expect a solution that is
much faster than the brute-force solution, although in many practical cases, the com-
plexity can be alleviated by exploiting the system structure, or by employing efficient
data structures to perform the synthesis procedure. The following approaches have
been introduced in the literature for combating the state-space explosion problem for
supervisory control problems.

Modular approaches As opposed to monolithic approaches that consider the whole
system at once, modular approaches allow for the synthesis of multiple sub-
supervisors, with each one controlling only parts of the plant. The advantage of
modular approaches is that potentially we may never consider the full system at
once, and thus the state-space explosion can be avoided. The modular synthesis
was introduced in [39] and further developed and strengthened in [40, 41, 42,
43, 44, 45], among others.

20

2.3. Extensions of the basic SCT

Hierarchical approaches Hierarchical methods strive to divide a system into differ-
ent levels of hierarchy, where the high-level supervisor is responsible for achiev-
ing a broad goal, while the low-level supervisors are responsible for the more de-
tailed problems that are assigned by the high-level supervisor’s decisions. Hier-
archical supervisory control problems have been treated in [46, 47, 48, 49, 50, 51],
among others.

Compositional approaches While modular and hierarchical approaches can be
thought to use abstractions in different forms, compositional approaches ex-
ploit the abstraction techniques more thoroughly. As a starting point, all origi-
nal components are simplified by identifying and merging certain states. Some
of the abstracted components are then composed and further simplified. The
process is repeated until one final relatively simple automaton is obtained. Dif-
ferent compositional methods developed for verification and synthesis properties
in the context of SCT can be found in [52, 53, 54, 55, 56].

Symbolic representations Symbolic representations, such as binary decision dia-
grams (BDDs) [20, 21], represent the state-space of the underlying system sym-
bolically. In this context, symbolic representation is used to denote that states
and transitions are not represented explicitly. Instead they are represented by
functions that in turn are represented using efficient data-structures. In par-
ticular, binary decision diagrams represent Boolean functions with a directed
acyclic graph with a reduced number of nodes. The potential compactness of-
fered by BDDs allows huge state-spaces to be stored within the limited amount
of memory in a computer. Also, important logic operations can be performed
on set of states represented using BDDs.

In the context of the SCT, BDDs were first used in [57] where the monolithic
supervisor synthesis is performed symbolically on the DES model of a semi-
conductor manufacturing device. Later improvements have been developed in
[58, 59, 60, 61, 62, 63, 64, 34, 65, 49, 66, 38] and [Paper 1, Paper 2], where
the structure and modularity of systems are exploited. In [58], the authors pre-
sented an application of supervisory control theory to the control of a Rapid
Thermal Multiprocessor. The plant is modeled as an input-output automaton
that accepts commands as inputs, and outputs messages regarding changes that
occurred in the system. A controller for the system is described in a similar way,
accepting the outputs of the plant, and in turn producing commands. The con-
troller synthesis procedure is based on BDD-based computations, which allows
the automatic synthesis of realistic size manufacturing processes. In [64, 65], a
hierarchical modeling formalism called state tree structure (STS) was proposed
to let users model plants and specifications at different levels of detail. Taking
advantage of the hierarchical structure of STS and the compactness of BDD, su-
pervisors can be synthesized efficiently. In [66], a predicate-based synthesis and
verification method for systems modeled using Hierarchical Interface-based Su-
pervisory Control (HISC). Combined with symbolic computations using BDDs,

21

Chapter 2. Supervisory Control Theory

the proposed algorithm is able to handle HISC systems with individual levels
significantly larger than the methods based on explicit state enumeration. In-
spired by the work presented in [67, 68], the authors of [63, 66, 34] present an
approach for partitioning and exploring BDD-based representations of state-
spaces for DES modeled using deterministic FA. Instead of representing the
state-space of a given FA model as one monolithic BDD, the proposed approach
constructs a set of BDDs that collectively represent the state-space. Based on
these constructed BDDs, an efficient algorithm is proposed to explore the states
iteratively to keep sizes of the relevant BDDs small. This symbolic approach
later is enhanced and extended in [69] and [Paper 1], respectively. Comparing
to FA, the approaches that perform the SCT synthesis procedure using BDDs
directly on EFA are few. Two related works are presented in [38] and [Paper 2]
where the state-space of the considered EFA can be directly represented BDDs
without first transforming them into the corresponding FA. With the availabil-
ity of the BDD-based representation of the state-space, the proposed algorithms
can be used to synthesize the supervisor.

The approaches outlined in the previous paragraphs are not mutually exclusive,
but can be combined to result in more efficient ways to compute supervisors. For
example, in modular and hierarchical approaches, typically monolithic approaches
are applied on subsets of components under consideration. If those subsets contain
many components, compositional approaches or symbolic representations might be
more applicable. Specific examples of mixing hierarchical and symbolic methods
using BDDs can be found in [65, 49].

2.3.2 Supervisor as Guards
While the aforementioned approaches aim at alleviating the computational effect
for designing supervisors, another issue is how to effectively represent supervisors.
Typically, the synthesized supervisor for a given system is expressed as a monolithic
automaton or a set of automata. For large and complex systems, such a representation
of the supervisor may become incomprehensible for users. Furthermore, implementing
the supervisor on a hardware platform may require more memory than available.

In [70], an approach called the guard generation procedure was presented to ad-
dress the above issues by representing the synthesized supervisor as a set of guard
predicates. The generated guards are then attached to the transitions of the original
models to enforce the closed-loop behavior within the specification.

Representing supervisors as guards has several benefits. Since normally users
might already have intimate knowledge of the plant, the extracted guards, despite
being large in the number of terms, have a chance to be meaningful. Also, supervi-
sors expressed as guards associated with events lie much closer to the implementation
in an industrial controller, such as a programmable logic controller (PLC). Thus, the
programming of the controller would be a rather simple matter of just encoding the
Boolean guards in a programming language, which could even be done automatically.

22

2.3. Extensions of the basic SCT

Moreover, for many events the guard extraction results in no extra supervisor guards.
This means that the particular event is never controlled by the supervisor, only ob-
served, which is useful information that is not trivially obtained from a supervisor
represented as automata. Similarly, some events may have supervisor guards that are
always false, meaning the event is always disabled by the supervisor.

Recall that the supervisor influences the plant by dynamically disabling execution
of some events from the current state, in order to avoid violation of the specification.
To guarantee the correctness (i.e., controllability/non-blocking) and maximally per-
missiveness of the supervisor, at any state in S0 = G||K, an event is either enabled or
disabled from occurring. It is also possible that the execution of an event at a state
of S0 does not affect the synthesis result, e.g., if such a state is not present in the
supervisor. For each event σ, we can thus generate a guard based on the states of the
supervisor, indicating when σ is enabled.

Concerning the states that are retained or removed after the synthesis procedure,
for each controllable event, three state sets can be considered that form the basis for
generating guards [70], [Paper 1]:

1. The allowed states, where σ must be enabled in order to end up in states that
belong to the supervisor.

2. The forbidden states, where σ must be disabled in order to avoid ending up in
states that were removed after the synthesis procedure as the forbidden states.

3. The don’t-care states, where enabling or disabling σ does not make any changes
in the final supervisor.

Based on these three basic state sets, guards that indicate under which conditions
the events can be executed without violating the specifications, can be extracted from
the supervisor. In addition, by applying minimization methods of Boolean functions
to the don’t care states, and certain heuristics, the generated guards can be simplified.
For a detailed explanation of the guard generation procedure and its related adoption
to symbolic representations, refer to [70] and [Paper 1].

Example 2.4. As a concrete example, Figure 2.6 shows the supervisor for the stick-
picking game that is represented as one additional guard attached to the EFA model
in Figure 2.2. In comparison with the supervisor expressed as an automaton shown
in Figure 2.5, representing the supervisor by adding this guard into the EFA model
is more comprehensible and conciser.

2.3.3 Other Extensions
Partial Event Observation In the basic supervisory control theory it is assumed

that all events are observable by the supervisor. This is not possible in some
situations, most notably in distributed systems where each sub-supervisor is
capable of observing only a subset of events generated from the shared plant.

23

Chapter 2. Supervisory Control Theory

Player1

Player2

player1rm2
stick > 1

stick = stick − 2

player1rm1
stick > 0 ∧ stick = 1
stick = stick − 1

!player2rm2
stick > 1

stick = stick − 2

!player2rm1
stick > 0

stick = stick − 1

Figure 2.6: The supervisor for the stick-picking game is represented as one additional
guard stick = 1 attached to the EFA shown in Figure 2.2. In fact, after attaching
the additional guard, the whole predicate can be further reduced to stick = 1.

Supervisory control of distributed systems with partial observation has been
treated in [71, 40, 72], among others.

Time Discrete Event Systems In DES, the logical or the qualitative behavior of
a system is in focus. However, in some real-time applications, we also want to
analyze the quantitative properties of a system. A DES that also considers the
time instants at which the events occur, is referred to as timed DES (TDES).
The supervisory control problem for TDES has been treated in [73, 74, 75, 76],
and more recently in [77, 78].

2.4 Closing Remarks
This chapter presents preliminaries that are used throughout the thesis. As the mod-
eling formalisms, FA and EFA are two major ones used to model DES. The standard
SCT synthesis is originally defined and carried out on FA. An EFA is an FA extended
with integer variables. This richer structure, though with equal expressive power, is
more convenient for human users. However, while FA have been studies extensively in
the DES research community, the approaches that perform the SCT analysis directly
on EFA are few. Furthermore, the supervisor synthesis is a challenging problem due
to the state-space explosion that occurs when composing a large number of individual
automata.

Among the appended papers, [Paper 1] and [Paper 2] are most related to the
material presented in this chapter. The former one adopts FA as the modeling for-
malism while the latter one uses EFA to model DES. The approaches of both papers
use BDDs to represent the state-spaces of the models. Moreover, [Paper 2] aims for
performing the supervisor synthesis directly on EFA while [Paper 1] focuses on how
to represent supervisors that are obtained as BDDs.

24

Chapter 3

Deadlock Avoidance for Resource
Allocation Systems

Deadlock avoidance for resource allocation system (RAS) is a particular DES appli-
cation domain, which arises in many contemporary technological systems including
transportation systems, workflow management, material handling and telecommuni-
cation. In its basic setting, this problem concerns the coordinated allocation of the
system resources to a set of concurrently executing processes so that every process
can eventually proceed to its completion. In particular, by utilizing the information
about the current allocation of the system resources and the available knowledge
about the structure of the executing process types, the applied control policy avoids
the visitation of RAS states from which deadlock is inevitable.

Preferably, deadlock avoidance should be carried out in the maximally permissive
manner. It is currently known [9] that the computation of the maximally permissive
deadlock avoidance policy (DAP) for any given RAS can be based, in principle, on
the standard synthesis procedures borrowed from the DES supervisory control theory.
By expressing the underlying resource allocation dynamics as a deterministic finite
automaton, we could employ the standard synthesis algorithms on this automaton
to obtain the non-blocking supervisor. This supervisor would then be the maxi-
mally permissive DAP in the context of deadlock avoidance. However, as mentioned
in the previous chapter, the standard SCT analysis suffers from high computational
complexity. When one tries to build a complete monolithic state-space of the automa-
ton that characterizes the actual resource allocation dynamics, state-space explosion
might occur. Therefore, the realization of the optimal, or more generally, a highly
permissive DAP for RAS that are encountered in contemporary applications can be
a challenging task.

The rest of this chapter will evolve as follows: Section 3.1 introduces formally
the concept of the resource allocation systems employed in this work. Subsequently,
Section 3.2 shows how the deadlock avoidance problem is characterized and solved in
the standard synthesis algorithm defined on deterministic FA. By modeling a simple
RAS example as EFA, Section 3.2 also illustrates the modeling procedure that is in-
troduced in [Paper 3]. Moreover, Section 3.2 discusses an alternative way to represent

25

Chapter 3. Deadlock Avoidance for Resource Allocation Systems

the target control policy by focusing on a set of critical states. The availability of
these states enables an expedient one-step-lookahead scheme that prevents the RAS
from reaching into the deadlock states. Section 3.3 overviews the state of the art
methods to deal with the high computational complexity of the deadlock avoidance
problem and Section 3.4 discusses some advancements or complements of this thesis
to the state of the art.

3.1 Resource Allocation System
Definition 3.1. A (sequential) resource allocation system (RAS) is defined as a 4-
tuple Φ = 〈R, C,P ,A〉 [9] where:

- R = {R1, . . . , Rm} is the set of the system resource types andm is the cardinality
of this set.

- C : R → Z+ – where Z+ is the set of strictly positive integers – is the sys-
tem capacity function with C(Ri) ≡ Ci, characterizing the number of identical
units from each resource type available in the system. Resources are assumed
to be reusable, i.e., they are engaged by the various processes according to an
allocation/de-allocation cycle, and each such cycle does not affect their func-
tional status or subsequent availability.

- P = {J1, . . . , Jn} denotes the set of the system process types supported by
the considered system configuration, and n is the cardinality of this set. Each
process type Jj, for j = 1, . . . , n, is a composite element itself; in particular,
Jj = 〈Sj,Gj〉, where:

(a) Sj = {Ξj1, . . . ,Ξj,l(j)} is the set of processing stages involved in the defini-
tion of process type Jj and l(j) denotes the number of processing stages
of Jj, and

(b) Gj represents some data structure communicating some sequential logic
over the set of processing stages Sj that governs the execution of any
process instance of type Jj (see Assumption 3.1 below).

- A : ⋃nj=1 Sj →
∏m
i=1{0, . . . , Ci} is the resource allocation function, which asso-

ciates every processing stage Ξjk with the resource allocation request A(j, k) ≡
Ajk. More specifically, each A(j, k) is an m-dimensional vector, with its i-th
component indicating the number of resource units of resource type Ri neces-
sary to support the execution of stage Ξjk. Obviously, in a well-defined RAS,
A(j, k)[i] ≤ Ci,∀j, k, i. Also, it is assumed that Ajk 6= 0, i.e., every processing
stage requires at least one resource unit for its execution.

Moreover, the RAS class to be considered in this work satisfies the following two
assumptions:

26

3.1. Resource Allocation System

Assumption 3.1. In the considered RAS, the data structure Gj that defines the
sequential logic of process type Jj, j = 1, . . . , n, corresponds to a connected acyclic
digraph (Vj, Ej), where the graph node set Vj is in one-to-one correspondence with
the processing stage set Sj. Furthermore, there are two subsets V↗j and V↘j of
Vj respectively defining the sets of initiating and terminating processing stages for
process type Jj. The connectivity of digraph Gj is such that every node v ∈ Vj is
accessible from the node set V↗j and is co-accessible i.e., can reach a node to V↘j .
Finally, any directed path of Gj leading from a node of V↗j to a node of V↘j constitutes
a complete execution sequence – a “route” – for process type Jj.

Assumption 3.2. In the considered RAS, the resource allocation requests Ajk, j =
1, . . . , n and k = 1, . . . , l(j), are “conjunctive”, i.e., a processing stage Ξjk can request
an arbitrary nonempty subset of the system resources for its execution. Furthermore,
a process instance executing processing stage Ξjk will be able to advance to a successor
processing stage Ξjk′ , only after it has allocated the resource differencemax{0, (Ajk′−
Ajk)}; and it is only upon this advancement that the process will release the resource
units |min{0, (Ajk′ −Ajk)}|, that are not needed anymore.

For complexity considerations, we define the quantity |Φ| ≡ |R| + |⋃nj=1 Sj| +∑m
i=1Ci as the “size” of RAS Φ. For notational convenience, we shall set µ = ∑n

j=1 |Sj|;
i.e., µ denotes the number of distinct processing stages supported by the considered
RAS across the entire set of its processing types. Furthermore, the various processing
stages Ξjk where j = 1, . . . , n, k = 1, . . . , l(j), will frequently be considered in the
context of a total ordering imposed on the set ⋃nj=1 Sj. In that case, the processing
stages themselves and their corresponding attributes will be indexed by a single index
h that runs over the set {1, . . . , µ} and indicates the position of the processing stages
in the considered total order. Finally, given an edge e ∈ Gj linking Ξjk to Ξjk′ , we
define e.src ≡ Ξjk and e.dst ≡ Ξjk′ , i.e., e.src and e.dst denote respectively the source
and the destination nodes of edge e.

A more general definition of the RAS concept is provided in [9]. The basic dif-
ferences between Definition 3.1 and the RAS definition of [9] can be summarized as
follows: First of all, the complete RAS definition involves an additional component
that characterizes the time-based – or quantitative – dynamics of the RAS; but this
component is not relevant in the modeling and analysis to be pursued in this work,
and therefore, it is omitted. Moreover, the process-defining logic supported by Def-
inition 3.1 encompasses the operational feature of routing flexibility, but it excludes
the possibility of merging and splitting operations. Technically, one can classify the
various RAS classes into a taxonomy that is defined on the basis of (i) the process
sequencing logic of Gj, and (ii) the resource allocation request Ajk associated with
processing stages Ξjk. Then, the main RAS classes that are identified and supported
by the general RAS definition of [9] are provided in Table 3.1. The reader should
notice that the RAS definition in Definition 3.1 essentially corresponds to the Dis-
junctive/Conjunctive (D/C) RAS class in the taxonomy of Table 3.1.

27

Chapter 3. Deadlock Avoidance for Resource Allocation Systems

Table 3.1: The RAS taxonomy defined in [9].

Based on the structure of the
process sequencing logic

Based on the structure of the
resource allocation request

Linear: Each process is defined by
a linear sequence of stages.

Single-Unit: Each stage requires a
single unit from a single resource.

Disjunctive: A number of alterna-
tive process plans encoded by a con-
nected digraph.

Single-Type: Each stage requires
an arbitrary number of units, but all
from a single resource.

Merge-Split: Each process is a
fork/join network.

Conjunctive: An arbitrary number
of units from different resources.

Complex: A combination of the
above behaviors.

J1 : Ξ11

R1

Ξ12

R2

Ξ13

R3

J2 : Ξ21

R3

Ξ22

R2

Ξ23

R1

Figure 3.1: The RAS considered in Example 3.1.

Example 3.1. We demonstrate the RAS concept implied by Definition 3.1 by in-
troducing a particular instance that will also provide an expository base for the sub-
sequent discussion. The RAS depicted in Figure 3.1 comprises two process types J1
and J2, each of which is defined as a sequence of three processing stages; the stages of
process types Jj, j = 1, 2, are denoted by Ξjk, k = 1, 2, 3. The system resource type
set is R = {R1, R2, R3}, with capacity Ci = 1 for i = 1, 2, 3. The resource allocation
function A, of this RAS can be derived from the information on the process routes
depicted in Figure 3.1. As a concrete example, the processing stage Ξ12 needs only one
unit from R2 to support its execution. Hence, A12[1] = A12[3] = 0, and A12[2] = 1.

3.2 Supervisory Control of RAS
The “hold-while-waiting” protocol that is described in Assumption 3.2, when com-
bined with the arbitrary nature of the process routes and the resource allocation re-
quests supported by the considered RAS model, can give rise to a set of RAS states.
From these states, a set of processes are waiting upon each other for the release of re-
sources that are necessary for their advancement to their next processing stage. Such
persisting cyclical-waiting patterns are known as (partial) deadlocks in the relevant
literature, and to the extent that they disrupt the smooth operation of the underly-
ing system, they must be identified and eliminated from the system behavior. The

28

3.2. Supervisory Control of RAS

relevant control problem is known as deadlock avoidance, and as remarked earlier, a
natural framework for its investigation is that of SCT.

3.2.1 FA-based Modeling of RAS Dynamics
The dynamics of the RAS instance Φ = 〈R, C,P ,A〉, introduced in Definition 3.1, can
be formally characterized by a single deterministic finite automaton (FA), denoted by
A(Φ) = (Q,Σ, δ,Γ, q0, Q

m) that is defined as follows [9]:

1. The state set Q consists of µ-dimensional vectors s. The components s[h], h =
1, . . . , µ, of s are in one-to-one correspondence with the RAS processing stages,
and they indicate the number of process instances executing the corresponding
processing stages in the RAS state modeled by s. Hence, Q consists of all the
vectors s ∈ (Z+

0)µ that further satisfy

∀i = 1, . . . ,m,
µ∑
h=1

s[h] · A(Ξh)[i] ≤ Ci (3.1)

where A(Ξh)[i] ≤ Ci denotes the allocation request for resource Ri that is posed
by the processing stage Ξh.

2. The event set Σ is the union of the disjoint event sets Σ↗, Σ̄ and Σ↘, where:

(a) Σ↗ = {erp : r = 0,Ξp ∈
⋃n
j=1 V↗}, i.e., event erp represents the loading of

a new process instance that starts from stage Ξp.
(b) Σ̄ = {erp : ∃j ∈ 1, . . . , n s.t. Ξp is a successor of Ξr in digraph Gj}, i.e.,

erp represents the advancement of a process instance executing stage Ξr to
a successor stage Ξp.

(c) Σ↘ = {erp : Ξr ∈
⋃n
j=1 V↘, p = 0}, i.e., erp represents the unloading of a

finished process instance after executing its last stage Ξr.

3. The transition function δ : Q × Σ → Q is defined by s′ = δ(s, erp), where the
components s′[h] of the resulting state s′ are given by:

s′[h] =

s[h]− 1 if h = r

s[h] + 1 if h = p
s[h] otherwise

4. The active event function Γ: Q → 2Σ collects, for each state s ∈ Q, the set
of events σ ∈ Σ for which the transition function δ(s, σ) is defined (i.e., the
resulting state s′ belongs in Q).

5. The initial state q0 is the µ-dimensional vector s0 set to 0.

6. The set of marked states Qm is the singleton {s0}, where s0 is the initial state.

29

Chapter 3. Deadlock Avoidance for Resource Allocation Systems

000 000
s0

100 000
s1

000 100
s2

100 100
s15

010 000
s3

000 010
s4

110 000
s5

001 000
s6

000 001
s7

000 110
s8

101 000
s9

010 100
s16

100 010
s17

000 101
s10

011 000
s11

110 100
s18

100 110
s19

000 011
s12

111 000
s13

000 111
s14

Figure 3.2: The deterministic FA modeling the RAS dynamics of Example 3.1. States
depicted in red are the unsafe states.

Example 3.2. To exemplify the FA-based modeling of the RAS behavior, consider
the RAS example introduced in Example 3.1. Figure 3.2 depicts the corresponding
deterministic FA that models the reachable subspace of the RAS defined in Figure 3.1.
The depicted FA includes the states that are reachable from the initial and marked
state s0. The state of this RAS has six components, corresponding to each of the six
processing stages; in particular, state s0 = (0 0 0 0 0 0) denotes the initial empty state.
As can be seen in Figure 3.2, the considered RAS represents 20 distinct allocation
states, with the state signature ranging from 0 to 19. It will be shown shortly that
the five unsafe states depicted in 3.2 are also the boundary unsafe states that define
the boundary between the safe and unsafe subspaces.

3.2.2 EFA-based Modeling of RAS Dynamics
Apart from the adoption of FA, the dynamics of RAS can also be conveniently recast in
the EFA modeling framework. In [Paper 3], a straightforward procedure is presented
for the development of the EFA modeling the behavior of the RAS encompassed in
Definition 3.1. The procedure is modular, since it models a given RAS as a set of EFA
instead of a single (monolithic) automaton. These EFA when composed together using
the EFSC will essentially characterize the RAS dynamics. The In this section, we
illustrate this procedure by developing the EFA model for the RAS instance depicted
in Figure 3.1. In the last part of the section, some additional remarks elaborate on
the informational content of the generated EFA. There remarks together with the
induced results will be used in Chapter 4 by the symbolic algorithms for synthesizing

30

3.2. Supervisory Control of RAS

J1

J1_load
vR1 ≥ 1

v11 = v11 + 1; vR1 = vR1 − 1

〈Ξ12, Ξ13〉
v12 ≥ 1 ∧ vR3 ≥ 1
v12 = v12 − 1;
vR2 = vR2 + 1

〈Ξ11, Ξ12〉
v11 ≥ 1 ∧ vR2 ≥ 1
v11 = v11 − 1;
v12 = v12 + 1;
vR2 = vR2 − 1;
vR1 = vR1 + 1

(a) The EFA E(J1) modeling the process type J1

J2

J2_load
vR3 ≥ 1

v21 = v21 + 1; vR3 = vR3 − 1

〈Ξ22, Ξ23〉
v22 ≥ 1 ∧ vR1 ≥ 1
v22 = v22 − 1;
vR2 = vR2 + 1

〈Ξ21, Ξ22〉
v21 ≥ 1 ∧ vR2 ≥ 1
v21 = v21 − 1;
v22 = v22 + 1;
vR2 = vR2 − 1;
vR3 = vR3 + 1

(b) The EFA E(J2) modeling the process type J2

Figure 3.3: The EFA model for the RAS instance in Figure 3.1

the maximally permissive DAP for RAS.

Example 3.3. In the approach of [Paper 3], each process type is modeled as a distinct
EFA. Figure 3.3 shows the EFA that models the behavior of the two processes J1 and
J2 depicted in the RAS of Figure 3.1. Taking Figure 3.3a as an example, this EFA
has only one location, and its three transitions correspond to the loading and the
process-advancing events among the different stages. On the other hand, since a
process instance that has reached its final stage can always leave the system without
any further resource requests, the unloading event is modeled only implicitly through
the event that models the process access to its terminal stage(s). More specifically,
in the EFA depicted in Figure 3.3, the evolution of a process instance through the
various processing stages is traced by the instance variables v1j, j = 1, 2; each of these
variables counts the number of process instances that are executing the corresponding
processing stage. The model does not include a variable v13 since it is assumed that a
process instance reaching stage Ξ13 is eventually unloaded from the system, without
the need for any further resource allocation action.

The two EFA E(J1) and E(J2) that model the process types J1 and J2 are linked
through the global resource variables vRi, i = 1, 2, 3, where each variable vRi denotes
the number of free units of resource Ri. The domain of variable vRi is {0, . . . , Ci}.

Since, under proper RAS operation, the initial and the final state correspond to
the empty state, both the initial and the marked values of each variable vRi are equal
to Ci, and the corresponding values for all instance variables vjk are equal to zero.

Finally, as depicted in Figure 3.3, the resource and the instance variables are used
to construct the necessary guards and actions for the system transitions. The guards
determine whether a process-loading or advancing event can take place, on the basis
of the process and the resource availability. Upon the occurrence of such an event,
the corresponding actions update accordingly the available resource units and the
process instances that are active at the various processing stages. For a more detailed
discussion on the EFA-based modeling of RAS and the above example, the reader is

31

Chapter 3. Deadlock Avoidance for Resource Allocation Systems

referred to [Paper 3].

We remind the reader that every legitimate resource allocation state of the consid-
ered RAS must adhere to the restrictions that are imposed by the limited capacities
of the system resources. In the representation of the EFA modeling an RAS instance
Φ, these restrictions are expressed by the following constraints

∀i ∈ {1, . . . ,m}, vRi +
n∑
j=1

l(j)−1∑
k=1
Ajk[i] ∗ vjk = Ci (3.2)

In (3.2), we have taken into consideration the fact that terminal processing stages
are not explicitly accounted for in the considered EFAmodel (for the reasons explained
earlier). From a more technical standpoint, the constraints of (3.2) can be perceived
as a set of resource-induced invariants that must be observed by the dynamics of the
EFA model in order to provide a faithful representation of the actual RAS dynamics.
Hence, in the following, we shall characterize a state s in the RAS dynamics modeled
by the EFA model with a variable vector v satisfying the constraints of (3.2) as a
feasible state.

Figure 3.4 shows the explicit state transition (EST) model of E(J1)||E(J2), which
explicitly describes the actual dynamics of the RAS instance Φ irrespective of the
resource allocation and deallocation at the last processing stages. As can be seen
in Figure 3.4, the depicted EST model involves twelve (12) states, with each state
si, i = 0, . . . , 11, being described by seven components that correspond to the val-
ues of the instance variables v11, v12, v21, v22 and the resource variables vR1, vR2, vR3.
Notice that the depicted EST model is different from the deterministic FA shown
in Figure 3.2, where the states do not have components representing the system re-
sources, and the resource allocation and deallocation behaviors for the last processing
stages are explicitly modeled.

3.2.3 The Target Maximally Permissive DAP
By expressing the dynamics of a RAS instance Φ by the corresponding deterministic
FA, A(Φ), we have translated the problem of designing the maximally permissive
DAP for Φ into a supervisory control problem, and thus, the synthesis algorithms
such as the safe-state-synthesis algorithm can be applied to synthesize the supervisor.
Since neither uncontrollable events nor any initial forbidden states are defined, the
resulting supervisor for A(Φ) can be simply obtained by performing the non-blocking
synthesis on this automaton with respect to its empty state s0, that defines the initial
and the target state for any successful operational cycle of the underlying RAS.

In the relevant RAS theory, states that are coreachable to the RAS idle and
empty state s0 are also characterized as safe, and, correspondingly, states that are
not coreachable are characterized as unsafe.

The RAS unsafety characterized in the previous paragraph results from the for-
mation of (partial) deadlocks among a (sub-)set of the running processes. The unsafe

32

3.2. Supervisory Control of RAS

00 00 111
s0

10 00 011
s1

00 10 110
s2

10 10 010
s4

01 00 101
s3

00 01 101
s5

01 10 100
s7

10 01 001
s8

11 00 001
s6

00 11 100
s9

11 10 000
s10

10 11 000
s11

J1_load J2_load

〈Ξ11,Ξ12〉 J2_load J1_load 〈Ξ21,Ξ22〉

J1_load J2_load

〈Ξ12,Ξ13〉

〈Ξ11,Ξ12〉 〈Ξ21,Ξ22〉 J1_load J2_load

〈Ξ22,Ξ23〉

J2_load

〈Ξ12,Ξ13〉

J1_load J2_load J1_load

〈Ξ22,Ξ23〉

Figure 3.4: The EST model of the composition of two EFA depicted in Figure 3.3.
The depicted EST model includes only the RAS feasible states that are reachable
from the initial and target state s0. States depicted in red are unsafe.

states are essentially those states from which the formation of deadlock is unavoidable.
A formal definition of this concept is as follows:

Definition 3.2. A (partial) deadlock is a RAS state where a (sub-)set of processes
are entangled in a circular waiting pattern with each process in this set requiring, in
order to advance to its next processing stage, some resource units that are held by
other processes in the set.

For notational convenience, we denote the sets of safe states, unsafe states and
deadlock states by S, U and D. Clearly, S ∩ U = ∅; D ⊆ U .

Example 3.4. In the deterministic FA A(Φ) depicted in Figure 3.2, the states s15 –
s19 are identified as the unsafe states; the remaining states are safe. The non-blocking
supervisor of this automaton can be obtained through the removal of the unsafe states.
Also, among these five unsafe states, the deadlock states are s16 – s19. On the other
hand, the state s15 does not contain deadlock, since two processing-advancing events
are enabled from the state.

When it comes to the implementation of the control function, we could have
employed the FA representation of the controlled system behavior under the target
DAP. However, for many practical RAS configurations, the explicit storage and on-line
parsing of this information is of prohibitive computational cost due to the enormous
number of the involved states.

33

Chapter 3. Deadlock Avoidance for Resource Allocation Systems

Alternatively, the maximally permissive DAP can be implemented by a one-step–
lookahead scheme that prevents the RAS from reaching outside its safe subspace.
In particular, a subset of unsafe states, referred to as the set of boundary unsafe
states, can be employed for the partition of the safe and unsafe subspaces. The set
of boundary unsafe states, B, can be expressed as B ≡ {s′ ∈ U | ∃s ∈ S,∃σ ∈
Σ s.t. δ(s, σ) = s′}. Furthermore, the entire set of boundary unsafe states can be
represented by its minimal elements [79], denoted by the set B, since the notion of
unsafety presents a monotonicity property that endows this set with properties similar
to those of a right-closed set [80]. Consequently, the availability of the set of minimal
boundary unsafe states enables an expedient one-step-lookahead scheme preventing
the RAS from reaching outside its safe region. In particular, any tentative transitions
taking the underlying RAS to a state that dominates, component-wise, some minimal
boundary unsafe state will be disabled by the target DAP.

Example 3.5. As a concrete example, the boundary unsafe state set B and the
minimal boundary unsafe state set B for the deterministic FA depicted in Figure 3.2
are B = {s15, s16, s17, s18, s19}, and B = {s15, s16, s17}.

In [Paper 5], inspired by the guard generation procedure introduced in [70], to
represent the sought DAP, we extend the symbolic framework that is proposed in
[Paper 3] and [Paper 4] by introducing a straightforward procedure that generates
a set of comprehensible guards from the set of minimal boundary unsafe states. By
attaching these guards to the original model, the generated predicates guard tran-
sitions to the states that dominate some elements in the set of minimal boundary
unsafe states. For a detailed exposition of this procedure and its application to the
establishment of deadlock avoidance of a multithreaded program, refer to [Paper 5].

3.3 Dealing with the NP-Hardness of the Maxi-
mally Permissive DAP

A significant body of results that are currently available in the relevant literature
concerns the computational complexity of the deadlock avoidance problem and the
computation of the maximally permissive DAP. Along these lines, it has been estab-
lished that computing the maximally permissive DAP is NP-hard for the majority
of RAS behavior [81, 82, 83]. In this section we overview the main approaches that
have been employed by the research community in its effort to cope with this non-
polynomial complexity of the maximally permissive DAP.

The research community has tried to circumvent the limitations arising from these
negative results by pursuing the following directions:

1. The identification of “special structure” that allows the deployment of the max-
imally permissive DAP through algorithms of polynomial complexity with re-
spect to the size |Φ| of Definition 3.1. Some representative results can be found
in [81, 84, 85, 12, 83].

34

3.3. Dealing with the NP-Hardness of the Maximally Permissive DAP

2. The development of sub-optimal – i.e., non-maximally permissive – solutions
that are based on state properties that are polynomially decidable with respect
to the RAS size |Φ|. Under these policies, a tentative RAS transition is allowed
only if the resultant state satisfies the policy-defining property, which acts as a
surrogate characterization of safety. Hence, if the reachable subspace satisfying
such a policy-defining property constitutes a strongly connected component
containing s0 in the deterministic FA that models the RAS dynamics, the system
behavior will remain deadlock free. Specific examples implementing this general
idea can be found in [86, 87, 11, 88, 89, 90].

3. The adoption of alternative, compact representations of the considered RAS
dynamics in the hope that the compactness of these alternative representations,
combined with further structural properties and insights revealed by them, will
also lead, at least in most practical cases, to fairly compact characterizations of
the target policy and to more efficient approaches for its derivation. A modeling
framework that seems to hold particular promise along this line of research, and
therefore, has been explored more persistently in the past, is that of Petri nets
(PNs) [7]. Since the RAS structural analysis and the design of DAPs by means of
PN modeling framework is beyond the scope of the thesis, we forego any further
discussion in this research and refer readers to some indicative works presented
in [10, 91, 92, 93, 94]. We notice, however, that the PN-based approaches for
the realization of the maximally permissive DAP essentially seek to express this
DAP as a set of linear inequalities to be imposed upon the RAS state. As it
is established in the relevant literature [95, 9, 96], such a representation will
not be always possible in the considered RAS class. Hence, these approaches
are inherently limited in their ability to effectively represent and compute the
maximally permissive DAP.

4. Another prominent approach that has been developed primarily in the context
of PN modeling, but essentially spans, both, the FA and PN-based representa-
tions, is that of the “theory of regions” [97] and its derivatives. The key problem
addressed by the theory of regions is the conversion of a system modeled orig-
inally as an FA into a Petri net such that each distinct event is represented
by a single transition, and the reachability graph of the synchronized Petri net
is isomorphic to the original FA. In [98], it was proposed to use the theory of
regions to design a PN-based representation of the maximally permissive DAP
by first computing the maximally permissive DAP using enumerative FA-based
approaches borrowed from SCT; the obtained policy is subsequently encoded
to a more compact PN model through the theory of regions. The approaches
in [98, 99] can find the optimal supervisor if such a supervisor exists. But these
approaches are also limited by the aforementioned potential inability to express
the maximally permissive DAP as a PN. Furthermore, even in their feasible
cases, practical experience has shown that these methods are very demanding
from a computational standpoint, and they result in PN-based representations

35

Chapter 3. Deadlock Avoidance for Resource Allocation Systems

of the maximally permissive DAP that are much larger than the PN modeling
the original RAS.

5. The above discussion has revealed a number of limitations regarding the deploy-
ment of the maximally permissive DAP by using the theory of regions. In order
to address these limitations, an alternative line research has been proposed,
leading to effective and efficient implementations of the maximally permissive
DAP for pretty sizable RAS instances. Similar to the approach of the theory
of regions, the proposed approaches in this line of research are decomposed to
two stages, with the first stage obtaining this policy in the SCT framework and
the second stage trying to express the obtained result in a more compact form.
However, instead of explicitly relying on the results from the PN-based modeling
framework, the optimal DAP is perceived as a classifier that dichotomizes the
RAS state-space into its safe and unsafe subspaces. The methods that are pur-
sued in this line of research open new ways for thinking about the considered
problem, that complement effectively all the previously used approaches. To
develop computationally efficient classifications for the RAS classes under con-
sideration, parametric or non-parametric representations can be selected for the
sought classifier. Roughly speaking, a parametric classifier is defined by a set of
linear inequalities and/or Boolean functions, whereas a non-parametric classi-
fier is defined by a pertinent data structure that stores the information needed
for the classification. For parametric classifiers, the classifier-design problem is
defined as a minimization problem over a certain parameter space that results
from the adopted representation. Specific approaches for designing parametric
classifiers for various RAS classes are presented in [100], [101], [80], [102], [103]
and [104].

6. A more recent approach that is introduced in [79] develops and deploys the
non-parametric representation for the sought classifier through the identifica-
tion and the efficient storage of the minimal boundary unsafe states of the un-
derlying RAS state-space. As already noted earlier, these critical states define
the boundary between the safe and unsafe subspaces, with a tentative transition
considered to be unsafe if the resulting state is greater than or equal, component-
wise, to one of the minimal boundary unsafe states. Furthermore, the results of
[105] complement the work of [79] by introducing an algorithm that enumerates
all the minimal unsafe states while avoiding the complete enumeration of the
RAS state-space. The key idea for the algorithm of [105] stems from the remark
that, in the considered RAS dynamics, unsafety is defined by unavoidable ab-
sorption into the system deadlocks. Hence, the unsafe states of interest can be
retrieved by a localized computation that starts from the RAS deadlocks and
backtraces the RAS dynamics until it hits the boundary between the safe and
unsafe subspaces. Numerical experimentation has established the ability of this
promising approach to effectively compute the maximally permissive DAP for
RAS with large structure and state-spaces.

36

3.4. Closing Remarks

More extensive and comprehensive treatments of many of the results and method-
ologies that were outlined in the previous paragraph, can be found in [95, 9, 106, 96,
104, 107].

3.4 Closing Remarks
As one particular DES application domain, the deadlock avoidance problem can be
characterized in the standard SCT framework in a straightforward manner. First, the
underlying resource allocation dynamics is expressed into a deterministic FA. Then
the standard non-blocking supervisor synthesis is carried out on this FA to obtain
the maximally permissive DAP. To deploy the maximally permissive DAP for RAS
efficiently, the notion of classifier is introduced and defined in the literature. Both
parametric and non-parametric representations of the sought classifiers are developed.
A parametric classifier is defined by a set of linear inequalities and/or Boolean func-
tions, whereas a non-parametric classifier is defined by a pertinent data structure that
stores the information needed for the classification.

To put the work of this thesis in context, the framework presented in [Paper 3]
and [Paper 4] introduces two different ways to develop non-parametric classifiers for
RAS, by symbolically representing the RAS dynamics as BDDs and computing the
minimal boundary unsafe states. [Paper 5] extends the framework by introducing a
procedure that generates a set of guards from the BDD representing all the minimal
boundary unsafe states for a given RAS. This set of generated guards can be perceived
as a comprehensible representation of the non-parametric classifier.

37

Chapter 4

Symbolic Representation and
Computation

Symbolic representation and computation have been believed as an effective way to
attack the state-space explosion problem. Here “symbolic” implies that the state-
space of a given DES is represented by means of logic constraints or special data
structures. Accordingly, the supervisor synthesis procedure can be reformulated in
a way that sets of states and sets of transitions are manipulated rather than single
states and transitions.

There are several possibilities to realize the standard synthesis algorithm in a set-
based setting. The most prominent ones rely on a binary encoding of the states, which
permits identifying subsets of the state-space and the transition relation with char-
acteristic functions. To obtain compact representations of characteristic functions,
special data structures have been developed, and among them, the most well-known
one is the binary decision diagram (BDD) [20, 21]. Representing the state-space of
DES through BDDs has several benefits. Apart from the compact representations,
BDDs are easy to manipulate; all usual logical operations such AND, OR, NOT,
NAND, etc. can be performed directly on BDDs. Also, a BDD with a fixed variable
ordering is a canonical representation of a Boolean function, which makes it easy to
check equivalence for Boolean functions.

However, symbolic computation using BDDs is not a silver bullet. First, BDDs
are sensitive to variable orderings, and finding the best variable ordering is an NP-
complete problem [108]. Furthermore, a straightforward transformation from the
explicit state-space enumeration into a BDD-based computation scheme does not
guarantee that the synthesis procedure will become remarkably efficient. Hence,
there is a need to develop more intelligent symbolic algorithms where the modularity
and structure of DES are exploited more thoroughly.

In this chapter, first some general discussions about BDDs is given in Section 4.1.
This is followed by Section 4.2 that describes some contributions of this thesis to
the symbolic representations of the state-spaces of DES modeled as FA and EFA.
Section 4.3 focuses on the state-space exploration, the most fundamental challenge
for supervisor synthesis. Moreover, the section briefly discusses and illustrated a

39

Chapter 4. Symbolic Representation and Computation

number of new techniques for computing the supervisors of DES and the maximal
permissive DAPs for RAS. Finally, Section 4.4 discusses the experimental results that
demonstrate the extensive computational gains obtained by the proposed algorithms.

4.1 Binary Decision Diagram
Binary decision diagrams (BDDs) are a memory-efficient data structure used to rep-
resent Boolean functions as well as to perform set-based operations. To represent the
basic BDD theory employed in this work, in the following, we set B ≡ {0, 1}. For any
Boolean function f : Bn → B defined over n Boolean variables X = (x1 . . . , xn), we
denote by f |xi=0 and f |xi=1 the Boolean functions that are induced from the function
f by fixing the value xi to 0, and 1, respectively. Then a BDD-based representation of
f is a graph-based representation of this function that is based on Shannon expansion
[109]:

∃xi ∈ X, f = (¬xi ∧ f |xi=0) ∨ (xi ∧ f |xi=1) (4.1)

Definition 4.1. A binary decision diagram (BDD) is a single-rooted acyclic digraph
with two types of nodes: decision nodes and terminal nodes. A terminal node can
be labeled either by 0 or 1. Each decision node is labelled by a Boolean variable and
it has two outgoing edges, the low edge and the high edge, with the respective edge
corresponding to assigning the value of the labeling variable to 0 or to 1.

x1 x2 x3 f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

(a)

x1u0

x2v1 x2v2

x3w1 x3w2 x3w3 x3w4

0 1

(b)

Figure 4.1: The truth table and BDD representations of function f = (x1∧x3)∨(x2∧
x3). Solid lines denote high edges and dashed lines denote low edges.

Example 4.1. As an example, Figure 4.1 illustrates a representation of the Boolean
function f = (x1 ∧ x3) ∨ (x2 ∧ x3) by the truth table and the BDD. The depicted
BDD has two terminal nodes: terminal 0 and terminal 1. Each decision node labels
a Boolean variable xi, i = 1, 2, 3, and has outgoing edges directed to two children:
the low edge (shown as a dashed line) corresponding to the case where the Boolean
variable is assigned 0, and the high edge (shown as a solid line) corresponding to the
case where the variable is assigned 1.

40

4.1. Binary Decision Diagram

A path in a BDD starting from the root to the terminal 1 corresponds to a sat-
isfying assignment of the variables for the BDD. Each variable visited by the path is
assigned the value according to the outgoing edge; all other variables can take any
value.

Given a BDD, it is straightforward to check whether an assignment of the variables
is satisfying or not. Starting at the root, it is only necessary to follow the outgoing
edge corresponding to the value of the variable in the assignment. If the terminal 1
is reached, the assignment is satisfying; if the terminal 0 is reached it is not.

Definition 4.2. An ordered binary decision diagram (OBDD) is a BDD where the
variables represented by the decision nodes on any path from the root to one of the
terminal nodes obey the same fixed ordering.

Due to the fixed variable ordering, OBDDs can be reduced by following two rules
[21], which are depicted in Figure 4.2:

1. If the two successors of a node u of an OBDD when following the low and high
edges reach the same node v, then u can be removed from the OBDD and all
its incoming edges are redirected to node v. See Figure 4.2a.

2. If two nodes u1 and u2 representing the same variable reach the same two nodes
when following their low and high edges, the nodes u1 and u2 can be merged by
removing u2 and redirecting all its incoming edges to u1. See Figure 4.2b.

xiu

xjv xjv

(a) Rule 1. Removal of nodes with equal succes-
sors.

xiu1 xiu2

xjv1

xjv2

xiu1

xjv1

xjv2

(b) Rule 2. Merging of nodes with same low and
high successors.

Figure 4.2: Two reduction rules for minimizing OBDDs. Solid lines denote high edges
and dashed lines denote low edges.

A reduced ordered binary decision diagram (ROBDD) is an OBDD where the
reduction rules are repeatedly applied until none of them can be applied any more.

An ROBDD is a canonical representation of the given Boolean function, i.e., two
equivalent formulas are represented by the same ROBDD. Thanks to the reduction
by which redundant internal nodes can be saved, ROBDD representations are usually
memory-efficient. Throughout this work we are only concerned with ROBDDs, so
whatever we write about BDDs we actually refer to ROBDDs. The size of a BDD
refers to the number of decision nodes contained in this BDD.

41

Chapter 4. Symbolic Representation and Computation

From a computational standpoint, the power of BDDs lies in the efficiency that
they provide in the execution of binary operations. Let f and f ′ be two Boolean
functions of X. Then, it should be evident from (4.1) that a binary operator ⊗
between (the BDDs representing) f and f ′ can be recursively computed as

f ⊗ f ′ = [¬x ∧ (f |x=0 ⊗ f ′|x=0)] ∨ [x ∧ (f |x=1 ⊗ f ′|x=1)] (4.2)

where x ∈ X. The computation implied by (4.2) can have a complexity of O(|f | · |f ′|)
where |f | and |f ′| are the sizes of the BDDs representing f and f ′. Note that the
unary operation NOT on a BDD is simply the interchange of the 0 and 1 terminals.

A particular operator that is used extensively in the following is the existential
quantification of a function f over its Boolean variables. For a variable x ∈ X,
the existential quantification of f is defined by ∃x.f = f |x=0 ∨ f |x=1. Also, if X̄ =
(x̄1, . . . , x̄k) ⊆ X, then ∃X̄.f is a shorthand notation for ∃x̄1.∃x̄2. . . .∃x̄k.f . In plain
terms, ∃X̄.f denotes all those truth assignments of the variable set X \ X̄ that can
be extended over the set X̄ in a way that function f is eventually satisfied.

For a more elaborate exposition of BDDs and the implementation of different
fundamental operations, we refer readers to [21, 110].

4.2 Representations of DES Models
In this section, we discuss how DES models such as FA and EFA can be symbolically
represented by BDDs. In particular, we will briefly introduce a number of procedures
that are presented in the appended papers for symbolically representing single FA or
EFA and their full synchronous compositions.

4.2.1 Characteristic Functions
Before we proceed with the discussion of these encoding procedures, we need to in-
troduce the notion of characteristic function.

Definition 4.3. Let Z be a finite set so that Z ⊆ U , where U is the finite universal
set. A characteristic function (CF) χZ : U → B is defined by:

χZ(a) =
{

1 iff a ∈ Z
0 otherwise.

Since the set U is finite, in practice its elements are represented with numbers in
Z|U | or the corresponding binary x-tuples belonging to Bx (x = dlog|U |2 e).

Set operations can be equivalently carried out on corresponding characteristic
functions. For example, Z1∪Z2, (Z1, Z2 ⊆ U) can be mapped equivalently to χZ1∨χZ2 ,
since Z1 ∪ Z2 = {α ∈ U | α ∈ Z1 ∨ α ∈ Z2}. Table 4.1 shows more operations on
characteristic functions.

In the sequel, all formal discussions will be based on the corresponding charac-
teristic functions of BDDs. Also, we will use the term BDD interchangeably with its
characteristic function.

42

4.2. Representations of DES Models

Table 4.1: Set operations as characteristic functions.

Set/Operation Characteristic function
∅ 0
Z 1
U − Z ¬χZ
Z1 ∪ Z2 χZ1 ∨ χZ2
Z1 ∩ Z2 χZ1 ∧ χZ2
Z1 = Z2 χZ1 ↔ χZ2

4.2.2 Single Model Representation
To symbolically represent a single deterministic FA or EFA, we need two kinds of
characteristic functions, which respectively characterize the state set and the transi-
tion relation. In the following, we will merely focus on the characteristic functions
for a single EFA since a FA can be considered as a special case of an EFA where no
variables are defined.

We start by defining different sets of Boolean variables to encode the locations,
the events and the variables of an EFA E. For the encoding of the state set Q : L×D,
we employ two Boolean variable sets, denoted by XL and XD = XD1 ∪ . . . ∪ XDn ,
to respectively encode the location set L and the domain D of n variables. State
q = (`, v) ∈ Q is then associated with a unique satisfying assignment of the Boolean
variables in XL ∪XD.

The symbolic representation of the transition relation →E relies on the same idea
but it is more complicated. Recall that a transition ` σ→g/a `

′ ∈→E is essentially a set
of explicit transitions (`, v, σ, `′, v′) ∈ 7→ of EST(E), with each specifying a source-
state q = (`, v), an event σ, and a target state q′ = (`′, v′). Formally, we employ
the variable sets XL and XD to encode the source state q, and a copy of XL and
XD, denoted by X́L and X́D, to encode the target state q′. In addition, we employ
the Boolean variable set XΣ to encode the alphabet of E, and we associate σ with a
unique satisfying assignment of the variables in XΣ. Then we identify the transition
relation →E of E with the characteristic function

∆(〈q, σ, q′〉) =
{

1 if ` σ→g/a `
′ ∈ →E, v |= g, v′ = a(v)

0 otherwise

That is, ∆ assigns the value of 1 to 〈q, σ, q′〉 if there exists a transition from ` to `′
labelled by σ, the values of the variables at ` satisfy the guard g, i.e., v |= g, and the
values of the variables v′ at `′ are the result of performing action a on v.

Note that when it comes to the symbolic representation of an EFA, due to the
cross-product of locations and values of variables, the resulting BDD contains un-
reachable states for most cases. Hence, a reachability computation might be needed
to exclude all of the unreachable states in this BDD.

Example 4.2. The symbolic representation of an EFA discussed above is now ex-
emplified on the stick-picking game introduced in Chapter 2. Figure 4.3 shows the

43

Chapter 4. Symbolic Representation and Computation

01

0

1 1

22 2 2

33

4

55

6 666

7 7

8

9

8

77 7

8

9

4

5

6 6

3 3

Figure 4.3: The corresponding BDD for the transition relation of the EFA in Fig-
ure 2.2.

corresponding transition relation for the EFA depicted in Figure 2.2 where each sat-
isfying path from the root denotes an explicit state transition. Note that the BDD
depicted in Figure 4.3 does not contain the cases where sticks < 0 and sticks > 5.
The Boolean variables in the figure are labeled with numbers as follows.

X́sticks = (x9, x8, x7) = (9, 8, 7), Xsticks = (x6, x5, x4) = (6, 5, 4),
X́L = (x3) = (3), XL = (x2) = (2), XΣ = (x1, x0) = (1, 0),

and the encoding of locations, events, and the values of the variable sticks are shown
in Table 4.2. As an example, we note that (011 100 1 0 00) is a true assignment. This
assignment represents that the event player1rm1(011 100 1 0 00) is transited upon
from the Player1 location (011 100 1 0 00). This transition then reaches the Player2
location (011 100 1 0 00), changing the sticks from four (011 100 1 0 00) to three
(011 100 1 0 00).

As can be observed, the BDD in this example is larger than its corresponding
EFA in terms of the number of nodes, however, for larger models the BDDs typically
become more compact.

44

4.2. Representations of DES Models

Table 4.2: Event, location and variable encoding for the EFA in Figure 2.2.

Event (x1, x0) Location x2 x3 sticks (x6, x5, x4) (x9, x8, x7)

player1rm1 (0, 0) Player1 0 1 5 (1, 0, 1) (1, 0, 1)
player1rm2 (0, 1) Player2 1 0 4 (1, 0, 0) (1, 0, 0)
player2rm1 (1, 0) 3 (0, 1, 1) (0, 1, 1)
player2rm2 (1, 1) 2 (0, 1, 0) (0, 1, 0)

1 (0, 0, 1) (0, 0, 1)
0 (0, 0, 0) (0, 0, 0)

4.2.3 Composed Model Representation
Having a number of DES models, i.e., deterministic FA or EFA, the transition relation
of the composed system can be either symbolically represented as a single BDD, or
as multiple BDDs through using partitioning techniques.

Monolithic Representation

Having a set of deterministic FA, A = {A1, . . . , AN} where N ≥ 2, the BDD rep-
resenting the transition relation of A = A1|| . . . ||AN can be computed in two steps.
First, we need to make all FA have the same alphabet. To this end, for each Ai
where i = 1, . . . , N , we attach a self-loop transition labeled with all σ ∈ ΣA\ΣAi to
all states of Ai. We then compute the characteristic function of A by performing a
logical AND on all characteristic functions that represent the transition relations of
A1, . . . , AN , i.e., ∆A = ∧N

i=1 ∆Ai .

Given a model containing a set of EFA, E = {E1, . . . , EN}, the BDD representing
the transition relation of E = E1|| . . . ||EN , however, cannot be obtained by simply
conjuncting the BDDs representing the transition relations of all the included EFA,
due to those non-updated variables. If there exists a variable that is not updated
for a transition in the composed model E, the nodes corresponding to the Boolean
variables representing the updated values of this variable will not be present in the
BDD. Logically, this means that after the transition is taken, the value of the variable
can be any value in its domain. However, by Definition 2.4, it is the current value of
the variable that should remain after the transition is taken. On the other hand, one
might wonder why not consider encoding this “current” value when constructing the
characteristic functions for each individual EFA. However, the problem is that whether
a variable is updated for a transition labeled with an event cannot be determined until
all the transitions in E1, . . . , EN labeled by the same event are considered.

In [38], the authors proposed an approach for constructing the monolithic BDD
representing the transition relation of E = E1|| . . . ||EN correctly, by taking into ac-
count the updates of variables in all the components simultaneously. Briefly speaking,
the approach computes the characteristic function (CF) of E in three steps:

45

Chapter 4. Symbolic Representation and Computation

1. Compute a CF, representing the transition relation of E but without including
the Boolean variables for the updated values of variables.

2. Compute a CF, representing the set of transitions in E where the variables are
updated. In addition, compute another CF to represent all the transitions where
variables are not updated, and then perform a number of symbolic computations
on this CF to make those non-updated variables update to the previous values
(i.e., the source values). The resulting CF is obtained by performing the OR
operation on these two CFs.

3. Compute the CF representing the transition relation of E by conjuncting the
CFs computed from Step (1) and (2).

We refer readers to [38] for details of this encoding scheme.

Disjunctive Representation

Alternatively, the transition relation of the composed system can be symbolically rep-
resented as a set of BDDs through the adoption of either the disjunctive partitioning
technique or the conjunctive partitioning technique introduced in [67, 68]. In [Pa-
per 1], these two techniques are evaluated on a set of benchmark examples. In this
work, we merely focus on two variants of the disjunctive partitioning technique.

For deterministic FA models, the automaton-based partitioning approach that is
introduced and formulated respectively in [111] and [Paper 1] can be used to rep-
resent the transition relation of the composed automaton. More specifically, let
A = {A1, . . . , AN} where N ≥ 2 and ∆A1 , . . . ,∆AN be the corresponding BDDs rep-
resenting the transition relations of A1, . . . , AN . For each Ai, the automaton-based
partitioning approach constructs a BDD for Ai, representing the set of composed
transitions labeled with all σ ∈ ΣAi in A = A1|| . . . ||AN according to the following
steps:

1. Identify all the automataAj ∈ A that interact withAi ∈ A through any common
event. We shall denote by D(Ai) the set of the automata that interact with Ai.
Hence,

D(Ai) = {Aj ∈ A | i 6= j and ΣAi ∩ ΣAj 6= ∅}.

Then we construct a CF by performing the AND operation on all ∆Aj .

2. For all Aj ∈ D(Ai), construct the CF representing the transition set {(q, σ, q′) |
q, q′ ∈ QAj and σ ∈ (ΣAi\ΣAj)}.

3. For all Ak ∈ A\D(Aj) where Ak 6= Ai, construct the CF representing the
transition set {(q, σ, q′) | q, q′ ∈ QAk and σ ∈ ΣAi}.

4. Compute the target CF for Ai by utilizing the CFs computed from Step (1–3).

46

4.3. Symbolic State-Space Exploration

The computations obtaining the aforementioned CFs are detailed in [Paper 1].
The partitioning representation of the transition relation of a composed EFA can

be symbolically computed by applying the event-based partitioning approach intro-
duced in [Paper 2]. Let E = {E1, . . . , EN} be a set of N ≥ 2 EFA defined over the
variable set v = (v1, . . . , vn). For each event σ ∈ ΣE, the event-based partitioning
approach constructs a BDD for σ, representing all the transitions in E = E1|| . . . ||EN
that are all labeled by event σ with the following steps:

1. Identify all the EFA, denoted by the set Eσ, that contain the event σ in the
alphabets. That is, Eσ = {Ei ∈ E | σ ∈ Σi}.

2. Compute a CF, representing the set of transitions in Eσ = ||E∈EσE that are
all labeled with the event σ. The updating and non-updating of variables for
different composed transitions in Eσ are symbolically handled in this step. We
refer the reader to [Paper 2] for the detailed computations.

3. Compute a set of CFs, with each one representing the transition set {(q, σ, q′) |
q, q′ ∈ Ei where Ei ∈ E\Eσ and q = q′}.

4. Compute the target CF for all events σ ∈ (Σ1 ∪ . . . ∪ ΣN) by conjuncting the
CF computed in Step (2) and the set of CFs computed in Step 3.

4.3 Symbolic State-Space Exploration
Exploring state-spaces is the most fundamental and challenging task in the supervisor
synthesis. After representing DES models as BDDs, as shown in Section 4.3.1, the
state-space explorations can be carried out on BDDs with the provided set-based
symbolic operations.

However, a straightforward transformation from the explicit state-space enumer-
ation methods into the BDD-based computation scheme does not guarantee that
synthesis will become remarkably efficient. This is because for the BDD-based algo-
rithms, the computational complexity is no longer dependent on the number of states,
but on the sizes of the intermediate BDDs that are constructed for storing the ex-
plored states and transitions. As the intermediate BDDs are constructed during the
state-space exploration, a dramatic increase in the number of BDD nodes to represent
particular state or transition sets might occur.

In Section 4.3.2 and 4.3.3, we briefly report two symbolic techniques for the ef-
ficient state-space exploration with BDDs. In particular, for general DES, the first
technique enforces a structure for exploring the sought states on the underlying DES
state-space that is represented as a set of partitioned BDDs, in order to keep the in-
termediate BDDs as small as possible. The formal formulations of this technique are
respectively presented in [Paper 1] and [Paper 2] for deterministic FA and EFA mod-
els. By taking the advantage of some structural characterizations regarding the RAS
safety, the second technique focuses on the computation of boundary unsafe states
of the RAS-modeling EFA while avoiding the compete exploration of state-spaces.

47

Chapter 4. Symbolic Representation and Computation

The detailed exposition of this technique can be found in [Paper 3]. In [Paper 4],
we combine these symbolic techniques for a more efficient computation of boundary
unsafe states in complex RAS.

4.3.1 Symbolic Safe State Synthesis
The safe-state-synthesis algorithm introduced in Chapter 2 can be transformed into
the corresponding symbolic version in a straightforward way. Having the BDD repre-
senting the transition relation of S0 = G||K, denoted by ∆S0 , and the BDDs χQm and
χQx that represent the set of marked states Qm and the set of the forbidden states
Qx, Algorithm 5 depicts the symbolic operations for computing all the states that are
coreachable to states in Qm and also do not belong to the set Qx.

Algorithm 5: Symbolic-Restricted-Backward
Input: χQm , χQx and ∆S0

Output: The BDD representing all the states in S0 that are coreachable to
Qm and not in Qx.

1 i := 0, χQ0 := χQm ∧ ¬χQx ;
2 repeat
3 i := i+ 1;
4 χQi := χQi−1 ∨ preImage(∆S0 , χQi−1 [XQ → X́Q]) ∧ ¬χQx ;
5 until χQi ↔ χQi−1 ;
6 return χQi ;

In Line 4 of Algorithm 5, the preImage operator is defined as follows,

preImage(∆S0 , χQ) = ∃X́Q ∪XΣS0 . (∆S0 ∧ χQ).

The preImage operator takes as input the BDDs representing a transition relation
∆S0 and a set of states χQ, and outputs a BDD representing all the states that are
one-step coreachable to χQ. For FA models, X́Q denotes the set of Boolean variables
for encoding target states; for EFA models, X́Q denotes the union of Boolean variables
for encoding locations and domains of variables, i.e., X́Q = X́L∪X́D. Note that when
applying the preImage operation for computing more coreachable states, the state
set χQi needs to be represented by the target Boolean variables of X́Q. To this end,
the operation [XQ → X́Q] in Line 4 is used to denote the replacement of all Boolean
variables of XQ by those of X́Q, so that the coreachable states identified at each
iteration are eventually represented by XQ and the backward search can continue.

Example 4.3. To give a flavor of how Algorithm 5 works, we apply it to the BDD-
based representation of the stick-picking game introduced in Chapter 2 and describe
the first iteration of computations for expanding the coreachable state set. Please
refer to Figure 4.4 throughout the following demonstration.

To symbolically compute the coreachable states, Algorithm 5 starts with the
marked state (Player2, Stick0) in Figure 4.4. This state is represented as (··· 000 · 1 ··)

48

4.3. Symbolic State-Space Exploration

(Player1,Stick5) (Player2,Stick4) (Player1,Stick3)

(Player2, Stick3) (Player1, Stick2) (Player2, Stick1)

(Player1, Stick1) (Player2, Stick2) (Player1, Stick0)

(Player2, Stick0)

player1rm1
100 101 1 0 00

!player2rm1
011 100 0 1 10

!player2rm1
010 011 0 1 10

player1rm1
001 010 1 0 00

!player2rm1
001 010 0 1 10

!player2rm2
000 010 0 1 11

player1rm2
011 101 1 0 01

!player2rm2
010 100 0 1 11

player1rm2
001 011 1 0 01

!player2rm2
001 011 0 1 11

!player2rm1
000 001 0 1 10

player1rm1
010 011 1 0 00

player1rm2
000 010 1 0 01

player1rm1
000 001 1 0 00

Figure 4.4: The supervisor candidate S0 = Player||Stick where all the unreachable
states are omitted for simplicity. Events prefixed with the exclamation mark (!) are
uncontrollable events. The binary numbers are the respective transition encodings
that correspond to the true assignments of the BDD in Figure 4.3.

that indicates the vector of values assigned to the Boolean variables x9, . . . , x0, where
the · sign denotes the “don’t care”. As depicted in Line 4 of Algorithm 5, the symbolic
operation first assigns the values 0001 to the Boolean variables x9, x8, x7, x3 that are
used for encoding the target states while the values of x6, x5, x4, x2 become the don’t-
care. That is, the encoding of the marked state becomes (000 · · · 1 · · ·) presenting
that the target number of sticks is 0, and the target location is Player2. This expres-
sion, represented as a BDD, is conjuncted with the BDD for the transition relation
depicted in Figure 4.3, and then satisfying assignments to the variables corresponding
to the don’t-care are found. The operation results in two transitions, (000 001 1 0 00)
and (000 010 1 0 01) that are shown in Figure 4.4. These transitions represent that
the number of sticks goes from 1 to 0, and 2 to 0, respectively, as Player1 takes 1
and 2 sticks, moving from the location Player1 to location Player2, on the respective
events player1rm1 and player1rm2.

Next, Algorithm 5 needs to identify the source states of these two transitions. So
the target state and event bits are marked as don’t-care, giving (· · · 001 · 0 · ·) and
(· · · 010 · 0 · ·). These bit-vectors represent the two states (Player1, Stick1) and
(Player1, Stick2), that later are collected into the χQi . The algorithm continues to
iterate over the coreachable states, until no more coreachable states are found.

The symbolic versions of the restricted forward search (Algorithm 4) and the
uncontrollable backward search (Algorithm 3) of the safe-state-synthesis algorithm
can be similarly transformed, and thus, they are omitted.

49

Chapter 4. Symbolic Representation and Computation

4.3.2 State-Space Exploration on Partitioned BDDs
It can be observed from Algorithm 5 that the basic symbolic algorithm for computing
reachable or coreachable states requires a single BDD representing the monolithic
transition relation of S0. However, for many practical applications, the size of this
BDD might be too large to be constructed. Moreover, since the computational com-
plexity for BDD-based symbolic computation is no longer dependent on the number
of states but on the number of nodes in the BDDs, performing the breadth-first search
on this entire BDD might lead to a huge number of nodes in the intermediate BDDs
during the state-space exploration.

Through employing the disjunctive partitioning techniques, as explained in Sec-
tion 4.2.3, the transition relation of S0 can be symbolically represented as a set of
smaller BDDs that represent a set of partial transition relations, with each one cor-
responding to a particular finite automaton or event. Having a disjunctive repre-
sentation of S0, collectively denoted by ∆1, . . . ,∆n, n ≥ 2, the preImage operation
depicted in Algorithm 5 can be changed accordingly as follows.

preImage(∆S0 , χQ) = ∃X́Q ∪XΣS0 . (∆S0 ∧ χQ)
= ∃X́Q ∪XΣS0 .

(
(∆1 ∨ . . . ∨∆n) ∧ χQ

)
= ∃X́Q ∪XΣS0 .

(
(∆1 ∧ χQ) ∨ . . . ∨ (∆n ∧ χQ)

)
=
(
∃X́Q ∪XΣS0 . (∆1 ∧ χQ)

)
∨ . . . ∨

(
∃X́Q ∪XΣS0 . (∆n ∧ χQ)

)
(4.3)

That is, instead of manipulating one monolithic BDD, we can identify the set of
coreachable states from the state-space by iterating each partial transition relation,
that, in most cases, is substantially smaller than the monolithic BDD ∆S0 .

The adoption of the disjunctive partitioning technique and the updated preImage
operation described in (4.3), however, does not address the problem of the large sizes
of intermediate BDDs during the state-space exploration. The updated preImage

essentially performs a breadth-first search on the set of partial transition relations.
This symbolic computation scheme identifies the coreachable states in an almost
random manner, which prevents the BDD reductions being applied in the intermediate
BDDs to the maximal extent. Therefore, sizes of these relevant BDDs might become
extremely large, causing the state-space explosion.

To reach significant BDD reduction it is crucial to explore the search space in a
structured way. In [Paper 1] and [Paper 2], we proposed two symbolic algorithms for
the efficient state-space exploration. The workset algorithm of [Paper 1] is a variant
and an extension of the algorithm of [34] and [66] that is based on the automaton-
based representation of the state-space of DES modeled by FA. The extended workset
algorithm proposed in [Paper 2], on the other hand, is an event-based partitioning
algorithm that is applicable to both FA and EFA models. More specifically, taking as
input the BDD representing the initial state of S0 and the set of BDDs representing
the set of partial transition relations, the extended workset algorithm maintains a
set of active partial transition relations during the execution. For each iteration,

50

4.3. Symbolic State-Space Exploration

the partial transition relation where new states are most likely to be identified by
the existing states, is selected for the exploration. If more states are found, some
transition relations that are relevant to the chosen one are appended in the workset
for further exploration. The algorithm terminates when there is no partial transition
relation left in the workset.

For a more detailed exposition of these two symbolic algorithms and the proof of
correctness, refer to [Paper 1] and [Paper 2].

4.3.3 Partial State-Space Exploration for RAS
In comparison with general DES, RAS possess some special structural characteristics
that can be utilized to design the maximally permissive DAP more efficiently. In
[Paper 4] and [Paper 5], we have a symbolic framework for this purpose. More specif-
ically, by modeling any given RAS instance as EFA, the proposed framework employs
several BDD-based algorithms for symbolically computing the target DAP. Besides
the employment of symbolic computation, additional efficiencies for the algorithms
are obtained from the fact that they avoid the complete exploration of the underlying
RAS state-space. This capability is established upon the crucial fact that, in the
considered RAS dynamics, unsafety is defined by inevitable absorption into the sys-
tem deadlocks. Therefore, the target unsafe states can be retrieved by a computation
that starts from the RAS deadlocks and “backtraces” the RAS state-space until it hits
the boundary between the safe and unsafe subspaces. Furthermore, the entire set of
boundary unsafe states can be effectively represented by its minimal elements since
the notion of unsafety presents a monotonicity property that endows this set with
properties similar to those of a right-closed set [80]. In this section, we illustrate the
two symbolic algorithms of [Paper 3], by computing the DAP for the RAS instance
introduced in Example 3.1 of Chapter 3.

In the sequel, these computations are illustrated on the EST model in Figure 4.5.
The depicted EST model includes only the RAS feasible states that are reachable
from the initial and target state s0. In the approaches presented in [Paper 3] and
[Paper 4], this depicted EST, together with other unreachable states and infeasible
states, is symbolically represented by BDDs. For reasons that will become clear in
the following, it is pertinent to assume that the BDD that represents the transition
relation of EST(E), denoted by ∆E, is partitioned into two BDDs ∆L and ∆A that
collect respectively the transitions in ∆E corresponding to the transitions labeled by
the loading events, and the transitions labeled by the process-advancing events.

Identification of the feasible deadlock states The deadlock states pursued
in this work are those states from where no process-advancing events can occur.
With ∆E available, this set of states can be symbolically computed as follows. First,
we collect the set of all the target states of the transitions in ∆E and denote it as
the set T ; obviously, T contains all the states si, i = 1, ..., 11, but it also contains
other infeasible states. Then, we collect the set of all the source states of the tran-
sitions in ∆A and denote it as the set E, i.e., E = {s1, s2, s3, s4, s5, s6, s9}. The
reader should note that states s0, s7, s8 /∈ E, since none of the relevant transitions

51

Chapter 4. Symbolic Representation and Computation

00 00 111
s0

10 00 011
s1

00 10 110
s2

10 10 010
s4

01 00 101
s3

00 01 101
s5

01 10 100
s7

10 01 001
s8

11 00 001
s6

00 11 100
s9

11 10 000
s10

10 11 000
s11

J1_load J2_load

〈Ξ11, Ξ12〉 J2_load J1_load 〈Ξ21, Ξ22〉

J1_load J2_load

〈Ξ12, Ξ13〉

〈Ξ11, Ξ12〉 〈Ξ21, Ξ22〉 J1_load J2_load

〈Ξ22, Ξ23〉

J2_load

〈Ξ12, Ξ13〉

J1_load J2_load J1_load

〈Ξ22, Ξ23〉

Figure 4.5: The EST model of the EFA E that is composed of the two EFA E(J1)
and E(J2) depicted in Figure 3.3. In the depicted EST, solid lines denote the load-
ing transitions while dashed lines denote the process-advancing transitions. States
depicted in red are unsafe.

〈s0, J1_load, s1〉, 〈s0, J2_load, s2〉, 〈s7, J1_load, s10〉 and 〈s8, J2_load, s11〉 belongs
to ∆A. The set of deadlock states, D, is obtained by removing from set T the initial
state s0, and the states belonging to the set E.

Since the set D is computed from the entire set of transitions that is contained
in ∆E, it might contain deadlock states that are infeasible (i.e., they violate the
constraints of (3.2)). The presence of these infeasible states in D would increase
unnecessarily the computational cost of the second stage. Hence, as the last step, the
symbolic representation of D, χD, is filtered through its conjunction with the BDD
χF that encodes the constraints (3.2), in order to obtain the set of feasible deadlock
states, FD. For the EST shown in Figure 4.5, FD = {s7, s8, s10, s11}.

Identification of the feasible boundary unsafe states Having obtained the
set FD of the feasible deadlock states, the algorithm proceeds with the symbolic
computation of the feasible boundary unsafe state set, denoted by FB. We employ
the set U to collect all the identified unsafe states. At each iteration, the set Unew
defines the set of the unsafe states that are to be processed at that iteration, through
one-step-backtracking in ∆E in an effort to reach and explore new states. Both U
and Unew are initialized to FD.

We start with the extraction of all states that can be reached from Unew by back-
tracing some transitions in ∆A. We shall denote the set of extracted states and
transitions respectively by the sets SÛ and ∆Û . With respect to the EST depicted in
in Figure 4.5, the state s4 ∈ SÛ and ∆Û = {(s4, 〈Ξ11, Ξ12〉, s7), (s4, 〈Ξ21, Ξ22〉, s8)}.

52

4.3. Symbolic State-Space Exploration

We then perform a one-step forward search over ∆A with the states in SÛ and
collect all the transitions of ∆A with the source states belonging to SÛ . The set
of these identified and collected transitions is denoted by ∆SA; clearly, ∆SA =
{(s4, 〈Ξ11, Ξ12〉, s7), (s4, 〈Ξ21, Ξ22〉, s8)} in the considered EST. By removing from ∆SA

all the transitions belonging to ∆Û
1 and extracting the corresponding source states,

we can identify all the states that are not unsafe states at the current iteration. More-
over, if we remove these states from SÛ , new unsafe states at the current iteration can
be obtained. In the considered EST, since ∆SA = ∆Û , the state s4 is a newly identi-
fied unsafe state. Hence, at the end of the current iteration, U = {s4, s7, s8, s10, s11},
and for the next iteration of the search process, Unew = {s4}. The backward search
process terminates after the second iteration, since no unsafe state can be identi-
fied from the state s4. At this point, the symbolic approach proceeds to extract the
boundary states from the state set U . For that, the symbolic computations extract
from ∆E all the transitions with the target states belonging to the states in U ; the
relevant transition set is denoted by ∆B. Next, the algorithm retrieves from ∆B the
transition set ∆SB, where the source states of the included transitions are safe states.
Finally, the boundary unsafe state set FB is obtained by extracting the target states
from ∆SB. For the depicted EST, after performing the aforementioned operations,
we have FB = {s4, s7, s8, s10, s11}.

Identification of the minimal boundary unsafe states. An important im-
plication of the invariants of (3.2) is that, at any feasible state of the underlying EFA
state-space, the values of the resource variables can be induced from the values of
the instance variables. In other words, it is sufficient to have the specification of its
process variables to uniquely determine the feasible state s of the considered EST.
Hence, one can obtain a more compact symbolic representation of the set of feasible
boundary unsafe states, χFB, by eliminating from the elements of χFB the values
that correspond to the resource variables. Letting XR and XI respectively denote
the Boolean variables representing the values of the resource variables vri, i = 1, 2, 3,
this elimination can be performed through the following existential quantification:

χFB := ∃(XR ∪XI). χFB. (4.4)

For the considered example, the state set FB that is returned by the operation of
Eq. (4.4) can be represented as follows:

FB = {1010(s4), 0110(s7), 1001(s8), 1110(s10), 1011(s11)}.

Given any two feasible boundary unsafe states s, s′ represented according to the
logic of (4.4), we consider the ordering relation “≤” on them that is defined by the
application of this relation componentwise; i.e.,

s ≤ s′ ⇐⇒ (∀k = 1, . . . , K, s[k] ≤ s′[k]), (4.5)

1In the general case, we also need to remove from ∆SA the transitions that were identified and
collected into ∆Û from the earlier iterations.

53

Chapter 4. Symbolic Representation and Computation

where s[k] and s′[k] are the values of the k-th instance variable for s and s′. Fur-
thermore, we use the notation ‘<’ to denote that the condition (4.5) holds as strict
inequality for at least one component vk ∈ {v1, . . . , vK}. It is shown in [80] that
if state s is unsafe and state s′ satisfies s ≤ s′, then the state s′ is also unsafe.
Hence, under the state representation of (4.4), the set FB can be effectively defined
by the subset of its minimal elements. We shall denote this subset by FB, i.e.,
FB ≡ {s ∈ FB | @s′ ∈ FB s.t. s′ < s}. A symbolic algorithm for the computation
of FB from FB is provided in [Paper 3]. We also note, for completeness, that in the
considered example, FB = {s4, s7, s8}.

4.4 Experimental Results
The BDD-based symbolic algorithms for representing and exploring state-spaces of
DES models that are briefly discussed in Section 4.2 and Section 4.3, respectively, have
been implemented and integrated into the software tool Supremica [23, 24, 25]. In this
section, we discuss the experimental results obtained by applying these implemented
algorithms on a set of academic and industrial examples. For the detailed discussions,
we refer readers to the appended papers.

Table 1 of [Paper 1] shows the comparison between the presented workset al-
gorithm and one existing symbolic algorithm that uses the conjunctive partitioning
technique to represent and explore state-spaces. The benchmark examples used in the
experiments are all modeled as deterministic FA. As can be seen from the results re-
ported in the table, the workset algorithm clearly demonstrates better computational
efficiency in terms of both time and memory usage, compared to the other symbolic
algorithm. Moreover, Table 2 of [Paper 1] compares the computation time of the
workset algorithm using different heuristics for selecting partial transition relations
during the execution of the algorithm.

In [Paper 2], the comparison is made between the symbolic algorithm presented
in [38] and the extended workset algorithm by applying them on the set of DES
examples that are modeled as EFA. It can be observed from Table 3 of [Paper 2] that
both the algorithm of [38] and the extended workset algorithm can handle a number
of relatively large examples and synthesize the supervisors in a short time. However,
the extended workset algorithm exhibits better scalability comparing to the algorithm
of [38], as indicated by the maximal size of the intermediate BDDs constructed in
the state-space exploration. The data obtained in this comparison also confirms the
statement that the complexity of symbolic computation using BDDs is not dependent
on the number of states, but on the sizes of intermediate BDDs.

In [Paper 3], we report the results from a series of computational experiments in
which the proposed algorithm is applied on a number of randomly generated instan-
tiations of different RAS classes. The comparison of the computation time and the
maximal memory usage is made between the proposed algorithm and a variant of the
symbolic algorithm presented in [38]. As shown in Table 1 of [Paper 3], by taking
advantage of the particular structure properties, the proposed algorithm avoids the

54

4.4. Experimental Results

full exploration of the state-spaces of the RAS instances. Hence, the proposed algo-
rithm requires fewer iterations to compute the target unsafe states than the existing
approach, and it tends to have better computation time. Furthermore, the avoidance
of the exploration of the whole RAS state-space enables less memory during its exe-
cution, especially for RAS instances with small unsafe state regions. Also, [Paper 3]
compares the computation time of the proposed algorithm to the computation time
of the algorithm presented in [105]. The obtained results reveal that for the RAS
instances with simple linear process flows and simple or conjunctive resource alloca-
tion, the proposed algorithm outperforms the algorithm of [105]. Some of the largest
cases suggest that the gains attained by the symbolic algorithm can be up to two
orders of magnitude faster. On the other hand, for RAS instances possessing routing
flexibility, the algorithm of [105] is competitive to the symbolic algorithm.

The symbolic algorithm presented in [Paper 3] for computing the boundary unsafe
states is carried out on the monolithic symbolic representation of the underlying RAS
state-space. In [Paper 4], an attractive symbolic algorithm is presented for computing
the target critical states from multiple simpler BDDs rather than a single monolithic
one. Table 1 of [Paper 4] reports the experimental results of applying this symbolic
algorithm to the same set of RAS instances used in [Paper 3]. The perusal of the
data shown in the table reveals that the proposed algorithm is more efficient in terms
of its memory requirements compared to the symbolic algorithm of [Paper 3], for all
the tested RAS instances. The computation time is also improved for most of the
RAS instances with simple linear process flows and simple or conjunctive resource
allocation.

55

Chapter 5

Case Study

In this chapter, an industrial example is presented to illustrate the EFA modeling
framework and the symbolic approaches that are introduced in [Paper 1] and [Paper 2].
The case study is based on an example introduced in [112] where it was used to
compare different formal approaches to develop control logic for coordinating the
manufacturing systems. This chapter is based on the book chapter [113] where the
author of this thesis was responsible for developing the EFA model and applying the
proposed symbolic approaches to compute and represent the supervisor. In [Paper 5],
another case study is represented to demonstrate the applicability of the proposed
approaches of [Paper 3] and [Paper 4] to the elimination of deadlocks in multithreaded
software.

5.1 The Manufacturing System
The book [112] systematically presents and compares 18 different approaches to the
control of a real-world production cell. The example has also been treated by other
researches, among them [114, 115]. The system models part of an actual metal-
processing plant, where metal blanks are fed into the system on a feed belt, are
picked up by a robot that places the blanks in a press, and when the metal blank has
been pressed, the same robot picks it out of the press and puts it on a deposit belt.

The description of the process largely follows [112] and [114]. However, our exam-
ple will include the test unit that is described in [115], and assume that there are at
most two blanks on the belts.

5.1.1 The Plant
The system involves seven manufacturing devices set up in a specific configuration,
see Figure 5.1. The devices are a feed belt, a rotating elevating table, a two-armed
robot, a press, a deposit belt, a traveling crane, and a test unit.

The feed belt is a conveyor belt that can transport metal blanks from west to
east. When the motor is turned on, the belt moves eastward transporting metal
blanks placed on it. A binary sensor at the eastern side outputs a logical 1 when a

57

Chapter 5. Case Study

OUTPUT

INPUT
feed belt

sensor1

elevating
rotary table

arm1

arm2

press

deposit belt

sensor2

test unit

N

S

EW

crane

ROBOT

Figure 5.1: Layout of the example cell. Note that the initial system state is depicted.
The arrows depict the flow of metal blanks.

metal blank is detected. The feed belt can be loaded with metal blanks from either
the traveling crane, or from the input.

The rotary elevating table is basically a buffer of size one. It can rotate to be
in line with the feed belt, or to be in a position for a metal blank to be picked by
the robot. The table can also move up and down between two positions. The lower
position is aligned with the feed belt, and the upper position is aligned with the robot.

The robot is fitted with two arms, arm1 and arm2, see Figure 5.1. These arms
are placed on different heights and are not vertically movable. At the end of each arm
there is an electromagnet. When activated, the magnet picks up any metal blank in
the close vicinity, and when deactivated any metal blank held will be dropped. The
robot can rotate arbitrarily, both clockwise and counter-clockwise. Extraction and
detraction of arm1 and proper rotation allow the robot to pick metal blanks from the
rotating elevating table, and to load the press. Similarly, arm2 allows the robot to
unload the press, and also to drop blanks at the deposit belt.

The press consists of two horizontal plates, between which it forges metal blanks
by pressing the lower plate up against the upper plate. To be loaded with a blank,
the press has to lower its plate to a middle position, and to be unloaded, the press
has to lower its plate to the bottom position.

The deposit belt transports metal blanks from east to west, see Figure 5.1. Simi-
larly to the feed belt, there is a sensor at the far west end that detects metal blanks.
And similarly to the feed belt, and as assumed by [114], the deposit belt has room
for only two metal blanks.

At the end of the deposit belt, there is a test unit which, when the deposit belt
sensor is activated, determines whether the metal blank was forged correctly. The
test unit emits a logical 1 if the metal blank has been correctly forged, and a logical
0 if not. The test unit requires the deposit belt to be stopped when a metal blank is
detected at the sensor, otherwise it does not have ample time for its assessment.

Furthermore, the deposit belt is unloaded either to the external storage or by the

58

5.2. The Model

traveling crane. A metal blank sensed at the sensor is moved to the external storage
by simply running the belt until the blank is no longer detected by the sensor.

The traveling crane can pick up metal blanks from the deposit belt and transport
them to the feed belt. To pick up blanks, the deposit belt has to be stopped, but the
traveling crane can drop blanks on the feed belt even if it moves.

5.1.2 The Specification
For the system to function properly we need to impose a number of requirements.
These are both safety requirements and liveness requirements. These requirements
will correspond to the controllability and non-blocking properties of the supervisor,
respectively.

As described by [112], the safety requirements concern four basic principles:

- Limitations on machine mobility; the robot, rotating table, press, and traveling
crane must not move too far, otherwise they may be damaged.

- Collisions avoidance; when extracting its arms, the robot must not collide with
the press.

- Not drop metal blanks on the shop floor; blanks must be handled so that they
are always held by some device.

- Sufficient separation of metal blanks on the belts; for the sensors to be able to
distinguish between the metal blanks, and to be able to stop before a metal
blank falls off at the end of a belt, metal blanks have to be separated by some
minimal distance.

Some of these requirements will be taken care of by the assumed inherent behavior
of the plant, while others need to formulated as specifications so that the synthesized
supervisor will guarantee that they are upheld.

5.2 The Model
A typical manufacturing system comprises a set of interacting manufacturing devices
arranged in some specific configuration. In the example cell, the devices are the
robot, the belts, press etc, and the configuration relates to the particular layout.
Inherent device functionality arises due to the specific level of “intelligence” of a
device, meaning that the actions that it can perform are more or less low-level. Also,
inherent system functionality arises due to the configuration; two devices may interact
only if their physical boundaries are aligned. In the example cell, the feed belt can
interact with the crane and the rotating table, but not directly with any other device,
simply due to the layout of the cell.

The level of “intelligence” of the devices naturally affects what can be considered
as plant and what can be considered as specification. Typical for real-life industrial

59

Chapter 5. Case Study

systems is that there are low-level safety functionality implemented in code that
guarantees that the devices do not break themselves. Industrial devices are simply
too costly not to have this low-level safety functionality implemented. For instance,
movable devices are typically equipped with safety mechanisms that prevent their
motors from continuing to run, and hence risk burning or otherwise breaking, at an
end-point. Thus, this safety requirement is naturally integrated into the plant model.

On the other hand, safety requirements that concern the interaction between two
devices are typically not implemented as part of the physical plant. Therefore, it is
not reasonable to model such requirements as part of the plant, but they must be
regarded as specification. If the plant models a system where no devices can collide,
for instance, then the specification cannot require avoidance of any states where the
devices do collide.

However, there exists behavior that can be either modeled as plant, or specifi-
cation. For instance, in the example cell there is a requirement that blanks on the
feed belt must be physically separated. We can model this as part of the plant, in
effect saying that the plant is physically incapable of placing blanks too close to each
other. Or we can allow blanks to be put arbitrarily close on the feed belt and then
add a specification that forbids the blanks to be placed improperly. In either case,
the controlled system would exhibit the same behavior (assuming we got everything
modeled correctly), but from two different conceptualizations of the system.

As an example of this plant/specification separation problem, we can note that
in [114], the feed belt can initially not move forwards unless a metal blank is put on
it. However, in practice the feed belt motor can be started and stopped irrespective
of whether any metal blanks are on the feed belt or not. We may not want to move
the feed belt unless a metal blank is on it, but this is then a specification and not an
inherent property of the plant.

The Plant Model

In the plant model the respective device and configuration components should be
clearly distinguishable.

The feed belt consists of a motor and a sensor. The physical local configuration
requires the motor to be running for the sensor to be able to sense a metal blank.
When a blank has been sensed by the sensor, it cannot be “unsensed” unless the
motor continues to run to make the blank leave the sensor. Furthermore, once a
blank has been sensed, stopping the motor will make the blank remain at the sensor.
After being stopped, the motor can be started again. The feed belt can be described
by the EFA in Figure 5.2.

There are three variables associated with the feed belt, fb_motor, fb_sensor and
fb_size. The first two represent the state of the motor and sensor, respectively. It
can be argued that these variables are superfluous, since the same information can
be conveyed by the locations of the EFA in Figure 5.2. But since actions cannot
refer to locations currently, these Boolean variables are necessary. The third variable,
fb_size models the number of blanks on the feed belt. Thus, its domain is {0, 1, 2},

60

5.2. The Model

FB_Stop
fb_motor = 0

FB_Start
fb_motor = 1

!FB_Sensor_On
fb_motor == 1 ∧
fb_sensor == 0 ∧

fb_size > 0
fb_sensor = 1

!FB_Sensor_Off
fb_motor == 1 ∧
fb_sensor == 1 ∧

fb_size > 0
fb_sensor = 0

FB_Stop
fb_motor = 0

FB_Start
fb_motor = 1

Figure 5.2: Feed belt model.

since we can have at most two blanks on the belt.
Note that the feed belt model does not include any “knowledge” about the crane

or the table. This is configuration matter that will be treated shortly, once we have
discussed the rotating table.

The rotating elevating table can rotate horizontally and elevate vertically. The
rotation is constrained to two distinct positions, the 0 degree in line with the feed
belt, which is the initial state, and the rotated 50 degrees to align with the robot
pick-up position. Likewise, the elevation is constrained to two positions, the initial
bottom position aligned with the feed belt and the top position aligned with the
robot pick-up position. The EFA modeling the rotation and elevation are depicted in
Figure 5.3.

There are five Boolean variables associated with the table, two for the motors,
ta_hmotor and ta_vmotor, representing the horizontal and vertical movement mo-
tors, respectively; two for the position sensors, ta_hsensor and ta_vsensor, sensing
the horizontal and vertical positions, respectively; and ta_size, which records whether
a blank is on the table or not.

Note that since the up-down and left-right movements are independent, there is no
local configuration to model any interaction between the two sub-models of Figure 5.3.

There must, however, exist system configuration to model the passing of a blank
from the feed belt to the table. If a blank is at the feed belt sensor, and the feed belt
motor runs, the blank will eventually disappear from the feed belt. But where will it
go? If the table is in its initial position, down and at 0 degrees, then the blank will
pass from the feed belt to the table. If the table is at any other position the blank
will fall on the floor. Thus, the configuration that ties together the feed belt and the
table, looks like in Figure 5.4.

The configuration encodes the logical effect when the blank leaves the feed belt.
If the table is aligned correctly with both horizontal and vertical movement stopped,
then the blank is taken from the feed belt to the table. This is captured by the upper
self-loop in Figure 5.4. However, if the table is not properly aligned or it still moves,
then the blank simply disappears from the feed belt.

61

Chapter 5. Case Study

Rotate_Right
ta_hmotor = 1

!Reach_50
ta_hmotor == 1
ta_hsensor = 1
ta_hmotor = 0

Rotate_Left
ta_hmotor = 1

!Reach_0
ta_hmotor == 1
ta_hsensor = 0
ta_hmotor = 0

(a) Horizontal rotation.

Elevate_Up
ta_vmotor = 1

!Reach_Top
ta_vmotor == 1
ta_vsensor = 1
ta_vmotor = 0

Elevate_Down
ta_vmotor = 1

!Reach_Bottom
ta_vmotor == 1
ta_vsensor = 0
ta_vmotor = 0

(b) Vertical movement.

Figure 5.3: EFA for rotating elevating table.

!FB_Sensor_Off
(ta_hsensor == 0 ∧ ta_hmotor == 0) ∧
(ta_vsensor == 0 ∧ ta_vmotor == 0)

fb_size = fb_size− 1
ta_size = ta_size+ 1

!FB_Sensor_Off
ta_hsensor == 1 ∨ ta_hmotor == 1 ∨
ta_vsensor == 1 ∨ ta_vmotor == 1

fb_size = fb_size− 1

Figure 5.4: Configuration for feed belt and rotating table.

In some sense, the variable ta_size implements a virtual sensor. Since there is
no actual sensor on the device to tell if a blank is on it or not, this has to be taken
care of by the control system through maintaining the internal variable ta_size that
acts as such a sensor. Also note that the blank falling on the floor is possible but

62

5.2. The Model

unwanted behavior. Thus, we will have to formulate a specification to avoid it.
The robot consists of several components. It has two arms that can individually

be extracted and retracted. Each arm is equipped with an electromagnet that can
individually be activated and deactivated. There is also a motor to rotate the robot
clockwise and anti-clockwise.

A typical manufacturing robot comes equipped with a sophisticated local control
system. Thus, it is reasonable to regard the robot as a rather “intelligent” device,
which handles much of its own safety. However, in our case we assume that the robot
only handles its own local components and their configuration, it does not interact
by itself with other devices. In particular, the robot is not “intelligent” enough to not
risk colliding with the press if an arm is extended towards the press while the press
is forging a blank. Thus, this unwanted behavior needs to be specified and imposed
on the closed-loop system by the supervisor.

Though the robot can rotate arbitrarily, only rotation to three positions are rele-
vant in this particular system, namely rotating so that

1. arm1 can reach a blank on the rotating table;

2. arm1 can load the press, and arm2 can put a forged blank on the deposit belt;

3. arm2 can unload the press.

So, the rotation of the robot is quantized to these specific positions, and no others will
be possible in the system. Admittedly, this is a case of where the plant model imposes
restrictions that could equally be regarded as specification, but as the local controller
of the robot only allows rotation to these specific positions, this is an inherent behavior
of the physical plant. Note that this immediately takes care of the requirement to
not rotate the robot too far to any side; it is simply not possible in the plant. The
model for the robot arm2 is given in Figure 5.5.

arm2_Extend
arm2_ermotor = 1

!arm2_Stop_Ex
arm2_ermotor == 1
arm2_ermotor = 0
arm2_ersensor = 1

arm2_mOn
robot_sensor == 1 ∧
robot_motor == 0
arm2_pdmotor = 1

arm2_Retract
arm2_ermotor = 1

!arm2_Stop_Re
arm2_ermotor == 1
arm2_ermotor = 0
arm2_ersensor = 0

arm2_Extend
arm2_ermotor = 1

!arm2_Stop_Ex
arm2_ermotor == 1
arm2_ermotor = 0
arm2_ersensor = 1

arm2_mOff
robot_sensor == 2 ∧
robot_motor == 0
arm2_pdmotor = 0

arm2_Retract
arm2_ermotor = 1

!arm2_Stop_Re
arm2_ermotor == 1
arm2_ermotor = 0
arm2_ersensor = 0

Figure 5.5: EFA for robot arm 2. The model for arm 1 looks the same, except all
“arm2” are replaced by “arm1”.

63

Chapter 5. Case Study

As can be seen in Figure 5.5, the arm can extend to carry out the task to pick up
(event arm2_mOn) or drop (event arm2_mOff) a blank. As soon as the respective task
is done, the arm retracts back. There are four Boolean variables:

1. arm2_ersensor, to indicate whether the arm is extended or retracted;

2. arm2_ermotor, to extend or retract the arm;

3. arm2_pdmotor, to activate or deactivate the magnet to pick up or drop the
blanks;

4. arm2_loaded, to tell whether there is a blank loaded.

The first three of these variables represent physical signals while arm2_loaded is a
virtual sensor that keeps track of information necessary for control but for which no
physical sensor exists. Note that arm2_loaded does not appear in the EFA for arm2,
since its value depends on the interaction between the press and the robot; when the
magnet of arm2 is activated with the arm extended into the press, arm2_loaded will
be set to true only if the press has a blank. This is shown in Figure 5.7.

The local control system of the robot also guarantees that the robot never ro-
tates with any arm extended, see the updates for the events Ro_Rotate_Left and
Ro_Rotate_Right in Figure 5.6. Thus, it is not possible for the robot to collide with
any device while rotating. Furthermore, the robot only activates or deactivates its
electromagnets when an arm is fully extracted, While retracted, the robot maintains
the state of the electromagnet, so it guarantees that no blanks held by it are dropped
while rotating.

Ro_Rotate_Left
arm1_ersensor == 0 ∧ arm1_ermotor == 0 ∧
arm2_ersensor == 0 ∧ arm2_ermotor == 0

robot_motor = 1

!Ro_Reach_35
robot_motor == 1
robot_motor = 0
robot_sensor = 1

Ro_Rotate_Left
arm1_ersensor == 0 ∧ arm1_ermotor == 0 ∧
arm2_ersensor == 0 ∧ arm2_ermotor == 0

robot_motor = 1

!Ro_Reach_90
robot_motor == 1
robot_motor = 0
robot_sensor = 2

Ro_Rotate_Right
arm1_ersensor == 0 ∧ arm1_ermotor == 0 ∧
arm2_ersensor == 0 ∧ arm2_ermotor == 0

robot_motor = 1

!Ro_Reach_50
robot_motor == 1
robot_motor = 0
robot_sensor = 0

Figure 5.6: EFA for the robot base, which manages the rotation of the robot.

The robot model consists of these independent component models, the robot base
and the two arms. However, due to the physical system configuration, these must
be tied together with other devices through configurations. The two arms interact

64

5.2. The Model

arm1_mOff
(arm1_loaded == 1 ∧ pre_sensor == 1 ∧

pr_motor = 0)
arm1_loaded = 0
pr_loaded = 1

arm1_mOff
arm1_loaded == 0

arm1_mOff
arm1_loaded == 1 ∧

¬(pr_sensor == 1 ∧ pr_motor == 0)
arm1_loaded = 0

Figure 5.7: Configuration for the interaction between robot arm1 and the press.

with the press and the elevating table. The model for the configuration governing the
interaction between the press and robot arm1 is shown in Figure 5.7.

The configuration for robot and the press in Figure 5.7 models that through the
event arm1_mOff, a blank can be loaded on the press by arm1 (top self-loop), or the
blank can fall on the floor. If arm1 does not hold a blank, that is, arm1_loaded == 0,
nothing will happen (left-most self-loop).

The Specification Model

The specification describes the desired or forbidden behavior. Naturally, only behav-
ior that is possible in the plant is relevant, but there is really no reason to require
the specification to only describe possible behavior. In fact, it can be beneficial to
describe more than what is possible by a specific plant. The specification could, for
instance, include behavior that is relevant for another more capable plant, so that the
specification would be useful also in the future when the current plant is extended.
Or it could simply be easier to describe a larger behavior than the possible one as
desired (or forbidden). In any case, it is the intersection of the possible behavior
as described by the plant, and the desired/forbidden behavior as described by the
specification that is of real importance for the synthesis algorithm.

For the robot there are two specifications, one for the rotation Figure 5.8a, and
one for the arms Figure 5.8b.

The robot is allowed to turn right only if both arms are unloaded (see the self-loop
in Figure 5.8a). This means that it has dropped its blanks. Furthermore, the robot is
allowed to turn left (the Ro_Rotate_Left event) from the table to the press if arm1
is loaded. Then, it can continue to turn left in two situations:

1. For the first time, the press is empty, and arm2 is not loaded.

2. If the press is loaded, arm2 needs to wait for it to forge the blank and pick the
blank up before turning right.

65

Chapter 5. Case Study

Ro_Rotate_Left
arm1_loaded == 1

Ro_Rotate_Left
(arm2_loaded == 0 ∧ pr_loaded == 0) ∨
(arm2_loaded == 1 ∧ pr_loaded == 0)

Ro_Rotate_Right
arm1_loaded == 0 ∧
arm2_loaded == 0

(a) Specification for the robot rotation.

arm1_mOff
arm1_loaded == 1 ∧
pr_sensor == 1 ∧
pr_motor == 0

arm2_mOn
pr_loaded == 1 ∧
pr_forged == 1 ∧
pr_sensor == 0 ∧
pr_motor == 0

(b) Specification for the robot arms.

Figure 5.8: The two specifications for the robot.

These two conditions are captured by the guard on the Ro_Rotate_Left event going
from right to left in the bottom of Figure 5.8a.

The arm specification Figure 5.8b, allows arm1 to drop a blank (event arm1_mOff)
and arm2 to pick a blank (event arm2_mOn) only under the correct circumstances.
For arm1 this means that the arm must be loaded (arm1_loaded == 1), the press
is in the middle position (pr_sensor == 1) and is not moving (pr_motor == 0).
Note that the robot position does not need to appear in the specification, since the
local controller of the robot takes care of only deactivating the magnet in the right
position, compare Figure 5.5.

Similarly, the specification for arm2 allows arm2 to pick a blank (event arm2_mOn),
only if there is a forged blank in the press, the press is in the bottom position and it
is not moving.

5.3 Synthesis and Guard Extraction
Given a set of EFA that describe the plant and the specification, synthesis of a super-
visor that dynamically restricts the plant behavior to remain within the specification,
is the next step. In this section, we discuss the results obtained by applying the
proposed symbolic algorithms on the EFA modeling the manufacturing system. In
particular, we first apply the extended workset algorithm of [Paper 2] on the consid-
ered EFA to compute the BDD representing all the states belonging to the supervisor.
Subsequently, making use of the set of constructed partial transition relations, we ap-
ply the symbolical algorithm of [Paper 1] to generate the corresponding guards.

66

5.3. Synthesis and Guard Extraction

Table 5.1: Comparison between two symbolic synthesis approaches.

The approach of [38] The approach of [Paper 2]
Reachable Supervisor BDD Peak Computation Time BDD Peak Computation Time

3.61× 107 1.06× 107 34689 40 sec. 1658 20 sec.

Table 5.2: Events and the numbers of logical terms of their supervisor guards.

Event Number of terms Event Number of terms

Elevate_Up 55 Ro_Rotate_Right 285
arm1_Extend 154 Crane_mOff 173
Add_Blank 768 FB_Start 514

Remove_Blank 24 Crane_mOn 42
Ro_Rotate_Right 115 arm2_Extend 14

For the EFA model of the manufacturing system, the number of reachable states of
the composed system is 3.61×107. Among the reachable states, the number of states
belonging to the synthesized supervisor is 1.06× 107. Hence, explicit enumeration of
such an enormous is hardly tractable. As shown in Table 5.1, by applying the symbolic
approach presented in [Paper 2] that uses the workset algorithm to explore the state-
space, the supervisor can be synthesized in less than 20 seconds. The maximal number
of BDD nodes, i.e., BDD Peak, as the indication of the maximal memory usage during
the algorithm execution, is 1658. As a comparison, the symbolic algorithm introduced
in [38] is applied on the same EFA model and the results are reported in Table 5.1.
The supervisor is synthesized within 40 seconds. The maximal number of BDD nodes
allocated by the symbolic algorithm of [38] is 34689. Hence, for the manufacturing
system, the algorithm of [Paper 2] outperforms the algorithm of [38] in both of the
time and memory requirements.

As mentioned earlier, though the BDD-based synthesis is able to treat systems of
this size, it also brings a problem in that the result is not straightforwardly accessible.
Since the original EFA have been reformulated and encoded, it is cumbersome for
human users to relate each state to the corresponding BDD variables. To this end, it
would be much more convenient and natural to represent the BDD-based supervisor
in a form similar to the originally given models. This can be done by applying the
symbolic approach represented in [Paper 1] and [70] on the symbolically represented
supervisor to extract and represent the supervisor as Boolean expressions.

There are in total 52 events in the EFA modeling the considered system. Among
these, 42 events do not get assigned by any supervisor guards; these events are always
enabled by the supervisor. There are merely 10 events that do get supervisor guards
assigned, the guard sizes are given in Table 5.2. Note that the shape and size of the
supervisor guards vary significantly with the variable ordering of the BDD. Possibly,

67

Chapter 5. Case Study

alternative variable ordering could give smaller sized guards than the ones in Table 5.2.
We will exemplify with the event arm2_Extend that represents extending the

robot arm arm2 for unloading the press, see Figure 5.5. One conjunctive part1 of the
generated guard for this event is:

(pr_loaded 6= 0) ∧
(
(arm1_loaded 6= 0) ∨ (arm2.curr 6= arm2_initial)

)
. (5.1)

When the expression (5.1) is true, the event arm2_Extend is enabled by the super-
visor. More specifically, the event arm2_Extend is enabled when the press is loaded,
and arm1 is loaded or arm2 is currently not in its initial location. Thus, there are
two situations.

1. The press is loaded and arm1 is loaded. This describes a situation where arm1
loads a blank from the table and the robot starts to turn left to the press.
The press is loaded, which indicates that the blank in it needs to be forged
and unloaded by arm2. Under this circumstance, arm2 can extend if the robot
reaches the press and the press stays at the bottom.

2. The press is loaded and the current location of arm2 is not in the initial loca-
tion (i.e., arm2_initial). From the arm2 plant model (see Figure 5.5), it can
be observed that the event arm2_Extend is enabled from only two locations;
the initial location and the location where arm2 has retracted. Therefore, the
current location of arm2 is in the latter location. Thus, the guard describes the
situation where arm1 has loaded a blank in the press while arm2 is positioned
above the deposit belt waiting to extend and unload the forged blank.

In this section, we apply the proposed symbolic algorithms on the EFA model
of the manufacturing system obtained from Section 5.2. The reported results have
clearly revealed the superiority of the extended workset algorithm of [Paper 2] with
respect to the prior work [38]. The synthesized supervisor, together with the con-
structed partial transition relations, is then fed into the algorithm of [Paper 1] to
extract additional guards to represent the supervisor, which makes the implementa-
tion of the supervisor straightforward in an industrial control system. Nevertheless,
for large systems, the supervisor guards typically become unwieldy due to their large
numbers of terms. One reason is that it is not easy to predict before hand how the
variable ordering affects the number of terms for the supervisor guards. Still, using
the don’t-care states together with some heuristic rules, some kind of compactness
can be achieved.

5.4 Summary
In this chapter, we have shown by a case study how: (i) EFA-based modeling can lead
to a compact and rather comprehensible representation of a large system; (ii) BDD-

1The full representation of the genrated guard for the event arm2_Extend is described in [113].
For simplicity and understandability, we only exemplify the considered part in this chapter.

68

5.4. Summary

based synthesis that are presented in the appended papers can efficiently compute a
supervisor for such a large system of practical complexity and size; (iii) guards can
represent that supervisor as Boolean conditions that directly relate to the originally
given plant.

In [Paper 5], another case study is presented to demonstrate the applicability of
the proposed approaches of [Paper 3] and [Paper 4] to the elimination of deadlocks in
multithreaded software, which has been previously addressed by the Gadara project
[116, 22, 17]. By modeling a special kind of Petri net (i.e., Gadara net [22]) that
models the primitive lock acquisition into the equivalent EFA, [Paper 5] demonstrates
in detail how the set of minimal boundary unsafe states are symbolically computed.
In addition, the guard generation procedure is further extended to generate guards
from the BDD representing the minimal boundary unsafe states. For a more detailed
explanation of this case study, refer to [Paper 5].

69

Chapter 6

Contributions

Part II of this thesis consists of five papers. In this chapter, the contributions of the
included papers are summarized.

Paper 1
Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson. Sym-
bolic State-Space Exploration and Guard Generation in Supervisory Con-
trol Theory. Agents and Artificial Intelligence – Communications in Com-
puter and Information Science, by Joaquim Filipe and Ana Fred (eds),
Springer, vol. 271, pp. 161–175, 2013.

The main contribution of [Paper 1] is the adaption of a symbolic supervisory
synthesis approach from the prior work [34] to the guard generation procedure [70],
making it more applicable for industrial applications. In particular, by using one of
the partitioning techniques, i.e., the disjunctive partitioning technique, the proposed
approach splits the monolithic transition relation of DES modeled as deterministic FA
into a set of partial transition relations, that are used iteratively for the state-space ex-
ploration. The guard generation procedure is tailored to use the partitioned structure
to extract the simplified guards and attach them to the original models. Furthermore,
a comparison of algorithm efficiency between the two partitioning techniques is made
by applying them to a set of benchmark examples.

Paper 2
Zhennan Fei, Sajed Miremadi, Knut Åkesson, Bengt Lennartson. Effi-
cient Symbolic Supervisor Synthesis for Extended Finite Automata. IEEE
Transactions on Control Systems Technology, in press, 2014.

In [Paper 1], the modeling formalism that is employed to model DES is determinis-
tic FA. In [Paper 2], we focus on the EFA modeling framework and the corresponding
symbolic supervisor synthesis. The contributions of [Paper 2] include: (i) Applying

71

Chapter 6. Contributions

the disjunctive partitioning technique to DES modeled as EFA by suggesting a new
way to construct the set of partial transition relations for the considered EFA model.
Each such partial transition relation corresponds to a particular event. (ii) Proposing
a new algorithm that exploits the disjunctive partial transition relations to compute
a BDD representing reachable states. It is shown through solving a set of benchmark
supervisory control problems that the proposed algorithm has improved scalability in
comparison to the symbolic approach presented in [38] due to its ability to explore
the state-space in a structured way, which can significantly alleviate the problem with
large intermediate BDDs.

Paper 3
Zhennan Fei, Spyros Reveliotis, Sajed Miremadi, Knut Åkesson. A BDD-
Based Approach for Designing Maximally Permissive Deadlock Avoidance
Policies for Complex Resource Allocation Systems. Submitted for a pos-
sible journal publication, 2014.

Starting from [Paper 3], we focus on the deadlock avoidance for resource allocation
systems that is a particular DES application domain arising in many contemporary
technological systems. The main contribution of [Paper 3] is the proposed symbolic
framework for the efficient development of the maximally permissive DAP of the
considered RAS. In particular, we first show how the considered RAS can be re-
cast into the corresponding EFA model without losing any information necessary for
solving the deadlock avoidance problem. Secondly, we present a series of symbolic
algorithms for computing the minimal boundary unsafe states from the BDD-based
representation of the underlying state-space. The experimental results reveal that the
proposed symbolic computation enables the deployment of the maximally permissive
DAP for complex RAS with very large structure and state-spaces, with limited time
and memory requirements.

Paper 4
Zhennan Fei, Spyros Reveliotis, Knut Åkesson. Symbolic Computation of
Boundary Unsafe States in Complex Resource Allocation Systems using
Partitioning Techniques. Submitted for a possible journal publication,
2014.

The work presented in [Paper 4] enhances the results of [Paper 3] by introducing
an attractive algorithm for computing the boundary unsafe states in complex RAS.
Instead of performing all the computations on a monolithic BDD representing the
RAS state-space, this algorithm performs the identification of unsafe states individ-
ually on the event-based disjunctive representation of the transition relation of the
considered RAS-modeling EFA, i.e., the set of (substantially) smaller BDDs with each

72

one corresponding to a particular event. In comparison with the presented approach
in [Paper 3], the algorithm presented in this work has better scalability due to the
lower memory requirement for its BDD-based implementation. Furthermore, with a
series of minor modifications, the proposed algorithm can be parallelized to further
improve its time requirement. The algorithm can be also easily extended to account
for uncontrollable RAS dynamics, where uncontrollability is defined either in terms
of the timing of some process-advancing events, or in terms of the routing decisions
at the various processing stages.

Paper 5
Zhennan Fei, Knut Åkesson, Spyros Reveliotis. Symbolic Computation
and Representation of Deadlock Avoidance Policies for Complex Resource
Allocation Systems with Application to Multithreaded Software. Submitted
to the 53rd IEEE Conference on Decision and Control (CDC), 2014.

The work presented in [Paper 5] extends the symbolic framework that was de-
scribed in [Paper 3] and [Paper 4] by introducing a procedure that generates a set of
comprehensible “guard” predicates to represent the resulting DAP. By attaching them
to the original model, the generated predicates guard transitions to the states that
dominate some elements in the set of minimal boundary unsafe states. Furthermore,
this work applies the developed approaches to the problem of deadlock avoidance in
shared-memory multithreaded software, which has been previously addressed by the
Gadara project [116, 22, 17].

73

Chapter 7

Conclusions and Future Work

As one of the main obstacles when it comes to the analysis of large-scale DES, the
state-space explosion problem has been well-studied for decades in the relevant re-
search communities. In brief, the problem arises from the inherent combinatorial
growth of the number of states as monolithic models are built. Thus, explicitly enu-
merating synchronized models with huge state-space fails due to time and memory
limits. On the other hand, a well-known approach for combating the state-space ex-
plosion is to symbolically represent discrete event system models and compute super-
visors by using BDD, a compact and operation-efficient data structure for representing
Boolean functions.

One objective of this thesis is to develop symbolic BDD-based algorithms for the
effective and computationally efficient development of the maximally permissive con-
trol logic to guarantee that the behaviors of systems fulfill the specifications. Both
the considered plant and specification are modeled in the automaton-based modeling
framework, either as a set of deterministic FA or as a set of EFA. To perform the sym-
bolic exploration on the state-space of the composed system efficiently, two strategies
are employed: (i) Making use of the disjunctive partitioning technique to construct a
set of partial transition relations with simpler structure and smaller sizes to represent
the monolithic transition relation of the composed system. Based on the disjunc-
tive representation, a series of algorithms are proposed to traverse the state-space by
performing the symbolic computation on these partial transition relations iteratively.
(ii) Taking advantage of the structural properties possessed by the considered sys-
tems, e.g., RAS, the target control policy can be obtained by performing a partial
exploration of the underlying state-space. As presented in the included papers these
two strategies can be combined to result in a more efficient symbolic computation for
various classes of resource allocation systems.

The second objective of the thesis is to represent the result obtained from the sym-
bolic approaches in a more comprehensible and transparent manner. As mentioned
earlier, representing the synthesized control logic that usually consists of a large num-
ber of states is a challengeable task. To this end, the thesis provides two extensions
to the previously published procedure for extracting guards and attaching them to
the original model to represent the resulting supervisor. First, by tailoring the guard

75

Chapter 7. Conclusions and Future Work

procedure to use the disjunctive representation of the state-space to compute the sets
of states that are necessary for the guard generation, the guard generation procedure
is made more applicable for industrially interesting applications. Secondly, the pro-
cedure is extended to generate comprehensible guards from the maximally permissive
DAP for RAS. By attaching them to the original RAS-modeling EFA, the generated
predicates guard transitions to the states that dominate some elements in the set of
minimal boundary unsafe states.

The proposed framework including a number of BDD-based algorithms that are
presented in the thesis has been implemented in the supervisory control tool Suprem-
ica and applied to a set of academic and industrial DES for the supervisor synthesis
and guard generation. Also, extensive benchmarks reveal that the presented method-
ology can handle complex RAS structures with large state spaces that were previously
intractable. Hence, the presented framework holds a strong potential for providing
robust, practical and efficient solutions to a broad range of deadlock avoidance and
liveness-enforcing supervision problems that are experienced in the considered DES
application domain.

Future work

There are a number of directions towards which we could improve and extend the
work in future.

The main focus of this thesis has been on the symbolic supervisor synthesis for
DES modeled as deterministic FA or EFA. It would be interesting to investigate the
possibility of combining our symbolic approach with the techniques developed from
hierarchical approaches such as STS [65], or the compositional approaches [54] and
[56], to further improve the scalability and performance of our BDD-based symbolic
algorithms for supervisor synthesis. As mentioned in Chapter 4, the variable ordering
has a key impact on the sizes of BDDs in symbolic computation but finding an optimal
variable ordering is NP-complete. In this thesis, all the presented symbolic algorithms
employ the heuristics developed in [63]. It is believed that more investigations are
worth performing towards finding a better sub-optimal variable ordering, in order to
handle larger and more complicated supervisory control problems.

In the area of deadlock avoidance for RAS, it is also interesting to investigate
the possibility of extending the applicability of the presented symbolic algorithms
to RAS with infinite state spaces, for instance RAS with reader/writer (R/W) locks
that is considered in [117]. Finally, to be able to further shorten the guards, it is
also interesting to investigate the possibility of designing advanced techniques and
heuristics by exploiting the special structure of RAS.

76

References

[1] M. Dowson, “The Ariane 5 software failure,” ACM SIGSOFT Software Engi-
neering Notes, vol. 22, no. 2, p. 84, 1997.

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. Springer, 2008.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT Press,
1999.

[4] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press,
2008.

[5] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete event
processes,” SIAM Journal of Control and Optimization, vol. 25, no. 1, pp. 635–
650, 1987.

[6] ——, “The control of discrete event systems,” Proceedings of the IEEE, Special
Issue on Discrete Event Dynamic Systems, vol. 77, no. 1, pp. 81–98, 1989.

[7] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, pp. 541–580, 1989.

[8] M. Sköldstam, K. Åkesson, and M. Fabian, “Modeling of discrete event systems
using finite automata with variables,” in Decision and Control, the 46th IEEE
Conference on, 2007, pp. 3387–3392.

[9] S. A. Reveliotis, Real-time Management of Resource Allocation Systems: A
Discrete Event Systems Approach. NY, NY: Springer, 2005.

[10] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock preven-
tion policy for flexible manufacturing systems,” IEEE Trans. on R&A, vol. 11,
pp. 173–184, 1995.

[11] S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies for automated
manufacturing cells,” IEEE Trans. on Robotics & Automation, vol. 12, pp. 845–
857, 1996.

77

REFERENCES

[12] M. P. Fanti, B. Maione, S. Mascolo, and B. Turchiano, “Event-based feedback
control for deadlock avoidance in flexible production systems,” IEEE Trans. on
Robotics and Automation, vol. 13, pp. 347–363, 1997.

[13] S. A. Reveliotis, “Conflict resolution in AGV systems,” IIE Trans., vol. 32(7),
pp. 647–659, 2000.

[14] N. Wu and M. Zhou, “Resource-oriented Petri nets in deadlock avoidance of
AGV systems,” in Proceedings of the ICRA’01. IEEE, 2001, pp. 64–69.

[15] S. Reveliotis and E. Roszkowska, “Conflict resolution in free-ranging multi-
vehicle systems: A resource allocation paradigm,” IEEE Trans. on Robotics,
vol. 27, pp. 283–296, 2011.

[16] A. Giua, M. P. Fanti, and C. Seatzu, “Monitor design for colored Petri nets: an
application to deadlock prevention in railway networks,” Control Engineering
Practice, vol. 10, pp. 1231–1247, 2006.

[17] H. Liao, Y. Wang, H. K. Cho, J. Stanley, T. Kelly, S. Lafortune, S. Mahlke,
and S. Reveliotis, “Concurrency bugs in multithreaded software: Modeling and
analysis using Petri nets,” Discrete Event Systems: Theory and Applications,
vol. 23, pp. 157–195, 2013.

[18] H. Liao, Y. Wang, J. Stanley, S. Lafortune, S. Reveliotis, T. Kelly, and
S. Mahlke, “Eliminating concurrency bugs in multithreaded software: A new
approach based on discrete-event control,” IEEE Trans. on Control Systems
Technology, vol. 21, no. 6, pp. 2067–2082, 2013.

[19] P. Gohari and W. Wonham, “On the complexity of supervisory control design
in the RW framework,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 30, no. 5, pp. 643–652, 2000.

[20] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Computers,
vol. 27, pp. 509–516, 1978.

[21] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision
diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318, 1992.

[22] Y. Wang, H. Liao, S. Reveliotis, T. Kelly, S. Mahlke, and S. Lafortune, “Mod-
eling and analysis of a special class of Petri nets arising in multithreaded pro-
grams,” in CDC 2009, 2009.

[23] K. Åkesson, M. Fabian, H. Flordal, and A. Vahidi, “Supremica—A tool for
verification and synthesis of discrete event supervisors,” in 11th Mediterranean
Conference on Control and Automation, 2003.

78

REFERENCES

[24] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - an integrated
environment for verification, synthesis and simulation of discrete event systems,”
in the 8th International Workshop on Discrete Event Systems, 2006, pp. 384–
385.

[25] Supremica, “www.supremica.org. The official website for the Supremica
project,” 2014.

[26] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[27] K. Inan and P. Varaiya, “Algebras of discrete event models,” Proceedings of the
IEEE, vol. 77, no. 1, pp. 24–38, 1989.

[28] J. C. M. Baeten, D. A. Van Beek, B. Luttik, J. Markovski, and J. Rooda, “A
process-theoretic approach to supervisory control theory,” in American Control
Conference, 2011, pp. 4496–4501.

[29] W. Wonham, Supervisory Control of Discrete Event Systems, Toronto, Canada,
2011.

[30] C. A. R. Hoare, Communicating sequential processes, ser. Series in Computer
Science. ACM, 1978, vol. 21, no. 8.

[31] B. Lennartson, F. Basile, S. Miremadi, Z. Fei, M. Hosseini, M. Fabian, and
K. Akesson, “Supervisory control for state-vector transition models – a uni-
fied approach,” Automation Science and Engineering, IEEE Transactions on,
vol. 11, no. 1, pp. 33–47, 2014.

[32] W. M. Wonham and P. Ramadge, “On the Supremal Controllable Sublanguage
of a Given Language,” SIAM Control and Optimization, vol. 25, no. 3, pp.
637–659, 1987.

[33] R. Kumar, V. K. Garg, and S. I. Marcus, “On Controllability and Normality of
DEDS,” Systems and Control Letters, vol. 17, pp. 157–168, 1991.

[34] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory synthesis of
large systems,” Control Engineering Practice, vol. 14, no. 10, pp. 1157–1167,
Oct. 2006.

[35] K. Åkesson, “Methods and tools in supervisory control theory: operator as-
pects, computation efficiency and applications,” Ph.D. dissertation, Signals and
Systems,Chalmers University of Technology, Göteborg, Sweden, 2002.

[36] L. Ouedraogo, R. Kumar, R. Malik, and K. Akesson, “Nonblocking and Safe
Control of Discrete-Event Systems Modeled as Extended Finite Automata,”
IEEE Transactions on Automation Science and Engineering, vol. 8, no. 3, pp.
560–569, 2011.

79

REFERENCES

[37] M. Sköldstam, K. Åkesson, and M. Fabian, “Supervisory Control Applied to
Automata Extended with Variables - Revised,” Chalmers University of Tech-
nology, Tech. Rep., 2008.

[38] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-based approach for mod-
eling plant and supervisor by extended finite automata,” IEEE Transactions on
Control Systems Technology, vol. 20, no. 6, pp. 1421–1435, 2012.

[39] W. Wonham and P. Ramadge, “Modular Supervisory Control of Discrete-Event
Systems,” Mathematics of Control Signals and Systems, vol. 1, no. 1, pp. 13–30,
1988.

[40] K. Rudie and W. Wonham, “Think globally, act locally: decentralized super-
visory control,” IEEE Transactions on Automatic Control, vol. 37, no. 6, pp.
1692–1708, 1992.

[41] K. Wong and W. Wonham, “Modular control and coordination of discrete-event
systems,” Discrete Event Dynamic Systems, vol. 8, no. 3, pp. 247–297, 1998.

[42] B. A. Brandin, R. Malik, and P. Dietrich, “Incremental system verification and
synthesis of minimally restrictive behaviors,” in American Control Conference,
2000, pp. 4056–4061.

[43] M. de Queiroz and J. Cury, “Modular control of composed systems,” in Pro-
ceedings of the 2000 American Control Conference, vol. 6, no. June, 2000, pp.
4051–4055.

[44] K. Åkesson, H. Flordal, and M. Fabian, “Exploiting Modularity for Synthesis
and Verification of Supervisors,” in 15th IFAC World Congress, 2002.

[45] R. C. Hill, D. M. Tilbury, and S. Lafortune, “Modular supervisory control with
equivalence-based abstraction and covering-based conflict resolution,” Discrete
Event Dynamic Systems, vol. 20, no. 1, pp. 139–185, 2010.

[46] H. Zhong and W. Wonham, “On Consistency of Hierarchical Supervision in
Discrete-Event Systems,” IEEE Transactions on Automatic Control, vol. 35,
no. 10, pp. 1125–1134, 1990.

[47] Y. Brave, “Control of discrete event systems modeled as hierarchical state ma-
chines,” Automatic Control, IEEE Transactions on, vol. 38, no. 12, pp. 1803–
1819, 1993.

[48] R. J. Leduc, “Hierarchical interface-based supervisory control,” Ph.D. disserta-
tion, Electrical and Computer Engineering,Toronto, Toronto, Canada, 2002.

[49] R. Song and R. J. Leduc, “Symbolic Synthesis and Verification of Hierar-
chical Interface-based Supervisory Control,” in 8th Discrete Event Systems,
WODES ’06, Ann Arbor, MI, USA, 2006, pp. 419–426.

80

REFERENCES

[50] K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control of de-
centralized discrete event systems,” Automatic Control, IEEE Transactions on,
vol. 53, no. 10, pp. 2252–2265, 2008.

[51] R. C. Hill, J. E. R. Cury, M. H. de Queiroz, D. M. Tilbury, and S. Lafor-
tune, “Multi-level hierarchical interface-based supervisory control,” Automatica,
vol. 46, no. 7, pp. 1152–1164, 2010.

[52] S. Graf and B. Steffen, “Compositional Minimization of Finite State Systems,”
in Proceedings of the 2nd International Workshop on Computer Aided Verifica-
tion. Springer, 1991, pp. 186–196.

[53] H. Flordal, “Compositional Approaches in Supervisory Control—with Appli-
cation to Automatic Generation of Robot Interlocking Policies,” Ph.D. dis-
sertation, Signals and Systems,Chalmers University of Technology, Göteborg,
Sweden, 2006.

[54] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional Synthesis
of Maximally Permissive Supervisors Using Supervision Equivalence,” Discrete
Event Dynamic Systems, vol. 17, no. 4, pp. 475–504, 2007.

[55] M. Teixeira, R. Malik, J. Cury, and M. de Queiroz, “Variable abstraction and
approximations in supervisory control synthesis,” in American Control Confer-
ence (ACC), 2013, June 2013, pp. 132–137.

[56] S. Mohajerani, R. Malik, and M. Fabian, “A framework for compositional syn-
thesis of modular nonblocking supervisors,” Automatic Control, IEEE Trans-
actions on, vol. 59, no. 1, pp. 150–162, Jan 2014.

[57] G. Hoffmann and H. Wong-Toi, “Symbolic synthesis of supervisory controllers,”
in American Control Conference, 1992, pp. 2789–2793.

[58] S. Balemi, G. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. Franklin, “Super-
visory control of a rapid thermal multiprocessor,” Automatic Control, IEEE
Transactions on, vol. 38, no. 7, pp. 1040–1059, 1993.

[59] G. Hoffmann and H. Wong-Toi, “Symbolic supervisor synthesis for the ani-
mal maze,” in Discrete Event Systems: Modeling and Control, ser. Progress
in Systems and Control Theory, S. Balemi, P. Kozák, and R. Smedinga, Eds.
Birkhäuser Basel, 1993, vol. 13, pp. 189–197.

[60] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis for discrete
and timed systems,” in Hybrid Systems II, ser. Lecture Notes in Computer
Science, P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds. Springer
Berlin Heidelberg, 1995, vol. 999, pp. 1–20.

81

REFERENCES

[61] J. Gunnarsson, “Symbolic methods and tools for discrete event dynamic
systems,” Ph.D. dissertation, Electrical Engineering, Linköping University,
Linköping, Sweden, 1997.

[62] ——, “Symbolic tools for verification of large scale deds,” in Systems, Man,
and Cybernetics, 1998. 1998 IEEE International Conference on, vol. 1, 1998,
pp. 722–727.

[63] A. Vahidi, “Efficient analysis of discrete event systems,” Ph.D. dissertation,
Chalmers University of Technology, 2004.

[64] C. Ma, “Nonblocking supervisory control of state tree structures,” Ph.D. dis-
sertation, University of Toronto, 2005.

[65] C. Ma and W. Wonham, “Nonblocking supervisory control of state tree struc-
tures,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 782–793,
2006.

[66] M. Byröd, B. Lennartson, A. Vahidi, and K. Åkesson, “Efficient Reachability
analysis on Modular Discrete-Event Systems using Binary Decision Diagrams,”
in Proceedings of the 8th international Workshop on Discrete Event Systems,
WODES’06, 2006, pp. 288–293.

[67] B. J.R., C. D, and D. E. Long, “Symbolic Model Cheking with Partitioned
Transition Relations,” in A. Halaas and P.B. Denyer, editors, International
Conference on Very Large Scale Integration, Aug. 1991, pp. 49–58.

[68] J. R. Burch, E. M. Clarke, D. E. Long, K. L. Mcmillan, and D. L. Dill, “Sym-
bolic Model Checking for Sequential Circuit Verification,” IEEE Transactions
on ComputerAided Design of Integrated Circuits and Systems, vol. 13, no. 4,
pp. 401–424, 1994.

[69] Z. Fei, K. Åkesson, and B. Lennartson, “Symbolic reachability computation
using the disjunctive partitioning technique in supervisory control theory,” in
IEEE International Conference on Robotics and Automation, 2011, pp. 4364–
4369.

[70] S. Miremadi, K. Åkesson, and B. Lennartson, “Symbolic Computation of Re-
duced Guards in Supervisory Control,” IEEE Transactions on Automation Sci-
ence and Engineering, vol. 8, no. 4, pp. 754–765, 2011.

[71] X. Lin and W. Wonham, “On observability of discrete-event systems,” Infor-
mation Sciences, vol. 44, pp. 179–198, 1988.

[72] S. L. Ricker and K. Rudie, “Know Means No: Incorporating Knowledge into
Discrete-Event Control Systems,” IEEE Transactions on Automatic Control,
vol. 45, no. 9, pp. 1656–1668, 2000.

82

REFERENCES

[73] J. Ostroff and W. Wonham, “A framework for real-time discrete event control,”
Automatic Control, IEEE Transactions on, vol. 35, no. 4, pp. 386–397, Apr
1990.

[74] B. A. Brandin and W. Wonham, “Supervisory Control of Timed Discrete-Event
Systems,” IEEE Transactions on Automatic Control, vol. 39, no. 2, pp. 329–342,
1994.

[75] B. A. Brandin, “The Modeling and Supervisory Control of Timed DES,”
in Proceedings of the 4th International Workshop of Discrete Event Systems,
WODES’98, 1998, pp. 8–14.

[76] A. Saadatpoor, “Timed State Tree Structures: Supervisory Control and Fault
Diagnosis,” Ph.D. dissertation, University of Toronto, 2009.

[77] S. Miremadi, Z. Fei, K. Akesson, and B. Lennartson, “Symbolic representation
and computation of timed discrete-event systems,” Automation Science and
Engineering, IEEE Transactions on, vol. 11, no. 1, pp. 6–19, Jan 2014.

[78] ——, “Efficient Symbolic Supervisory Synthesis for Extended Finite Au-
tomata,” IEEE Transactions on Control Systems Technology (conditionally ac-
cepted), 2014.

[79] A. Nazeem and S. Reveliotis, “A practical approach for maximally permissive
liveness-enforcing supervision of complex resource allocation systems,” IEEE
Trans. on Automation Science and Engineering, vol. 8, pp. 766–779, 2011.

[80] S. Reveliotis and A. Nazeem, “Deadlock avoidance policies for automated man-
ufacturing systems using finite state automata,” in Formal Methods in Manu-
facturing, J. Campos, C. Seatzu, and X. Xie, Eds. CRC Press / Taylor and
Francis, 2014, pp. 169–195.

[81] T. Araki, Y. Sugiyama, and T. Kasami, “Complexity of the deadlock avoid-
ance problem,” in 2nd IBM Symp. on Mathematical Foundations of Computer
Science, 1977, pp. 229–257.

[82] E. M. Gold, “Deadlock prediction: Easy and difficult cases,” SIAM Journal of
Computing, vol. 7, pp. 320–336, 1978.

[83] M. A. Lawley and S. A. Reveliotis, “Deadlock avoidance for sequential resource
allocation systems: hard and easy cases,” Intl. Jrnl of FMS, vol. 13, pp. 385–
404, 2001.

[84] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira, “Polynomial complexity
deadlock avoidance policies for sequential resource allocation systems,” IEEE
Trans. on Automatic Control, vol. 42, pp. 1344–1357, 1997.

83

REFERENCES

[85] K. Y. Xing, B. S. Hu, and H. X. Chen, “Deadlock avoidance policy for Petri
net modeling of flexible manufacturing systems with shared resources,” IEEE
Trans. on Aut. Control, vol. 41, pp. 289–295, 1996.

[86] Z. A. Banaszak and B. H. Krogh, “Deadlock avoidance in flexible manufacturing
systems with concurrently competing process flows,” IEEE Trans. on Robotics
and Automation, vol. 6, pp. 724–734, 1990.

[87] F. S. Hsieh and S. C. Chang, “Dispatching-driven deadlock avoidance controller
synthesis for flexible manufacturing systems,” IEEE Trans. on Robotics and
Automation, vol. 10, pp. 196–209, 1994.

[88] M. Lawley, S. Reveliotis, and P. Ferreira, “The application and evaluation of
Banker’s algorithm for deadlock-free buffer space allocation in flexible manu-
facturing systems,” Intl. Jrnl. of Flexible Manufacturing Systems, vol. 10, pp.
73–100, 1998.

[89] ——, “A correct and scalable deadlock avoidance policy for flexible manufac-
turing systems,” IEEE Trans. on Robotics & Automation, vol. 14, pp. 796–809,
1998.

[90] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential resource allo-
cation systems with multiple resource acquisitions and flexible routings,” IEEE
Trans. on Automatic Control, vol. 46, pp. 1572–1583, 2001.

[91] J. Park, S. Reveliotis, M. Lawley, and P. Ferreira, “Correction on the run dap for
conjunctive ras presented in "polynomial comlpexity deadlock avoidance policies
for sequential resource allocation systems",” IEEE Trans. on Automatic Control,
vol. 46, p. 672, 2001.

[92] M. Jeng, X. Xie, and M. Y. Peng, “Process nets with resources for manufac-
turing modeling and their analysis,” IEEE Trans. on Robotics & Automation,
vol. 18, pp. 875–889, 2002.

[93] Z. Li and M. Zhou, “Elementary siphons of Petri nets and their application to
deadlock prevention in flexible manufacturing systems,” IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 34, no. 1,
pp. 38–51, 2004.

[94] F. Tricas, F. Garcia-Valles, J. M. Colom, and J. Ezpeleta, “A Petri net
structure-based deadlock prevention solution for sequential resource allocation
systems,” in Proceedings of the ICRA 2005. IEEE, 2005, pp. 271–277.

[95] M. Zhou and M. P. Fanti (editors), Deadlock Resolution in Computer-Integrated
Systems. Singapore: Marcel Dekker, Inc., 2004.

84

REFERENCES

[96] Z. Li, M. Zhou, and N. Wu, “A survey and comparison of Petri net-based
deadlock prevention policies for flexible manufacturing systems,” IEEE Trans.
Systems, Man and Cybernetics – Part C: Applications and Reviews, vol. 38, pp.
173–188, 2008.

[97] E. Badouel and P. Darondeau, “Theory of regions,” in LNCS 1491 – Advances in
Petri Nets: Basic Models, W. Reisig and G. Rozenberg, Eds. Springer-Verlag,
1998, pp. 529–586.

[98] M. Uzam, “An optimal deadlock prevention policy for flexible manufacturing
systems using Petri net models with resources and the theory of regions,” Intl.
Jrnl of Advanced Manufacturing Technology, vol. 19, pp. 192–208, 2002.

[99] A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally permissive
Petri net controller using the theory of regions,” IEEE Trans. on Robotics &
Automation, vol. 19, pp. 137–141, 2003.

[100] A. Nazeem, S. Reveliotis, Y. Wang, and S. Lafortune, “Designing maximally
permissive deadlock avoidance policies for sequential resource allocation sys-
tems through classification theory: the linear case,” IEEE Trans. on Automatic
Control, vol. 56, pp. 1818–1833, 2011.

[101] A. Nazeem and S. Reveliotis, “Designing maximally permissive deadlock avoid-
ance policies for sequential resource allocation systems through classification
theory: the non-linear case,” IEEE Trans. on Automatic Control, vol. 57, pp.
1670–1684, 2012.

[102] R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis, “Designing optimal dead-
lock avoidance policies for sequential resource allocation systems through clas-
sification theory: existence results and customized algorithms,” IEEE Trans.
on Automatic Control, vol. 58, no. 11, pp. 2772–2787, 2012.

[103] S. Reveliotis and A. Nazeem, “Optimal linear separation of the safe and unsafe
subspaces of sequential RAS as a set-covering problem: algorithmic procedures
and geometric insights,” SIAM Journal on Control and Optimization, vol. 51,
pp. 1707–1726, 2013.

[104] A. Nazeem, “Designing compact and maximally permissive deadlock avoidance
policies for complex resource allocation systems through classification theory,”
Ph.D. dissertation, Georgia Tech, Atlanta, GA, 2012.

[105] A. Nazeem and S. Reveliotis, “Efficient enumeration of minimal unsafe states
in complex resource allocation systems,” IEEE Trans. on Automation Science
and Engineering, vol. 11, pp. 111–124, 2014.

[106] S. Reveliotis, “Algebraic deadlock avoidance policies for sequential resource al-
location systems,” in Facility Logistics: Approaches and Solutions to Next Gen-
eration Challenges, M. Lahmar, Ed. Auerbach Publications, 2007, pp. 235–289.

85

REFERENCES

[107] J. Campos, C. Seatzu, and X. Xie, Eds., Formal Methods in Manufacturing.
CRC Press, 2014.

[108] B. Bollig and I. Wegener, “Improving the Variable Ordering of OBDDs Is NP-
Complete,” IEEE Trans. Comput., vol. 45, no. 9, pp. 993–1002, 1996.

[109] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System
Technical Journal, vol. 27, pp. 379–423,625–656, 1948.

[110] H. Andersen, “An introduction to binary decision diagrams,” Department of
Information Technology, Technical University of Denmark, Tech. Rep., 1999.

[111] B. Gaudin, “Efficient solution for the State Avoidance Control Problem on
Concurrent Systems using a disjunctive architecture,” in Proceedings of the 8th
international Workshop on Discrete Event Systems, WODES’06, Ann Arbor,
MI, USA, Jul. 2006, pp. 70–75.

[112] C. Lewerentz and T. Lindner, Eds., Formal Development of Reactive Systems—
Case Study Production Cell, ser. Lecture Notes in Computer Science. Springer,
1995, vol. 891, ch. II, pp. 7–19.

[113] M. Fabian, Z. Fei, S. Miremadi, B. Lennartson, and K. Åkesson, “Supervisory
control of manufacturing systems using extended finite automata,” in Formal
Methods in Manufacturing, J. Campos, C. Seatzu, and X. Xie, Eds. CRC Press
/ Taylor and Francis, 2014, pp. 295–314.

[114] C. Ma, J. Ma, and W. Wonham, Nonblocking Supervisory Control of State Tree
Structures, ser. Lecture Notes in Control and Information Sciences. Springer,
2005.

[115] L. Feng, K. Cai, and W. Wonham, “A structural approach to the non-blocking
supervisory control of discrete-event systems,” The International Journal of
Advanced Manufacturing Technology, vol. 41, pp. 1152–1168, 2009.

[116] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke, “Eliminating concurrency bugs
with control engineering,” Computer, vol. 42, no. 12, pp. 52–60, Dec 2009.

[117] A. Nazeem and S. Reveliotis, “Maximally permissive deadlock avoidance for
resource allocation systems with R/W-locks,” in Proceedings of WODES 2012.
IFAC, 2012.

86

