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Numerical modeling of air–fiber flows

JELENA ANDRIĆ

Department of Applied Mechanics

Chalmers University of Technology

Abstract

The dynamics of fiber suspensions are of great importance in applica-

tions such as the dry-forming process of pulp mats for use in hygiene

products. In this forming process, fibers are transported in flowing air.

The fibers interact with the fluid, and may interact with each other and

interlock in flocs. The characteristics of the suspension structure are

essential for the design and optimization of the forming process, and for

improving the quality of the final products. Particularly, it is desired to

achieve a uniform fiber distribution in the pulp mats. Thus, it is of high

interest to develop tools, which can be used to perform comprehensive

studies of the complex phenomenon of fiber suspension flows.

This work is concerned with numerical analysis of fiber suspen-

sions, related to the mat-forming process. For that purpose, a particle-

level fiber model has been implemented into an open source compu-

tational fluid dynamics (CFD) code. A fiber is modeled as a chain

of rigid cylindrical segments. The segments interact with the flow

through hydrodynamic drag forces, and may interact with each other

through short-range attractive forces. The segments are tracked in-

dividually using Lagrangian particle tracking (LPT). The implemented

model comprises two alternatives, the flexible and the rigid fiber model,

respectively. The equations of motion of a flexible fiber represent the

application of Euler’s second laws for rigid body motion for the fiber

segments. The flexible fiber model takes into account all the degrees of

freedom necessary to realistically reproduce the fiber dynamics. Con-

nectivity forces act between the adjacent fiber segments to ensure the

fiber integrity. The rigid fiber model keeps the relative orientation be-

tween the segments fixed. The equations of motion are formulated for

the fiber as a whole, while the hydrodynamic contributions are taken

into account from the individual segments. The fiber inertia is taken

into account in both alternatives of the model. The fiber model has

been coupled with imposed flow fields, or with flow fields computed by

the CFD solvers.

The behavior of the implemented model is compared with analytical

and experimental results available in the literature. The simulation

results show that the model correctly predicts the dynamics of isolated
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rigid and flexible fibers in creeping shear flow.

The model is used to study the dynamics of flexible and rigid fibers

in high Reynolds number flows and in geometries that are representa-

tive for the mat-forming process. The effects of fiber properties, such

as fiber inertia and fiber length are analyzed.

Simulations are carried out to investigate the rheology of suspen-

sions of flexible and curved fibers in creeping shear flow of a Newtonian

fluid. The effects of fiber flexibility and fiber curvature on the specific

viscosity and the normal stress differences are examined.

Finally, aggregation of rod-like fibers is investigated in a turbulent

flow of an asymmetric planar diffuser. The influences of the average

flow gradient, the fiber inertia and the turbulence dispersion on the

aggregation rate are analyzed. The study identifies a darting fiber mo-

tion as a mechanism that significantly enhances fiber collisions and

aggregation.

Keywords: fiber, fiber suspension, dry-forming, particle-level simula-

tion, rheology, aggregation
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Nomenclature

Latin Symbols

di Diameter of fiber segment i [m]

li Length of fiber segment i [m]

N Number of segments in a fiber [–]

mi Mass of fiber segment i [kg]

m Fiber mass [kg]

I i Inertia tensor of fiber segment i [kg m2]

ri Position vector of the center of mass of fiber segment i [m]

ṙi Translational velocity of fiber segment i [ms−1]

r̈i Acceleration of fiber segment i [ms−2]

ωi Angular velocity of fiber segment i [s−1]

ẑi Unit orientation vector of fiber segment i [–]

F h
i Hydrodynamic drag force on fiber segment i [N]

F w
i Gravitational body force on fiber segment i [N]

g Gravitational acceleration [ms−2]

Xh
i Connectivity force exerted by segment i on segment i − 1 [N]

T h
i Hydrodynamic torque on fiber segment i [Nm]

Y h
i Bending and twisting torques exerted by segment i on segment i − 1 [Nm]

rf Fiber aspect ratio [–]

re Equivalent aspect ratio [–]

Ey Young’s modulus of fiber material [Nm−2]

T Orbit period [s]

L Fiber length [m]

n Fiber number density [m−3]

s′ Dipole strength [Nm]

s∗ Dimensionless dipole strength [–]

N∗

1 Dimensionless first normal stress difference [–]

N∗

2 Dimensionless second normal stress difference [–]

F Floc species [–]
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Greek Symbols

δ Kronecker delta tensor [–]

ǫ Permutation tensor [–]

ρ Fluid density [kgm−3]

η Fluid dynamic viscosity [kgm−1s−1]

γ̇ Characteristic shear rate of the flow [s−1]

ηfib Fiber viscosity [kgm−1s−1]

η∗

sp Dimensionless specific viscosity [–]

φ Floc mass fraction [–]

σ Variance of fiber orientation [–]
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Chapter 1

Introduction

The dynamics of particles suspended in flowing fluid are of high im-

portance in different processes in modern technology. In many of those

suspensions nonspherical particles are present. Particularly, suspen-

sions of fibers and fiber flocs are processed to produce paper products

and fiber composites. Papermaking is a common industrial application

in which fibers are transported in liquids. A number of studies that

consider transport of fibers in water are found in the literature [1, 2].

Much less is known about the transport of pulp fibers in airflows. One

example of such flows is dry-forming of pulp mats for use in hygiene

products, such as diapers and sanitary napkins. In the dry-forming

process, the fibers are introduced into airflow via a milling machine,

and then transported through a divergent channel [3], see Fig.1.1. At

the outlet of the channel, there is a rotating mat-forming wheel with a

wire mesh. The fiber suspension is sucked through this moving form,

and the fibers deposit on the mat-forming wheel to form the mat.

The suspension structure, whose development depends on fiber–

flow interaction and fiber–fiber contacts, significantly influences the

properties of the final products. In this dry-forming process, it is cru-

cial to reach a uniform fiber distribution in the forming head. Ana-

lyzing the dynamics of fiber suspensions is thus of great importance

for design and optimization of the forming process, and for improving

the product quality. The goal of this work is to numerically investigate

air–fiber suspensions, with the dry-forming process of pulp mats as the

intended application.

1.1 Background and previous work

Fiber suspensions represent a complex two-phase system, which has

been the subject of various theoretical, experimental and numerical
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Figure 1.1: Mat-forming device; 1. milling machine, 2. transport chan-

nel, 3. mat-forming wheel, 4. mat form.

studies. The following sections give an overview of the relevant studies

available in the literature.

1.1.1 Theoretical studies of fiber flows

Jeffery [4] derived the equations of motion of an isolated prolate spheroid

in simple shear flow. The study showed that a spheroidal particle ro-

tates in repeatable orbits around the vorticity axis, while neglecting

particle and fluid inertia. Bretherton [5] discovered that all axisym-

metric bodies experience similar orbiting behavior in simple shear flow.

Cox [6] demonstrated that cylinders also exhibit Jeffery’s orbits. The

motion of isolated, inertialess, rigid, cylindrical fibers in creeping flow

is thus relatively well understood.

On the other hand, in fiber suspensions there exist hydrodynamic

and mechanical interactions among the fibers, which cause the fiber

motion to differ from Jeffery’s orbits [1]. The fiber suspensions can

be classified into three different regimes, based on the fiber number

density n, the fiber length L and the fiber diameter d: dilute regime
(nL3 ≪ 1), semidilute regime (nL3 > 1 and nL2d ≪ 1), and concentrated
regime (nL2d > 1). Batchelor [7] derived an expression for the average
stress contribution from elongated rigid particles with a known orien-

tation distribution. The study assumed that the particles are not inter-

acting hydrodynamically with each other. Rahnama et al. [8] derived

orientation distributions for semidilute suspensions, when the effect

of hydrodynamic interactions between the particles are taken into ac-

count. Theoretical studies are thus limited to straight fibers and low

fiber concentrations.
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CHAPTER 1. INTRODUCTION

1.1.2 Experimental studies of fiber flows

There exist several experimental studies concerned with both individ-

ual fibers and fiber suspensions. Anczurowski and Mason [9] confirmed

Jeffery’s predictions for prolate spheroid motion in shear flow. Forgacs

and Mason [10] studied the motion of isolated flexible fibers in creep-

ing shear flow. They found that rigid fibers exhibit the same orbits as

rigid cylinders, while the orbit periods of flexible fibers are significantly

lower than those of straight, rigid fibers. Forgacs and Mason [10] iden-

tified five different regimes of fiber motion in creeping shear flow: rigid

orbits, springy orbits, snake-like orbits, coiled orbits without entangle-

ment and coiled orbits with entanglement. Their study showed that

the dynamics of flexible fibers depend on the fiber stiffness, length, and

the flow properties such as shear rate and fluid viscosity.

Ganani and Powell [11] reviewed experimental studies of rheology

of concentrated suspensions of rod-like fibers in Newtonian and non-

Newtonian fluids. Garner and Kerekes identified four different flow

regimes for air–fiber suspensions with hardwood fibers, based on the

distribution of fibers and their flocs: heterogeneous, flocculated, strat-

ified and homogeneous. Stover et al. [12] measured the fiber orienta-

tion distribution in a Newtonian fluid with nearly linear flow gradi-

ent in semidilute regime. The results showed that for all investigated

concentrations, the measured orientation distributions were similar to

those predicted by Jeffery’s theory [4]. Petrich et al. [13] investigated

the relation between the microstructure and the rheological proper-

ties in the semiconcentrated fiber suspensions. Pettersson et al. [14]

conducted a detailed study of the near-wall behavior in a pipe flow of

fiber suspension using a laser Doppler anemometry (LDA) method. The

study aimed at relating the LDA signal to fiber concentrations near the

wall. The results showed that the width of the concentartion profile in-

creased when the concentration decreased, and that the thickness of

the dilution region was larger for the softwood fibers. Melander and

Rasmuson [15] developed a particle image velocimetry (PIV) method to

simultaneously measure the concentrations and the velocities of hard-

wood fibers suspended in the air. The developed method is feasible for

air–fiber flows at low concentrations.

The phenomena related to fiber dynamics occur at the scales of a

fiber length, and it is difficult to experimentally measure fiber shapes

and deformations of flexible fibers [16], or the rheological properties of

suspensions [17]. Therefore different numerical techniques have been

developed to study the fiber dynamics.
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1.1.3 Numerical modeling of fiber suspension flows

Two general numerical approaches have been developed to model fiber

suspensions: the Eulerian–Eulerian approach, where both the parti-

cle phase and the fluid phase are treated as a continuum [18], and

the Lagrangian–Eulerian approach, where the particles are treated as

moving objects in the fluid medium [18]. Eulerian–Eulerian techniques

are useful numerical tools to study fiber dynamics at industrial scales.

The method has been used by several researchers. Ljus and Almst-

edt [19] used an Eulerian two-fluid model to investigate the transport

of fibers in air in a mat-forming device. They carried out the simu-

lations in two and three dimensions in a channel with and without a

turbulence model for the gas phase. The study assumed that the fibers

are rigid, single cylinders without angular rotation, and different drag

coefficients were used for the parallel and perpendicular velocity com-

ponents. The computed results for pressure and velocity were in good

agreement with the experimental results in a similar channel.

Modeling different phenomena related to fiber suspension behavior

often requires that an Eulerian–Eulerian model is combined with other

modeling techniques, such as statistical methods [20]. The probability

distribution of fiber positions and orientations is predicted using the

convection-diffusion equation. In this approach, the mean flow con-

vects the fiber positions and orientations, while the fluctuating compo-

nent of the flow disperses the fibers. Olson et al. [21] proposed a one-

dimensional headbox model, which employes the convection-diffusion

equation to predict the fiber orientation distribution in a turbulent flow

through a planar contraction. The computed fiber distributions were in

agreement with experimental measurements. The study showed that

the fiber orientation distribution depends on the dispersion coefficient

and the contraction ratio. Krochak et al. [22] modeled fiber suspension

flow in a tapered channel with low Reynolds number flow. They inves-

tigated the fiber reorientation, and the effect of the two-way coupling

between the fibers and the flow. The study dealt with semidilute rigid

fiber suspensions, and two different orientation states were considered

at the inlet of the contraction. Krochak et al. [22] showed that the

presence of the fibers significantly influences the velocity profiles inde-

pendently of the initial fiber distribution. They argued that the fiber

phase redirects the flow from the channels walls towards the middle of

the channel and that the streamlines across the channel length become

linear and closer to each other. They also found that the two-way cou-

pling significantly influenced the fiber reorientation when a random

inlet orientation was used. However, the majority of the Eulerian–

Eulerian models assumes rigid fibers with the same properties and
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CHAPTER 1. INTRODUCTION

negligible fiber–fiber contacts [22, 20]. These assumptions are not al-

ways valid for the actual industrial processes, which include fibers with

various features and concentrated fiber suspensions.

In the Lagrangian–Eulerian approach, on the other hand, the parti-

cles are tracked individually using Lagrangian particle tracking (LPT).

The method allows for detailed and accurate studies of particle-flow dy-

namics. For instance, in direct numerical simulations (DNS), the parti-

cle geometries are resolved at a high level of detail. Svenning et al. [23]

used the immersed boundary method (IBM) to study the fiber suspen-

sion flow in the forming unit of a papermaking process under a laminar

flow assumption. Wu and Aidun [16] applied the lattice-Boltzmann

method (LBM) for direct simulation of flexible fibers in a Newtonian

medium. Qi [24] also employed a direct simulation method, based on

the lattice-Boltzmann equation, to simulate the motion of isolated flex-

ible fibers. The study investigated the effects of flow inertia and fiber

stiffness on fiber reorientation. These methods accurately predict fiber

dynamics, but at a relatively high computational cost. Thus the micro-

hydrodynamics approach, where many particles are combined into a

multi-rigid-body systems [18, 25, 26], has been developed to study fiber

suspensions.

1.1.4 Particle-level simulation technique

Several particle-level simulation techniques, which are using the mi-

crohydrodynamics approach, have been used for studying fiber suspen-

sion flows. The fibers are represented as multi-rigid-body systems of

interconnected particles such as spheres, spheroids or cylinders. The

equations of motion are solved for each individual particle, and the

particle positions and orientations are evolved in time. These particle-

level techniques permit for various fiber equilibrium shapes, and a fi-

nite fiber stiffness. The method makes it possible to account for various

forces, such as hydrodynamic forces acting between the fibers and the

flow, or interaction forces between the fibers [27]. Moreover, these tech-

niques provide very detailed information about the suspension struc-

tures both in time and space, which cannot be easily accessed in ex-

periments [20]. The particle-level methods are commonly employed to

study fiber–flow interactions, fiber–fiber interactions, fiber flocculation,

and how these phenomena influence the rheological properties of fiber

suspensions.

Yamamoto and Matsuoka [28] developed a particle-level simulation

technique to study the dynamics of rigid and flexible fibers in a pre-

scribed flow field. They represented a fiber as a number of spheres,
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lined up and connected to each neighboring sphere. The method was

first applied to study the dynamics of isolated fibers in a simple shear

flow. Their results were in qualitative agreement with experimental

results for isolated fiber motion, reproducing the rigid, springy and

snake-like regimes of fiber motion [29, 10]. This method was further

extended to predict the viscosity of dilute suspensions of rod-like par-

ticles, and the behavior of concentrated fiber suspensions. Joung et

al. [30, 31] proposed a similar model, where a fiber was modeled as

a chain of spherical beads joined by connectors, and the method ac-

counted for short- and long-range hydrodynamic interactions between

these beads. They investigated the effect of fiber flexibility and cur-

vature of rigid fibers on the suspension viscosity. Ross and Klingen-

berg [32] modeled a fiber as a chain of rigid prolate spheroids connected

by ball and socket joints. The model included short-range hydrody-

namic interactions between the fibers, and they investigated the tran-

sient behavior of the specific viscosity of the suspension. Their sim-

ulations for isolated fibers showed that the model can reproduce the

known dynamics of both rigid and flexible fibers. These results demon-

strated that fibers can be modeled as chains of rigid prolate spheroids.

The possibility to model the fibers using fewer elongated bodies com-

pared to many spherical particles significantly reduces computation

time, and thus allows the study of fiber suspensions with a large num-

ber of slender fibers.

Schmid et al. [25] developed a particle-level simulation technique to

study the flocculation of fibers in sheared suspensions. The fibers were

modeled as chains of massless, rigid, cylindrical segments interacting

with an imposed flow field through viscous drag forces and with other

fibers through contact forces. The model did not account for particle

inertia, hydrodynamic interactions, or the two-way coupling between

the fibers and the flow. They investigated the influence of fiber flex-

ibility, fiber equilibrium shapes, and frictional interparticle forces on

flocculation and the rheological properties of suspension. Lindström

and Uesaka [26] further developed the model of Schmid et al. [25] in

an attempt to deal with the full complexity of fiber suspensions. The

improved model accounts for the particle inertia and the hydrodynamic

interaction between the fibers. They derived the approximation of the

noncreeping interaction between fiber segment and the surrounding

fluid, for larger segment Reynolds numbers, and took into account the

two-way coupling between the fibers and the flow. Their simulations

successfully reproduced different regimes of motion for threadlike par-

ticles ranging from rigid fiber motion to complicated orbiting behavior,

including coiling with and without self-entanglement. Lindström and

6
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Uesaka [33] predicted the rheological properties for fiber suspensions

of various volume concentrations, where both hydrodynamic and me-

chanical fiber interactions were taken into account. They also investi-

gated the effects of the fiber aspect ratio, the fiber concentration, and

the inter-particle friction on the stress tensor of suspension and on fiber

flocculation [17]. A particle-level model of Lindström and Uesaka [26]

was used to simulate the paper sheet forming on roll-blade former [34]

and a twin-wire former [35].

1.2 Thesis objectives

This thesis aims at developing a particle-level fiber model that can be

applied to the dry-forming process of pulp mats. In this process, fibers

suspended in air are made to flow through a filtration bed, forming the

pulp mat. For the purpose of analyzing the complex dynamics of air–

fiber flows, a computational code was developed and integrated in the

OpenFOAM open source CFD software [36]. The implemented particle-

level model is based on those initially proposed by Schmid et al. [25]

and further developed by Lindström and Uesaka [26]. The OpenFOAM

software represents a suitable platform for integrating numerical code,

and provides several different CFD solvers for the flow field.

The focus of this work is on fundamental studies of air–fiber flows.

The obtained results can be used for developing and validating the

Eulerian–Eulerian models that are applicable on industrial scales. The

results can also provide information useful for characterizing mechan-

ical fiber properties that are difficult to access experimentally.

The main objectives of this thesis work can be summarized as fol-

lows:

• Validate the implementedmodel using theoretical and experimen-
tal studies of the motion of isolated fibers in creeping shear flow.

• Investigate the rheology of sheared fiber suspensions with a New-
tonian fluid medium. There are very few studies concerned with

realistic fiber properties, such as fiber deformability or different

equilibrium shape. The impacts of these fiber properties on sus-

pension rheology have not been completely understood. The aim

of this study is to accurately predict the effects of fiber flexibility

and fiber shape on the rheological properties of the suspension.

• Apply the fiber model to analyze the dynamics of flexible and
rigid fibers in geometries and flow conditions representative for
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the dry-forming process. The focus here is on analyzing transla-

tional fiber motion and fiber reorientation, and how these depend

on the fiber properties, such as fiber inertia or fiber length.

• Address the phenomenon of fiber flocculation that is rarely men-
tioned in the literature. The focus is on identifying the mecha-

nisms that govern flocculation in rod-like fiber suspensions in a

turbulent flow field.

8



Chapter 2

Methodology

2.1 Fiber model

The particle-level fiber model comprises two alternatives: flexible and

rigid. The fiber geometry is based on the concept of rigid cylindrical

segments connected by ball and socket joints [25, 26]. In the flexible

fiber model, the segments rotate and twist around the joints, replicat-

ing the fiber bending and twisting deformations, while the total fiber

length remains constant. In the rigid fiber model, the relative orienta-

tion between the adjacent segments remains fixed, and the segments

form a single rigid body.

In this section the fiber geometry is described, and the governing

equations for both flexible and rigid fiber model are presented.

2.1.1 Fiber geometry

A fiber is modeled as a chain of N rigid cylindrical segments [25, 26],

see Fig. 2.1. The segments are indexed i ∈ [1,N ], and their locations are
specified with respect to a global Cartesian coordinate system Γ. The
axes of the global coordinate system are defined by the base vectors

{e1,e2,e3}, and the origin is denoted by O . A single fiber segment has

a diameter di, a length li, a start point Pi, and a unit vector ẑi, which is

aligned with the segment. For each fiber segment, the position vector

ri =
−−→
OPi + liẑi/2 points out the center of mass of the fiber segment.

To model the fiber flexibility, the fiber equilibrium shape needs to

be included in the geometry description. For this purpose, a local co-

ordinate system Γi is associated with each fiber segment. The local

coordinate system is defined by the orthonormal set {x̂i, ŷi, ẑi} and its
origin is Pi, which is the start point of segment i. The fiber equilib-
rium shape is defined by fixing a coordinate system {x̂i, ŷi, ẑi} on each
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segment i, and an equilibrium coordinate system {x̂eq
i , ŷeq

i , ẑeq
i } for each

segment i on the preceding segment i − 1. For a given local coordinate
system Γi−1 for segment i − 1, the angles φi and θi of twist and bend,

respectively can be determined so that coordinate system Γeq
i can be

calculated from Γi−1. The bending and twising torques act to restore

the fiber equilibrium shape.

Figure 2.1: Fiber geometry definitions.

2.1.2 Flexible fiber equations of motion

The equations of motion of a flexible fiber represent the direct ap-

plication of Euler’s laws of rigid body motion for each fiber segment

i [26, 25]. The rate of change of linear momentum of fiber segment i is
the sum of all forces that act on the segment, i.e.

mir̈i = F h
i + X i+1 − X i (2.1)

Here, mi is the mass of segment i, F
h
i is the hydrodynamic force acting

on segment i, andX i is the connectivity force exerted on segment i − 1
by segment i.
The rate of change of angular momentum about the center of gravity

of the segment equals the sum of the moments of the external forces

about that point, i.e.

∂(I i · ωi)

∂t
= T h

i + Y i+1 − Y i +
li
2
ẑi × X i+1 +

(

−li
2

ẑi

)

× (−X i) (2.2)

where I i is the tensor of inertia of segment i with respect to the global
coordinate system Γ, ωi is is the angular velocity of segment i, T h

i is
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Figure 2.2: Kinematic relation between adjacent fiber segments.

the hydrodynamic torque acting on segment i, and Y i is the sum of the

bending and twisting torques exerted on segment i − 1 by segment i.
The connectivity constraint represents a kinematic relation between

the adjacent fiber segments, see Fig. 2.2. This constraint requires that

the end-points of adjacent fiber segments coincide, i.e.

ri +
li
2
ẑi = ri+1 −

li+1

2
ẑi+1 (2.3)

The connectivity equation is then obtained by taking the time deriva-

tive of Eq. 2.3, i.e.

ṙi+1 − ṙi =
li
2
ωi × ẑi +

li+1

2
ωi+1 × ẑi+1 (2.4)

Equations (2.1), (2.2) and (2.3) form the system of equations that can

be solved for the unknown segment velocities and angular velocities.

Those are used to evolve the segment positions and orientations. The

hydrodynamic forces and torques exerted by the fluid on the fiber seg-

ments, the discretized equations of motion, and numerical algorithms

to solve these equations were discussed in detail in Papers I and II.

2.1.3 Rigid fiber equations of motion

The equations of motions of a rigid fiber are defined for the center of

mass of the fiber, taking into account the hydrodynamic forces exerted

by the fluid on the fiber segments. The linear momentum equation of a

fiber is then given by

mir̈G =
N

∑

i

{F h
i + F w

i }. (2.5)
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Here, rG is the center of mass of the fiber, and F w
i = mig is the gravita-

tional body force.

The angular momentum equation of a fiber reads

IG · ω̇ + ω × (IG · ω) =
N

∑

i

{T h
i + rGi

× (F h
i + F w

i )}, (2.6)

where ω is the angular velocity of the fiber, IG is the fiber inertia ten-

sor with respect to its center of mass and the global reference frame Γ,
and rGi

= ri − rG. Equations (2.5) and (2.6) form the system of equa-

tions that can be solved for the linear and angular velocities of a fiber.

The linear velocities of the fiber segments are then computed, and the

fiber positions and orientations are updated. The discretized govern-

ing equations, the numerical schemes to solve these equations, and the

time step constraints were discussed in detail in Paper III.

2.2 Flow representation

The representation of the flow field is dependent on the type of the

study that is carried out.

A prescribed creeping shear flow with the one-way coupling between

the fibers and the flow was used for the purpose of validating the im-

plemented fiber model. An analytical expression was used to describe

the fluid motion, i.e.

υ(x) = (γ̇y, 0, 0). (2.7)

Here, υ is the flow velocity, and γ̇ is the shear rate.
A creeping shear flow, predicted by the CFD solver, was used to in-

clude the two-way coupling between the fibers and the fluid flow. The

three-dimensional incompressible Navier–Stokes equations were em-

ployed to describe the fluid motion, i.e.

∇ · υ = 0, (2.8)

∂υ

∂t
+ υ · ∇υ −

η

ρ
∇2υ = −

1

ρ
∇p, (2.9)

where ρ is the density of the fluid, η is its dynamic viscosity, and p is
the static pressure.

The dynamics of fibers were analyzed in turbulent flow fields. Equa-

tions 2.8 and 2.9 were solved using either DNS, or standard eddy-

viscosity turbulence models, where the dynamic viscosity contains the

12
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contributions from turbulence. The simulation methods were chosen to

correctly capture the physics of the system, while allowing for reason-

able computational times.
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Chapter 3

Specific results

3.1 Motion of isolated fibers in shear flow

The motion of isolated fibers in shear flow is studied in Papers II, III

and IV, with the purpose of validating the implementations of the fiber

model.

3.1.1 Rigid fibers

The motion of isolated, straight, rigid fibers in creeping shear flow

is relatively well understood through several theoretical studies. Jef-

fery [4] showed that a prolate spheroid undergoes periodic motion and

spends most of time aligned with the flow direction while orbiting.

Bretherton [5] later demonstrated that circular cylinders experience

similar orbiting behavior in simple shear flow. Cox [6] derived a semi-

empirical expression for the orbit period of a circular cylinder, which

uses an equivalent aspect ratio instead of the actual spheroid aspect

ratio.

Simulations of isolated rigid fibers were carried out in creeping

shear flow using both the flexible fiber model, with stiff fiber proper-

ties, and the rigid fiber model. The simulated orbit period of the rigid

fiber was compared with the one computed using Jeffery’s equation [4]

in conjunction with Cox’s formula [6] for an equivalent aspect ratio.

The simulated orbit period in a prescribed shear flow with the one-way

coupling between the fiber and the fluid phase was overpredicted by

10 − 20%, see Paper II for the flexible fiber model and Paper III for the
rigid fiber model. The overprediction of the orbit period was believed to

be due to the one-way coupling between the fibers and the flow, as sug-

gested by Lindström and Uesaka [26]. The analysis of the orbit period

was also conducted in a simultaneously predicted shear flow with the
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two-way coupling between the fibers and the fluid flow. The computed

orbit period and the orbit period obtained from the theoretical predic-

tion were compared for different fiber aspect ratios, rf . The discrepancy

increased with fiber aspect ratio from 5% for a fiber with rf = 15 to 12%
for a fiber with rf = 55. It was concluded that the discrepancy remained
despite accounting for the two-way coupling.

3.1.2 Flexible fibers

Forgacs and Mason [29] theoretically studied the flexible fiber behavior

in creeping shear flow. They derived a critical value of γ̇η at which the
axial compression due to hydrodynamic forces causes a fiber to buckle.

A cylindrical fiber, orbiting in the flow-gradient plane, ie expected to

buckle when a dimensionless bending ratio [25]

BR ≡
Ey[ln(2re) − 1.50]

2ηγ̇r4
f

, (3.1)

is less than unity. Here, Ey is the Young’s modulus of the fiber ma-

terial, and re is an equivalent fiber aspect ratio. The experimental

studies of Forgacs and Mason [10] identified five different regimes for

fiber motion in creeping shear flow: rigid orbits, springy orbits, snake-

like orbits, coiled orbits without entanglement, and coiled orbits with

entanglement. Schmid et al. [25] employed a particle-level model to

simulate the motion of isolated fibers, while varying fiber stiffness.

They showed that intrinsically straight fibers bend into the symmet-

ric S-shapes. Moreover, the study demonstrated that fibers with ini-
tial small radius of curvature bend into the experimentally observed

C-shapes [10]. Both the study of Schmid et al. [25] and the study of
Lindström and Uesaka [26] qualitatively predicted the rigid, springy

and snake-like regime of motion.

The simulated orbits in Paper I were in qualitative agreement with

those observed in experimental studies for the rigid, springy and snake-

like orbit type, respectively, see Fig. 3.1. Similarly, simulations were

carried out in Paper IV for intrinsically straight fibers with moderate

bending ratio. The study considered fibers with aspect ratio rf = 55,
consisting of 11 segments. The resulting shapes were in qualitative
agreement with those observed by Schmid et al. [25], who used 10 seg-
ments to model fibers with rf = 50, see Fig. 3.2. The buckling transition
occurred at BR ≈ 0.03, a slightly lower value than BR ≈ 0.1, which was
observed in the work of Schmid et al. [25]. This is most likely the con-

sequence of the two-way coupling between the fibers and the fluid flow,

considered in Paper IV.
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The main conclusions from the simulation results are that the flex-

ible fiber model predicts the dynamics of both rigid and flexible fibers,

and that the rigid fiber model predicts the dynamics of rigid rod-like

fibers, in creeping shear flows.

(a)

(b)

(c)

Figure 3.1: Time-series of simulation results for fiber shape develop-

ment in simple shear flow during half a period of revolution. Each case

corresponds to an actual experiment by Forgacs and Mason [10]. Three

different orbit types are observed: a) rigid, b) springy and c) snake-like.

The fiber diameters are exaggerated for the purpose of visualization.

3.2 Fiber suspensions in shear flow

The rheology of fiber suspensions was investigated in Paper IV. The

work was concerned with dilute suspensions of flexible and curved fibers.

A novel method for computing the fiber contribution to the deviatoric

stress was proposed to account for the fiber flexibility and different

fiber equilibrium shapes.

3.2.1 Fiber contribution to deviatoric stress

The theoretical expression of Batchelor [7] for the contribution of a fiber

to the deviatoric stresses applies to dilute suspensions of straight, slen-

der, rigid fibers in creeping shear flow. To the knowledge of the author,

there is no theoretical study that describes the contribution of flexible

or curved fibers to the deviatoric stresses in a similar manner.

Several authors numerically studied the effects of fiber stiffness and

fiber shapes on suspension rheology. Schmid et al. [25] found that in-
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(a)

(b)

(c)

Figure 3.2: Time-series of simulation results for fiber shape develop-

ment during half a period of revolution (rf = 55, N = 11). Each case
corresponds to different fiber bending ratio a) BR = 1, b) BR = 0.02, c)
BR = 0.0016. The fiber diameters are exaggerated for the purpose of
visualization.

trinsically straight flexible fibers produce higher values of the first nor-

mal stress difference than rigid fibers. Their study did not contain re-

sults about the specific viscosity. Joung et al. [30, 31] investigated the

effects of fiber flexibility and fiber curvature on the specific viscosity in

concentrated fiber suspensions. Their study showed that the specific

viscosity increases with fiber flexibility. The aforementioned numerical

studies used Batchelor’s theory to compute the deviatoric stresses of

flexible and curved fiber suspensions.

The novel method, proposed in Paper IV, considers the hydrody-

namic forces and torques acting on the fiber segments as localized trac-

tions. Starting from the equation for dipole strength of a slender cylin-

der [37], a dipole strength s′ from a single fiber was obtained as

s′ =
N

∑

i=1

[F h
i ri −

1

2
ǫ · T h

i −
1

3
(ri · F

h
i )δ], (3.2)

where δ and ǫ are the unit and the permutation tensor, respectively. A

detailed derivation of Eq. 3.2 is presented in Paper IV.1

A dimensionless dipole strength was introduced as

s∗ =
n

ηfibγ̇
s′. (3.3)

1The results presented in Fig. 3.3 and Paper IV are obtained with an implementa-

tion error using the + sign in front of 1

2
ǫ ·T h

i term. The simulations using the correct

expression for s′ were carried out for rigid fiber with BR = 5 and rf = 55. The ob-

tained results did not differ from those presented in Paper IV for the corresponding

case, i.e. this term did not affect the simulation results.
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Here, n is the fiber number density and ηfib is the fiber viscosity [7]

given by

ηfib =
πnL3η

6 ln(2rf )
f(ǫ), (3.4)

where L is the fiber length, and f(ǫ) is a correction factor for finite as-
pect ratio and cylindrical shape. The proposed estimate for the dipole

strength was in good agreement with the dipole strength computed

using Batchelor’s theoretical expressions in conjunction with the com-

puted fiber orientation for rigid fibers with BR = 5 and two different
fiber aspect ratios rf = 55 and rf = 35, respectively.
Ergodicity was assumed, i.e. the ensemble average of the deviatoric

stress from multiple fibers is assumed identical to the time average

from a single fiber, yielding

〈s〉 =
1

T

∫ t+T

t

s′(t)dt, (3.5)

where T is the orbit period, and s′ is the dipole strength from one par-

ticular fiber. Using Eq. 3.5, the specific viscosity and the dimensionless

first and second normal stress differences were computed as

η∗

sp = 〈s∗21〉, (3.6)

N∗

1 = 〈s∗11 − s∗22〉, (3.7)

N∗

2 = 〈s∗22 − s∗33〉, (3.8)

for the duration of five half-periods of Jeffery’s orbits.

The effects of the fiber flexibility and the fiber curvature on the spe-

cific viscosity and the normal stress differences were investigated. The

results were discussed in detail in Paper IV. The most important ob-

servation is related to the specific viscosity of the suspension, and it is

thus reviewed in the next subsection.

3.2.2 Effects of fiber flexibility on suspension vis-

cosity

The effects of fiber flexibility on the suspension viscosity were investi-

gated for fibers with a straight equilibrium shape and moderate values

of bending ratio BR. These ideally straight fibers buckle into an S-
shape, as it was previously discussed in Sect. 3.1. Figure 3.3 illustrates

the relation between the specific viscosity and fiber bending ratio, BR.
For stiff fibers, i.e. for the higher BR values, the results obtained us-
ing Batchelor’s theoretical expression in connection with the computed
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Figure 3.3: Relation between fiber bending ratio BR and specific vis-

cosity for rf = 35. The ×-symbols are the simulation results; marker ◦
is Batchelor’s theoretical expression.

fiber orientation are in good agreement with the results computed us-

ing the proposed direct method. When fiber flexibility increases, the

specific viscosity computed using Batchelor’s theoretical prediction in-

creases, which has already been observed by Joung et al. [31] and Wu

and Aidun [16]. The present work argues that their results do not

represent the true physics since flexible fibers are beyond the validity

range of Batchelor’s theory. When applying the direct method for com-

puting the deviatoric stresses, there is a sharp knee in the curvature

at which point the specific viscosity decreases. The ability of the fiber

to buckle reduces the fiber-induced flow gradients, which decrease the

viscous dissipation caused by the fiber, and thus the specific viscosity of

the suspension. This observation highlights the necessity to properly

account for a flexible fiber contribution to the deviatoric stress.

3.3 Fiber suspensions in realistic flow fields

The dynamics of air–fiber suspensions were analyzed in geometries and

flow conditions, which are reasonably representative for the actual dry-

forming of pulp mats. The turbulent flow in a plane channel was con-

sidered in Paper I. The fibers were inserted in the fully developed tur-

bulent flow field, computed using the DNS technique. The fiber motion

was simultaneously solved with the fluid flow field. The ERCOFTAC

conical diffuser [38] with a turbulent Newtonian flow was used as the

case in Paper III, while an asymmetric planar diffuser [39, 40] was

used in Paper V. The standard k − ǫ and k − ω turbulence models were
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employed to model the turbulence in Papers III and V, respectively.

The flow conditions accounted for high Reynolds number flows and fi-

nite Reynolds number fiber–flow interactions [1]. The parameters of

the fibers, such as diameter, length, and density were consistent with

those of hardwood fibers, which are typically used in the production of

pulp mats.

The air-fiber dynamics in the mat forming process govern fiber re-

orientation and fiber flocculation, which significantly influence the qual-

ity of the final products, as discussed in Chap. 1.

3.3.1 Fiber alignment

The alignment in the flow direction of flexible and rigid fibers was

analyzed in a turbulent flow field in Papers I and III, respectively.

The fiber orientation is well understood only for suspensions of rigid,

straight fibers in creeping shear flows. Stover et al. [12] showed that

fibers in semidilute suspensions rotate around the vorticity axis, and

spend most of the time aligned with the flow–gradient plane similarly

to Jeffery’s orbits [4]. Nevertheless, several studies focused on iden-

tifying different parameters that influence fiber orientation distribu-

tion [21, 22]. The process of fiber alignment is generally known to be

governed either by the gradient of the average flow field, or by the tur-

bulence fluctuations.

The present study required to define the fiber orientation for non-

straight fibers. The orientation of a fiber with N segments was here
defined as

ẑ =
z

|z|
, z =

N
∑

i=1

ẑi,

where the summation is over the fiber segments. For a rigid, straight

fiber, all the segments have the same orientation, which is the orienta-

tion of the fiber. The alignment of the fiber with the flow direction was

defined by

z1 = ẑ · ê1, −1 ≤ z ≤ 1,

where ê1 is the unit vector pointing in the flow direction. The absolute

value |z1| was used to quantify the orientation to account for the ambi-
guity in the enumeration of fiber segments. Moreover, the variance of

the orientation was defined as

σ2

ẑ
=

1

N − 1

N
∑

i=1

|ẑi − ẑ|2.

The variance is zero for straight fibers and increases as the fiber shape

becomes coiled.

21
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Figure 3.4: The alignment of fibers initially closest to the walls. (a)

Solid curve: ensemble average of |z|; dashed curve:|z|+σ2
z1
; dash-dotted

curve:|z| − σ2
z1
.

The development of the ensemble average for |z1| was investigated
for flexible fibers in Paper I. The initially straight and vertical fibers

were distributed at the channel inlet at different distances from the

walls. The ensemble average |z1| of the fibers initially closest to the
walls are plotted in Fig. 3.4. Two characteristic time-scales are ob-

served. The first time-scale of the initial ramp ≈ 13 is in the order
of the inverse shear rate as predicted by Jeffery [4] for stiff fibers in

a simple shear flow. The signed orientation shown in Fig. 3.5(a) re-

veals that fibers mainly rotate with the flow vorticity, indicating that

the alignment is governed by the average flow gradients. The second

time-scale is associated with randomization of the orientation of the

individual fibers, and it is not consistent with the half-period of Jef-

fery’s orbits ≈ 3378 for stiff fibers. The plot of variance in Fig. 3.5(b)
shows that the fibers evolve into complex geometrical configurations in

a turbulent flow field. The simulation time was not sufficiently long to

evaluate the steady-state characteristics of these coiled configurations.

The alignment of rigid, straight fibers was investigated in Paper III.

The study showed that the orientation exhibits an initial ramp in order

of the inverse shear rate, i.e. that the fiber reorientation is driven by

the average flow gradients.

Both studies investigated the effects of fiber properties, such as fiber

length and fiber density, on the fiber reorientation. It was found that

the orientation change in the initial phase is slower for the heavier

particles. The inertia of the fibers thus influenced the time-scales of

fiber reorientation. When the segment length was varied, no significant

effect on fiber reorientation was observed.
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Figure 3.5: (a) Orientational component z1 for the individual fibers. (b)

Variance.

3.3.2 Fiber flocculation

The phenomenon of fiber flocculation was addressed in Paper V. The

study was concerned with dilute suspensions of rigid, straight fibers in

an asymmetric planar diffuser [39, 40]. A steady-state flow model was

used for the diffuser, and the resulting flow field was used for integrat-

ing the fiber motion using the rigid fiber model. A stochastic model was

employed to capture the turbulent fiber dispersion [41]. The fibers were

assumed to interact through short-range attractive forces that cause

them to interlock in flocs each time fiber–fiber contacts occur. Both

fiber positions and fiber orientations were initially uniformly random-

ized. Fibers that crossed a specific outlet plane re-entered the diffuser

at the inlet plane, and the total number of fibers remained constant in

the diffuser. The simulations were carried out until a fully developed

fiber–flow solution was reached.

Different floc species Fk were identified, based on the number of

fibers, k, that they contain. The computational domain was divided in
equally thick control volumes (CV) along the flow direction, and the

mass fraction φ2 of species F2 was computed for each CV. The devel-

opment of the mass fraction, φ2, of the F2 species is shown in Fig. 3.6.

The flocculation rate decreases in the region that corresponds to the

inflow channel section and the beginning of the diffuser section. Then,

an elevation in the flocculation rate is observed in the diffuser section.

Namely, the average flow velocities decrease through the diffuser sec-

tion. The velocity gradient in the flow direction and the inertia of the

fibers lead to a velocity difference between the fibers and the flow. This

velocity difference in combination with the oriented dynamic resistance
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Jelena Andrić, Numerical modeling of air–fiber flows

0 10 20 30 40
0

0.05

0.1

0.15

0.2

x/H

φ
2

Figure 3.6: Mass fraction of floc species F2 along the diffuser. Solid

curve: with dispersion model; Dashed curve: without dispersion model;

Dash-dotted curve: low-inertia fiber with dispersion model. Marker ×:
straight channel flow with dispersion model.

tensors of the fibers [26] lead to darting fiber motion, which signifi-

cantly increases the contacts between the fibers. The darting fiber mo-

tion is thus believed to cause the elevation in the flocculation rate, and

to contribute to sustaining the flocculation rate downstream the dif-

fuser. Further, when the random walk model for turbulent dispersion

is switched off, the curve of the mass fraction φ2 has the same trend

as that with the dispersion model, but the values are slightly lower.

The turbulence dispersion thus influence the rate at which fiber floc-

culate. But more importantly, the effect of the darting motion is much

larger. Moreover, in the inflow region the curves of φ2 obtained with

and without the dispersion model overlap each other, most likely due

to the inbalance of fiber kinematics at the inlet.

The influence of the fiber inertia on the flocculation rate was ana-

lyzed by decreasing the fiber density by a factor five. The result shows

that the flocculation rate again decreases in the inflow channel region

and the beginning of the diffuser section. The darting fiber motion in

this section is reduced, and the initial flocculation rate is lower com-

pared to the case with large-inertia fibers. The flocculation rate then

increases in the first half of the diffuser section, but contrary to the

case with larger-inertia fibers, remains nearly constant in the second

half of the diffuser and in the outflow section. The inertia of the fibers

clearly influences the flocculation rate in the diffuser.

Further, to investigate the effect of the average flow gradients on
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the flocculation rate, the same analysis was carried out for a straight

channel geometry with the same height as the inlet section of the dif-

fuser geometry. The results are included in Fig. 3.6 for comparison.

The flocculation rate first decreases and then remains nearly constant

throughout the channel. The flocculation in the channel is governed by

turbulence dispersion, and the effects of the inlet. It should be noted

that the total number of fibers is the same in all the simulations. This

gives a higher fiber number density in the channel case, which explains

the higher level of flocculation in that case.

These observations demonstrate that the turbulence dispersion and

the darting motion of the fibers, triggered by the average flow gradi-

ents and the fiber inertia, are the mechanisms of the flocculation in

suspensions of rigid, straight fibers.
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Chapter 4

Summary of papers

This chapter provides a short summary of the work that has been pre-

sented in the papers, on which this thesis is based.

4.1 Paper I

Paper I provides a detailed description of the implemented particle-

level fully flexible fiber model. A fiber is modeled as a chain of rigid

cylindrical segments [25, 26]. The equations of motion of a fiber account

for the fiber inertia, the hydrodynamic forces and torques exerted by

the fluid on the fiber segments, and the connectivity forces that act

among the adjacent fiber segments to ensure fiber integrity. Bending

and twisting torques are neglected, as well as fiber–fiber and fiber–wall

interactions.

The dynamics of isolated fully flexible fibers are analyzed in a tur-

bulent channel flow. A DNS of the three-dimensional incompressible

Navier–Stokes equations is used to predict the fluid motion. A one-way

coupling between the fibers and the fluid is considered.

The translational motion of the fibers is investigated using the mean

square displacement (MSD) of their trajectories. It is found that the

fibers are superdiffusive at the investigated time scales, and that the

fiber motion is mainly governed by the flow fluctuations.

The reorientation of fibers has been studied. Two characteristic

time-scales are observed. The first time-scale of the initial ramp is in

order of the inverse shear rate, as predicted by Jeffery [4] for the fibers

aligned in the shear gradient direction. The second time scale is incon-

sistent with the half-period of Jeffery’s orbits for the stiff fibers. This

reorientation is not understood as an alignment, but as a randomiza-

tion of the orientation of the individual segments. The initially straight

fibers evolve into complex geometrical configurations in the turbulent
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flow field.

The influence of the fiber properties is also investigated. It is found

that the fiber inertia affects the time-scales of the fiber reorientation,

while the fiber length does not have any significant effect on the fiber

motion.

4.2 Paper II

The fully flexible fiber model, implemented in Paper I, is extended to

account for the elastic bending and twisting torques to model the finite

fiber stiffness. The purpose of Paper II is to validate the complete fiber

model for the motion of isolated fibers in prescribed creeping shear flow.

The simulations were carried out in a box-shape computational domain

with a prescribed simple shear flow.

For a fiber with properties that make it stiff and straight, the com-

puted period of rotation is shown to be in good agreement with the

one computed using Jeffery’s equation [4] in conjunction with Cox’s [6]

formula for an equivalent spheroid aspect ratio. Further, qualitative

comparisons are made for flexible fibers corresponding to three experi-

mental instances [10], which belong to the rigid, springy and snake-like

regime, respectively. The numerical results qualitatively agree with

the experimental observations for each orbit type. The validation thus

demonstrates that the fiber model successfully reproduces the known

dynamics of rigid and flexible fibers.

4.3 Paper III

The focus of Paper III is on the dynamics of fibers in a realistic flow

field, representing one stage in the actual dry-forming process. For that

purpose, a rigid particle-level model is implemented. The fibers are

modeled as chains of rigid cylindrical segments, and the fiber transla-

tional and rotational degrees of freedom are considered. The equations

of motion account for the segment inertia, for the hydrodynamic forces

and torques exerted by the fluid on the fiber segments, and for the

gravitational body force acting on the fiber segments. Fiber–fiber and

fiber–wall interactions are neglected. The implemented model is vali-

dated for the rotational motion of isolated fiber in a prescribed creeping

shear flow.

The fiber model is applied to the swirling flow of the ERCOFTAC

conical diffuser [38]. The incompressible Reynolds-averaged Navier-

Stokes equations with the standard k − ǫ turbulence model are used
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to predict the fluid motion. A one-way coupling between the phases is

assumed. The reorientation of the fibers is investigated for different

lengths and densities of the fibers.

It is found that the alignment of the fibers is mainly governed by the

average flow gradients, and that the fiber inertia affects the time scales

of fiber reorientation. The fiber length is found to have a negligible

effect.

4.4 Paper IV

Paper IV investigates the rheology of sheared fiber suspensions with

a Newtonian fluid. The work investigates the effects of fiber flexibil-

ity and fiber shape on the rheological properties of fiber suspensions.

A novel method is proposed to compute the fiber contribution to the

deviatoric stress of dilute, monodispersed fiber suspension, accounting

for the fiber shape fluctuations. Particle-level simulations are carried

out for isolated flexible fibers in creeping shear flow with the two-way

coupling. Ergodicity is assumed and the deviatoric stress from an en-

semble of fibers is replaced by a time average of a single fiber. Both the

fiber model and the flow simulations are fully three-dimensional. How-

ever, the initial fiber configuration is coplanar with the flow–gradient

plane. As a consequence, the fiber motion remains in this plane. This

choice is made because of the existing theoretical and experimental

studies, in which the fiber motion is considered in the flow–gradient

plane.

The proposed method for computing the dipole strength of a single

fiber is validated against Batchelor’s theoretical prediction [7] for rigid,

straight fibers. The non-zero dipole strength components computed us-

ing the proposed method are in good agreement with those obtained

using Batchelor’s theoretical expression in combination with the com-

puted fiber orientation.

The study investigates the effects of the fiber flexibility and the fiber

shape on the specific viscosity and the normal stress differences. It is

found that the first and the second normal stress differences increase

as fiber flexibility increases, which is in agreement with what has been

observed before [25, 16, 30]. Both the first and second normal stress

differences are shown to converge to zero for larger bending ratios, as

predicted by Batchelor’s theory for rigid, straight fibers together with

a symmetric orientation distribution. Further, it is observed that the

specific viscosity decreases as the fiber flexibility increases. This obser-

vation contradicts the previous results of Joung et al. [30] and Wu and

Aidun [16], where Batchelor’s theory [7] was applied to flexible fiber
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suspensions. This finding highlights the necessity to correctly account

for the shape fluctuations of flexible fibers while predicting their effects

on the rheological properties of the suspension.

The effects of fiber equilibrium shape are analyzed using curved

fibers with a high bending ratio BR = 5. A significant increase in
the normal stress differences is observed as the fiber curvature is in-

creased. The normal stress differences return to zero, as the fiber sym-

metry is restored. When the fiber shape is nearly straight, the normal

stress differences converge to zero, which corresponds to Batchelor’s

theory. This is consistent with previous observations when the fiber

flexibility is varied.

The predicted rheological properties of fiber suspensions can be used

in the experimental characterization of fiber morphology and fiber me-

chanical properties. The stiffness of the elongated colloid and macro-

molecules can be found by varying the shear rate and identifying the

crucial rate at which the first normal stress difference takes a finite

value, or a distinct knee in the viscosity curve occurs.

4.5 Paper V

Paper V constitutes a step towards investigating the phenomena of

fiber flocculation. The rigid particle-level fiber model, implemented in

Paper III, is employed to study the flocculation in dilute suspension of

rigid, straight fibers. An asymmetric planar diffuser [39, 40] is used as

the flow case, representing an actual geometry in the dry-forming pro-

cess. The fluid motion is predicted by the Reynolds-averaged Navier–

Stokes equations with the standard low-Reynolds k − ω turbulence
model. A stochastic model is employed to capture the fiber dispersion.

A one-way coupling between the phases is assumed. The fibers are as-

sumed to interact through short-range attractive forces, which cause

them to interlock in flocs when fiber–fiber contacts occur.

The fibers are suspended in the steady-state flow of the diffuser, and

their positions and orientations are uniformly randomized. Fibers that

cross the specified outlet plane re-enter the diffuser at the specified

inlet plane, keeping the total number of fibers constant in the diffuser.

The contact model is employed at each time step to identify all fiber–

fiber interactions. The simulations are run until a steady-state fiber

flow solution is reached.

The development of floc mass fraction along the diffuser is inves-

tigated. The turbulent kinetic energy and the average flow gradient

are analyzed to identify their effects on the flocculation. It is observed

that the flocculation rate decreases in the inflow channel region and
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the beginning of the diffuser section. Subsequently, an increase in the

rate of flocculation is observed in the diffuser. A darting fiber motion

is found to enhance the collisions between the fibers, and consequently

the flocculation rate. The equivalent study in a straight channel con-

firmed the effects of the average flow gradients and fiber inertia on the

development of the mass fraction curve.

The work thus argues that the turbulence dispersion and the dart-

ing motion of fibers, caused by the flow gradients, are the main mech-

anisms responsible for fiber flocculation in dilute rod-like fiber suspen-

sions.

31
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Chapter 5

Concluding remarks

A particle-level fiber model has been integrated in the OpenFOAM

open source CFD software [36]. Each fiber is modeled as a chain of

cylindrical segments [25, 26] that are tracked individually using La-

grangian particle tracking (LPT). The segments interact with the fluid

flow through hydrodynamic drag forces, and may interact with each

other through short-range attractive forces. The segment inertia is

taken into account. The present work comprises two alternatives of

the fiber model: flexible and rigid. The equations of motion of a flexible

fiber represent the direct application of Euler’s laws for each individual

segment. These equations account for the connectivity forces and mo-

ments that ensure the fiber integrity. The elastic bending and twisting

torques are taken into account in Papers II and IV, but not in Paper

I. For the rigid fiber model, the relative angle between the orienta-

tion vectors of the adjacent segments is constant, so that the segments

together form a single rigid body. The equations of motion are then for-

mulated for the fiber as a whole, taking into account the hydrodynamic

contributions from the individual segments.

The model is applied in imposed flow fields given by analytical ex-

pressions, and in flow fields predicted by the CFD solver. For the latter

ones, the fluid motion is described by the incompressible Navier–Stokes

equations in two and three dimensions. Both one- and two-way cou-

pling between the fibers and the flow are considered.

The fiber model is validated against known theoretical and exper-

imental results for the motion of isolated rigid and flexible fibers in

creeping shear flow. The computed orbit periods for rigid, straight

fibers are in good agreement with those obtained from Jeffery’s equa-

tions for equivalent aspect ratios [4, 6]. The simulated orbits of flexible

fibers are in qualitative agreement with the experimentally observed

rigid, springy and snake-like orbit types [10].

The fiber model is applied to analyze the dynamics of both fully
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flexible and rigid fibers in realistic flow fields. The diffusion of flexible

fibers in a turbulent channel flow is shown to be governed by the flow

fluctuations. The fully flexible and initially straight fibers evolve into

coiled structures while being transported in the turbulent flow field.

The reorientation of rigid fibers is analyzed in the turbulent flow of a

conical diffuser. It is observed that the fiber reorientation occurs at

the time-scale of the reciprocal average shear rate. Moreover, for both

flexible and rigid fibers, the reorientation is dominated by fiber inertia,

while the fiber length does not have any significant effect on the fiber

reorientation.

The flexible fiber model is used to analyze the rheology of fiber

suspensions. A novel method is proposed to compute the deviatoric

stresses in suspensions with flexible and curved fibers. The effects of

fiber flexibility and fiber curvature on the rheological properties of di-

lute suspensions are examined. The results show that the specific vis-

cosity decreases and the first normal stress difference increases when

the fiber flexibility increases. For large fiber bending ratios, the ob-

tained results are in agreement with Batchelor’s theoretical predictions

for straight, rigid fibers [7]. For the curved, stiff fibers, the specific vis-

cosity and the normal stress differences increase as the fiber curvature

increases. The specific viscosity reaches its maximum value, and de-

creases when the fiber shape starts to become coiled. Similarly, the

normal stress differences increase with the fiber curvature, and vanish

when the symmetry of the fiber is restored. The observed relationship

between the fiber properties and the rheology can be used to determine

the mechanical properties of the fibers, which are not easily accessible

by experiments. Fibers encountered in practical applications, includ-

ing the mat-forming process, may have a wide range of fiber bending

stiffness or equilibrium shapes. An accurate analysis of deformable

and irregularly shaped fibers is thus of great practical importance.

The rigid fiber model is employed to study fiber aggregation in sus-

pensions with rod-like fibers suspensions in turbulent flow of an asym-

metric planar diffuser. The fibers are assumed to interact through

short-range attractive forces in the dilute regime. The study shows

that the darting fiber motion, triggered by the fiber inertia and the av-

erage flow gradients, leads to enhanced collisions between fibers, and

to a significantly increased aggregation rate. To the author’s knowl-

edge, this mechanism of fiber aggregation has not been reported in the

literature before.
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