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The Marginal Enumeration Bayesian Cramér-Rao

Bound for Jump Markov Systems
Carsten Fritsche, Member, IEEE, Umut Orguner, Member, IEEE, Lennart Svensson, Senior Member, IEEE, and

Fredrik Gustafsson, Fellow, IEEE

Abstract—A marginal version of the enumeration Bayesian
Cramér-Rao Bound (EBCRB) for jump Markov systems is
proposed. It is shown that the proposed bound is at least as tight
as EBCRB and the improvement stems from better handling of
the nonlinearities. The new bound is illustrated to yield tighter
results than BCRB and EBCRB on a benchmark example.

Index Terms—Jump Markov systems, performance bounds,
statistical signal processing.

I. INTRODUCTION

The Bayesian Cramér-Rao Bound (BCRB) has become

one of the most popular tools to lower bound estimation

performance [1], [2]. In state estimation for nonlinear dynamic

systems (a.k.a. nonlinear filtering), the publication of [3] has

pushed research in developing BCRB for many areas such as

smoothing, prediction [4] or adaptive resource management

[5]. Even though the area of BCRBs for jump Markov systems

(JMS) is greatly influenced by [3], it is still rather unexplored.

JMS are dynamic systems that behave according to one of a

finite number of models, where the switching between the

different models is represented by a Markov chain. Such

system representations are used in various fields, such as

target tracking [6], digital communication [7], seismic signal

processing [8], econometrics [9] and control [10]–[12].

While the area of developing filtering algorithms for JMS has

become relatively mature, see e.g. [13]–[18], the development

of bounds on the estimation performance is still emerging.

In [19], a recursive BCRB conditioned on a specific model

sequence is proposed, which explores the information con-

tained in the entire state and measurement sequence. The

unconditional BCRB is then found by taking the expected

value of the conditional BCRB with respect to all possible

mode sequences. Even though this bound, herein after referred

to as enumeration BCRB (EBCRB), will give a lower bound

on the estimation performance, it is often overoptimistic and

can not predict attainable estimation performance. In [20],

another type of unconditional BCRB has been formulated for

JMS, that is similar to the EBCRB as it also evaluates the

information contained in the entire state and measurement

sequence, but avoids the conditioning on the model sequence.

However, it was shown in [20], that this bound is sometimes

even more overoptimistic than the EBCRB.

In this paper, another type of BCRB is developed which builds
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upon the EBCRB. In contrast to the EBCRB, the proposed

bound explores only the information contained in the most

recent state and entire measurement sequence. It will be shown

that this type of BCRB is at least as tight as the EBCRB,

and thus serves as an interesting alternative, when both the

BCRB of [20] and the EBCRB fail to predict the attainable

estimation performance. As will be seen later, this especially

holds true when the JMS includes severe nonlinearities and

the mode-dependent models can be separated into informative

and non-informative models.

II. SYSTEM MODEL

Consider the following discrete-time jump Markov system

xk = fk(xk−1, rk,vk), (1a)

zk = hk(xk, rk,wk), (1b)

where zk ∈ R
nz is the measurement vector at discrete time

k and xk ∈ R
nx is the state vector and fk(·) and hk(·) are

arbitrary, mode-dependent nonlinear mappings of proper size.

The process and measurement noise vectors vk ∈ R
nv and

wk ∈ R
nw are assumed mutually independent white processes.

The process and the measurement noise distributions are

denoted as pvk(rk)(v) and pwk(rk)(w). The mode variable

rk denotes a discrete-time Markov chain with s states and

transition probability matrix with elements P{rk|rk−1}. At

times k = 0 and k = 1, prior information about the state x0

and mode r1 is available in terms of the probability density

function (pdf) p(x0) and probability mass function (pmf)

P{r1}.

In the following, let Xk = [xT

0 , . . . ,x
T

k ]
T and Zk =

[zT1 , . . . , z
T

k ]
T denote the collection of states and measurement

vectors up to time k. Furthermore, let the sequence of mode

variables at time k be given by Ri
k = (ri1, r

i
2, . . . , r

i
k), where

i = 1, . . . , sk, and let X̂k(Zk) = [x̂T

0 (Zk), . . . , x̂
T

k (Zk)]
T

denote the estimator of the state sequence Xk. The gradient

operator with respect to a vector u is defined as ∇u =
[∂/∂u1, . . . , ∂/∂un]

T and the Laplace operator is defined as

∆t

u
= ∇u[∇t]

T. The operator Ep(x){·} denotes expectation

and the subscript indicates the pdf (or pmf) that is used in the

expectation.

III. ENUMERATION BAYESIAN CRAMÉR-RAO BOUND

The enumeration method [6], [19] provides a lower bound

on the mean square error (MSE) matrix for any unconditional

estimator x̂k(Zk). The idea of this method is to lower bound
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the joint unconditional MSE matrix by the following expres-

sion:

Ep(Xk,Zk){[X̂k(Zk)−Xk][·]
T}

=

sk
∑

i=1

P{Ri
k}Ep(Xk,Zk|Ri

k
){[X̂k(Zk)−Xk][·]

T}

≥
sk
∑

i=1

P{Ri
k}Ep(Xk,Zk|Ri

k
){[X̂k(Zk|R

i
k)−Xk][·]

T},(2)

where [A][·]T is a short hand notation for [A][A]T and where

the inequality follows from the fact that the spread of the

difference between the unconditional estimator X̂k(Zk) and

conditional estimator X̂k(Zk|Rk) has been neglected, see also

proof of Lemma 2 in [21]. The joint conditional MSE matrix

is lower bounded by the conditional BCRB according to

Ep(Xk,Zk|Rk){[X̂k(Zk|Rk)−Xk][·]
T} ≥ [J0:k(Rk)]

−1, (3)

where the joint conditional Bayesian information matrix (BIM)

is given by

J0:k(Rk) = Ep(Xk,Zk|Rk){−∆Xk

Xk
log p(Xk,Zk|Rk)}. (4)

The conditional BCRB for estimating xk is of particular

interest, since it can be used to lower bound the MSE matrix

for estimating xk. The conditional BCRB B1(Rk) can be

obtained by taking the (nx × nx) lower-right submatrix of

[J0:k(Rk)]
−1, which is denoted by [J̃k(Rk)]

−1, yielding

Ep(xk,Zk|Rk){[x̂k(Zk|Rk)− xk][·]
T} ≥ [J̃k(Rk)]

−1

= B1(Rk). (5)

As a result, the unconditional MSE matrix M(x̂k(Zk)) for

estimating xk can be lower bounded as follows:

M(x̂k(Zk)) = Ep(xk,Zk){[x̂k(Zk)− xk][·]
T}

≥ EP{Rk}{[J̃k(Rk)]
−1} (6)

=

sk
∑

i=1

P{Ri
k}[J̃k(R

i
k)]

−1, (7)

where the RHS of (7) gives the EBCRB. In [19], it was

shown that closed-form expressions for P{Rk} are available

and that J̃k(Rk) can be computed recursively. However, if

fk(·) and hk(·) are nonlinear, it is computationally demanding

to approximate J̃k(r1:k). The major limitation of evaluating (7)

is the exponential growth of sum components with k, making

the approach eventually impractical for large state sequences.

Here, one can further approximate (6) by using e.g. Monte

Carlo techniques, see [22].

The EBCRB has a disadvantage in that it ignores uncer-

tainties in the mode sequence Ri
k. In situations where those

uncertainties significantly deteriorate the performance of the

unconditional estimator, the EBCRB will be far from the

optimal performance, see [23], [24] for illustrating examples.

In [20], another type of BCRB for JMSs was proposed, which

assumed Ri
k unknown, but which is still sometimes more

optimistic than the EBCRB. In the following, another BCRB

is proposed, which is always at least as tight as the EBCRB.

TABLE I
RELATIONSHIP BETWEEN THE ENUMERATION BCRBS

Bound, Eq. States Estimator BIM Bound

conditioning

EBCRB, (7) Xk Rk J0:k(Rk) E {B1(Rk)}

M-EBCRB, (12) xk Rk Jk(Rk) E {B2(Rk)}

IV. MARGINAL ENUMERATION BAYESIAN CRAMÉR-RAO

BOUND

The idea of the marginal enumeration Bayesian Cramér-Rao

Bound (M-EBCRB) is to lower bound the unconditional MSE

matrix M(x̂k(Zk)) for estimating xk as follows:

M(x̂k(Zk)) =

sk
∑

i=1

P{Ri
k}Ep(xk,Zk|Ri

k
){[x̂k(Zk)− xk][·]

T}

≥
sk
∑

i=1

P{Ri
k}Ep(xk,Zk|Ri

k
){[x̂k(Zk|R

i
k)− xk][·]

T}, (8)

where the inequality again follows from neglecting the spread

of the conditional estimator x̂k(Zk|Rk) around the uncon-

ditional estimator x̂k(Zk). The essential difference to (2)

is that the summation in (8) is now with respect to the

marginal conditional MSE matrix. The marginal conditional

MSE matrix can be lower bounded as follows

Ep(xk,Zk|Rk){[x̂k(Zk|Rk)− xk][·]
T} ≥ [Jk(Rk)]

−1

= B2(Rk), (9)

where Jk(Rk) denotes the marginal conditional BIM, which

can be determined from the following relationship

Jk(Rk) = Ep(xk,Zk|Rk){−∆xk

xk
log p(xk,Zk|Rk)}. (10)

Inserting (9) into (8) yields

M(x̂k(Zk)) ≥ EP{Rk}{[Jk(Rk)]
−1} (11)

=

sk
∑

i=1

P{Ri
k} [Jk(R

i
k)]

−1, (12)

where the RHS of (12) is termed the M-EBCRB. Bobrovsky et

al. showed that the BCRB derived from the marginal density

is always greater than or equal to the BCRB which is obtained

from the joint density, see Proposition 1 in [21] for a proof.

Thus, we can conclude that

B2(Rk) ≥ B1(Rk) (13)

must generally hold, i.e. the marginal conditional BCRB is

at least as tight as the joint conditional BCRB. This further

yields

M(x̂k(Zk)) ≥ EP{Rk}{B2(Rk)}≥EP{Rk}{B1(Rk)}, (14)

which states that the M-EBCRB is at least as tight as the

EBCRB. The most important differences between the EBCRB

and M-EBCRB are summarized in Table I.
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V. NUMERICAL APPROXIMATION OF THE BOUND

In order to compute the M-EBCRB, the expression in (10)

has to be evaluated. For the most general model, cf. (1),

analytical solutions for the expectations in (10) do not exist.

We therefore resort to Monte Carlo techniques of sequential

importance sampling type [6], to approximate the expectation

numerically. By repeated application of Bayes’ rule to the

conditional density p(xk,Zk|Rk), it is possible to rewrite (10)

as follows

Jk(Rk) = Ep(xk,Zk|Rk){−∆xk

xk
log p(xk|Zk, Rk)}

+Ep(Zk|Rk){−∆xk

xk
log p(Zk|Rk)}

= Ep(xk,Zk|Rk){−∆xk

xk
log p(xk|Zk, Rk)}, (15)

where the second equality holds since p(Zk|Rk) does not

depend on xk . In order to proceed, closed-form expressions

for the quantity p(xk|Zk, Rk) and its gradient are necessary.

In the following, we suggest a conditional particle filter (PF)

approximation to compute these quantities. We take into ac-

count that the conditional posterior density can be decomposed

as follows

p(xk|Zk, Rk) ∝ p(zk|xk, rk) p(xk|Zk−1, Rk). (16)

Then, the conditional information matrix Jk(Rk) can be

accordingly decomposed as

Jk(Rk) = Ep(xk,zk|Rk){−∆xk

xk
log p(zk|xk, rk)}

+Ep(xk,Zk−1|Rk){−∆xk

xk
log p(xk|Zk−1, Rk)}

∆
= JI

k(Rk) + JII
k(Rk). (17)

The first term JI
k(Rk) can be approximated relatively easily

using, e.g. Monte Carlo techniques. Calculating the second

term JII
k(Rk) is more difficult, since for nonlinear non-

Gaussian systems, a closed-form representation of the con-

ditional prediction density p(xk|Zk−1, Rk) is generally not

available. The idea is now to approximate this term with a con-

ditional PF [6], [25]. Suppose that a particle filter representa-

tion of the conditional posterior density p(xk−1|Zk−1, Rk−1)
at time step k − 1 is available

p̂(xk−1|Zk−1, Rk−1) =

N
∑

l=1

w
(l)
k−1δ(xk−1 − x

(l)
k−1) (18)

with positive weights

w
(l)
k−1 ∝

p(zk−1|x
(l)
k−1, rk−1) p(x

(l)
k−1|x

(l)
k−2, rk−1)

q(x
(l)
k−1|x

(l)
k−2, zk−1, rk−1)

, (19)

where δ(·) denotes the Dirac delta function,

q(xk−1|x
(l)
k−2, zk−1, rk−1) is the importance distribution

and where
∑N

l=1 w
(l)
k−1 = 1 holds. Then an approximation of

the conditional prediction density is given by

p(xk|Zk−1, Rk)

=

∫

p(xk|xk−1,Zk−1, Rk)p(xk−1|Zk−1, Rk) dxk−1

=

∫

p(xk|xk−1, rk)p(xk−1|Zk−1, Rk−1) dxk−1

≈
N
∑

l=1

w
(l)
k−1p(xk|x

(l)
k−1, rk)

∆
= p̂(xk|Zk−1, Rk), (20)

where the second equality follows from removing the un-

necessary terms in the conditionings. Thus, the particle filter

approximation allows to represent the conditional prediction

density by a weighted mixture of mode conditioned transition

densities with the appealing advantage that the gradient and

Hessians can be easily computed. In order to avoid the

computation of the Hessian, it is more convenient to rewrite

JII
k(Rk) as follows

JII
k(Rk)=Ep(xk,Zk−1|Rk)

{

[∇xk
p(xk|Zk−1, Rk)][·]T

[p(xk|Zk−1, Rk)]2

}

. (21)

Using a Monte Carlo technique, the expectation in (21) can

be approximated as follows

JII
k(Rk) ≈

1

Nmc

Nmc
∑

j=1

{

[∇xk
p̂(x

(j)
k |Z

(j)
k−1, Rk)][·]T

[p̂(x
(j)
k |Z

(j)
k−1, Rk)]2

}

, (22)

where x
(j)
k and Z

(j)
k−1, j = 1, . . . , Nmc are independent

and identically distributed vectors such that (x
(j)
k ,Z

(j)
k−1) ∼

p(xk,Zk−1|Rk), and where p(xk|Zk−1, Rk) has been re-

placed by the corresponding conditional particle filter approx-

imation (20).

The presented approach above generally requires the evalua-

tion of a conditional particle filter for each possible mode se-

quence Ri
k, see (12), yielding a computational complexity that

is in the order of O(Nmc ·N ·sk). This can be generally reduced

to O(N2
mc · N) by further approximating the expectation in

(11) using Monte Carlo techniques. The algorithm to compute

the M-EBCRB for the most general model (1) with reduced

computational complexity is summarized in Algorithm 1.

VI. JUMP MARKOV LINEAR GAUSSIAN SYSTEMS

In this section, the proposed bound is evaluated for the

special case of discrete-time jump Markov linear Gaussian

systems [12], [13], which can be generally expressed by

xk = Fk(rk)xk−1 + vk(rk), (23a)

zk = Hk(rk)xk +wk(rk), (23b)

where Fk(·) and Hk(·) are mode-dependent, arbitrary linear

mapping matrices of proper size, and where the noise densities

are Gaussian distributed according to vk(rk) ∼ N (0,Qk(rk))
and wk(rk) ∼ N (0,Rk(rk)). The pdf of the initial state is

also Gaussian and given by p(x0) = N (x0;0,P0|0). For the

system given by (23), the following theorem holds:

Theorem 1. For jump Markov linear Gaussian systems, the

M-EBCRB is equal to the EBCRB, i.e.

EP{Rk}{B2(Rk)} = EP{Rk}{B1(Rk)} (24)

holds.

Proof: See Appendix.

Thus, the difference between the two bounds appears not to

lie in how they handle the mode sequences, but in how they

handle the nonlinearities.
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Algorithm 1 Computation of the M-EBCRB

(1) At time k = 0, generate x
(j)
0 ∼ p(x0) and evaluate

∇x0
p(x

(j)
0 ) and p(x

(i)
0 ) for j = 1, ..., Nmc. Compute the

initial Bayesian information matrix J0 from

J0 ≈
1

Nmc

Nmc
∑

j=1

[∇x0
p(x

(j)
0 )][∇x0

p(x
(j)
0 )]T

[p(x
(j)
0 )]2

(2) For k = 1, 2, . . . , and l = 1, . . . , Nmc do:

– If k = 1, generate r
(l)
1 ∼ P{r1}, otherwise gener-

ate r
(l)
k ∼ P{rk|r

(l)
k−1}. Furthermore, sample from

x
(j)
k ∼ p(xk|x

(j)
k−1, r

(l)
k } and z

(j)
k ∼ p(zk|x

(j)
k , r

(l)
k }

for j = 1, . . . , Nmc.

– Compute p(z
(j)
k |x

(j)
k , r

(l)
k ) and the gradient

∇xk p(z
(j)
k |x

(j)
k , r

(l)
k ) for j = 1, . . . , Nmc, and

evaluate JI
k(R

(l)
k ) according to

JI
k(R

(l)
k ) ≈

1

Nmc

Nmc
∑

j=1

[∇xk
p(z

(j)
k |x

(j)
k , r

(l)
k )][·]T

[p(z
(j)
k |x

(j)
k , r

(l)
k )]2

– Simulate Nmc mode-conditioned particle filters with

N particles that approximate p(x
(j)
k |Z

(j)
k−1, R

(l)
k ) ac-

cording to (20).

– Compute p̂(x
(j)
k |Z

(j)
k−1, R

(l)
k ) and the gradient

∇xk p̂(x
(j)
k |Z

(j)
k−1, R

(l)
k ) for j = 1, . . . , Nmc, and

evaluate JII
k(R

(l)
k ) according to (22).

– Evaluate Jk(R
(l)
k ) using (17) and Monte Carlo ap-

proximate the M-EBCRB as follows

M-EBCRB ≈
1

Nmc

Nmc
∑

l=1

[Jk(R
(l)
k )]−1.

VII. PERFORMANCE EVALUATION

The newly proposed bound is compared to the following

bounds and filter performances: 1) Interacting Multiple Model

Extended Kalman Filter (IMM-EKF) [14], [16], 2) Multiple

model particle filter (MM-PF) [6], [15], 3) EBCRB [19], and

4) BCRB [20]. For performance comparison, the following

benchmark model is used:

xk =
1

2
xk−1 + arctan(xk−1) + vk(rk), (25a)

zk =
xk

20
+ wk, (25b)

where the process noise is governed by a 2-state Markov

chain, and distributed according to vk(rk) ∼ N (0, Qk(rk)),
with Qk(1) = 1 and Qk(2) = 4. The initial state, mode and

measurement noise are distributed as P{r1 = 1, 2} = 0.5 and

x0, wk ∼ N (0, 1), respectively. The transition probabilities are

chosen as P{rk = 1|rk−1 = 1} = 0.9 and P{rk = 2|rk−1 =
2} = 0.9. In total, Nmc = 5000 Monte Carlo runs have been

performed and the results in terms of root MSE (RMSE) are

presented in Fig. 1. The MM-PF and the conditional PF used

to compute the M-EBCRB employ the transitional prior as

importance density, i.e. q(xk|xk−1, zk, rk) = p(xk|xk−1, rk),
and N = 1000 particles.

0 5 10 15
1

1.5

2

2.5

3

3.5

4

 

 

IMM−EKF

MM−PF

M−EBCRB

EBCRB

BCRB

R
M

S
E

time index k

Fig. 1. RMSE performance vs. time steps for the benchmark model.

It can be observed, that the M-EBCRB is the tightest bound

(i.e. less optimistic) in this setting, followed by the EBCRB,

which is always less tight than or equal to the M-EBCRB

according to (14). Further, both the M-EBCRB and EBCRB

are tighter than the BCRB. This can be explained by the fact

that the considered models for the state xk can be categorized

into an informative model (rk = 1 and small Q(1)) and

a non-informative model (rk = 2 and large Q(2)). Hence,

according to the theoretical investigations performed in [20],

it is expected that the EBCRB will be tighter than the BCRB.

In terms of estimator performance, the MM-PF outperforms

the IMM-EKF as it can better handle the nonlinearity of the

state transition equation.

APPENDIX

PROOF OF THEOREM 1

For the proof of Theorem 1, it suffices to show that

J̃k(Rk) = Jk(Rk) holds. For jump Markov linear Gaussian

systems, a closed-form expression for the conditional posterior

is available p(xk|Zk, R
i
k) = N (xk; x̂

i
k|k,P

i
k|k), with x̂i

k|k and

Pi
k|k denoting the ordinary Kalman filter recursions, but now

conditioned on the mode sequence Ri
k. Inserting p(xk|Zk, R

i
k)

into (15) and evaluating the expectation yields

Jk(R
i
k) = [Pi

k|k]
−1 = [Pi

k|k−1]
−1 +H

i,T
k [Ri

k]
−1Hi

k

= [Qi
k]

−1 +H
i,T
k [Ri

k]
−1Hi

k + [Qi
k]

−1Fi
k

×[Jk−1(R
i
k−1) + F

i,T
k Qi

kF
i
k]

−1F
i,T
k [Qi

k]
−1,(26)

where the last two equalities in (26) follow from repeated

application of the matrix inversion lemma [6], and where the

inverse of the filter error covariance matrix Pi
k−1|k−1 has

been replaced with the conditional filtering information matrix

Jk−1(R
i
k−1), and where Fi

k,Q
i
k,H

i
k,R

i
k are all conditioned

on rik. The expression for J̃k(R
i
k) derived in [19, Eqs.(8)-(13)]

can be written as follows

J̃k(R
i
k) = [Qi

k]
−1 + E{H̃i,T

k [Ri
k]

−1H̃i
k}+ [Qi

k]
−1

E{F̃i
k}

×[J̃k−1(R
i
k−1) + E{Fi,T

k Qi
kF

i
k}]

−1
E{Fi,T

k }[Qi
k]

−1,(27)

with Jacobians F̃i
k, H̃

i
k evaluated at the true state vector. In

linear Gaussian settings, these reduce to Fi
k,H

i
k so that the

corresponding expectations can be dropped. By noting that

J̃0 = J0 = P0|0 holds finally concludes the proof.
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