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Abstract

We present a method for solving the Hamilton-Jacobi-Bellman
(HJB) equation for a stochastic system with state constraints. A vari-
able transformation is introduced which turns the HJB equation into a
combination of a linear eigenvalue problem, a set of partial differential
equations (PDE:s), and a point-wise equation. For a fixed solution to
the eigenvalue problem, the PDE:s are linear and the point-wise equa-
tion is quadratic, indicating that the problem can be solved efficiently
using an iterative scheme.

As an example, we numerically solve for the optimal control of
a Linear Quadratic Gaussian (LQG) system with state constraints.
A reasonably accurate solution is obtained even with a very small
number of collocation points (three in each dimension), which suggests
that the method could be used on high order systems, mitigating the
curse of dimensionality.

1 Introduction

A stochastic optimal control problem for a system with state constraints
can be solved by finding the solution to the corresponding Hamilton-Jacobi-
Bellman (HJB) equation [1]. However, the resulting partial differential equa-
tion (PDE) is nonlinear and difficult to solve as it will in general also have in-
finite boundary conditions. For systems where both the input and the (white
noise) disturbances enters affinely, a logarithmic transformation [4] can be
used to achieve an exact linearization of the HJB equation [8, 9, 10, 14].

∗This paper has been submitted to the 53rd IEEE Conference on Decision and Control,
with identical content but a different layout.
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Further, the difficult boundary conditions become homogeneous (zero) in
the log-transformed variable. The result is an eigenvalue problem that can
readily be solved using e.g. the Galerkin method, and sometimes even ana-
lytically.

The method requires the cost to be quadratic in the control, and for first
order systems there are basically no other significant limitations on how to
tune the cost function. However, for the method to work for higher order
systems the cost of control can no longer be chosen freely but has to have an
inverse relation to the disturbance covariance. This can be a severe limitation
and also affects how to find a control policy when the disturbance is no longer
white but of low pass character [14].

Here we introduce a transformation of the gradient of the cost function
instead of the actual cost, which gives additional degrees of freedom that
allow this problem to be circumvented. The transformation results in the
same eigenvalue problem as before, a set of PDE:s and a point-wise quadratic
equation. For a given solution to the eigenvalue problem the PDE:s are linear,
which indicates that the problem can be solved efficiently by an iterative
scheme.

Using an LQG problem with state constraints we show how a close ap-
proximation to an optimal control law can be found by solving a small non-
linear programming (NLP).

2 Problem formulation

Consider a stochastic dynamic system which is affine in the control inputs:

ẋ = f(x) +G(x)(u+ w), (1)

where x ∈ Ω ⊂ R
n is the state of the system, u ∈ R

m is the control signal,
f ∈ (Ω → R

n) and G ∈ (Ω → R
n×m) are functions that describe the system

dynamics, and w ∈ R
m is a Gaussian white noise having a covariance W ∈

(Ω → R
m×m) that may depend on the state.

We aim to determine a feedback control policy that minimizes the ex-
pected cost λ, which can be an arbitrary function of x, though quadratic in
u:

λ = E
{

l(x) + uTR(x)u
}

, (2)

where l ∈ (Ω → R) is a penalty on the state that the system is in, and
R ∈ (Ω → R

m×m) defines the cost of the control.
We assume that the system and the cost are such that an optimal control

law exists. Additionally, we require both W and R to be positive definite and
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bounded everywhere on Ω, but otherwise impose no restrictions on them.
Contrary to the assumptions in previous work [9, 10, 14] and the work of
Kappen [7] and Broek et al. [12] they are no longer required to relate to the
inverse of eachother. As formulated, the control u and the noise w enters
the state equation via the same matrix G. However, the problem can easily
be reformulated such that the control and noise enter via different matrices
as long as they have the same column space [14]. Models where some noise
components cannot be directly counteracted by control action are excluded
though.

The Hamilton-Jacobi-Bellman equation for this optimization problem can
be written as [3]

−
∂V

∂t
= min

u
{l + (∇V )(f +Gu) + uTRu+

1

2
tr
[

(∇T∇V )GWGT
]

}, (3)

where we use a notation where all vectors, such as x, u, w and f , are column
vectors. The only exception is ∇, which is a row vector of partial derivative

operators
(

∂
∂x1

, ∂
∂x2

, . . .
)

, implying that gradients such as∇V are row vectors.

Assuming that the process is ergodic, the expected cost per unit time will
eventually become the same everywhere in Ω. The stationary solution to (3)
minimizing

λ = −
∂V

∂t
(4)

then gives the optimal feedback

u = −
1

2
R−1GT∇TV, (5)

where ∇V is the unknown to be determined. Inserting this expression into
(3) results in a nonlinear partial differential equation in V , which is generally
difficult to solve. In particular, the state constraint x ∈ Ω makes it trouble-
some since it translates into an infinite cost (V → ∞) on the boundary
(x ∈ ∂Ω).

3 Variable transformation

Let K be a real-valued, positive definite n × n matrix that is a function of
x, and let Z be a real-valued, non-negative scalar function of x. Now, let

∇V :=
−2

Z
(∇Z)K. (6)

Since this defines the gradient of V , rather than V itself, we need to make
sure that V is well-defined. Because our domain is contractible, though,
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Poincaré’s lemma guarantees that V exists if its Hessian is symmetric [13].
We obtain the Hessian of V by differentiating (6):

∇T∇V =
−2

Z

(

(In ⊗∇Z)∇vec(K) + (∇T∇Z)K −
2

Z
P

)

, (7)

where
P := (∇Z)T (∇Z)K, (8)

⊗ denotes the Kronecker product, In is the n×n identity matrix and vec(K)
is a column vector of the elements in K, taken in column first order:

vec(K) =
(

k11 . . . k1n k21 . . . knn
)T

. (9)

The fact that the Hessian matrix is symmetric can be written formally as

∇T∇V = (∇T∇V )T , (10)

which gives one partial differential equation for each pair of off-diagonal ele-
ments, i.e. n(n− 1)/2 equations.

On the boundary, an unbounded control signal is required to counteract
the unbounded noise. This means that both ∇V and V go to infinity. By
(6) this translates to a boundary condition

Z = 0, x ∈ ∂Ω. (11)

Since (7) can be multiplied by a scalar, e.g. Z2, without affecting the symme-
try of the matrix, we need not worry about the coefficients becoming infinite
as Z → 0. Further, the term 2P/Z2 in (7) clearly dominates as Z → 0, and
therefore also P must be symmetric on the boundary:

P T = P, x ∈ ∂Ω. (12)

Inserting (6) into (5) gives

u =
1

Z
R−1GT (∇ZK)T (13)

Now, inserting (6), (7) and (13) into the HJB equation (3), and multi-
plying with Z, gives

λZ = lZ−2(∇Z)Kf−
ρ

Z
−tr

[(

(Im ⊗∇Z)∇vec(K) + (∇T∇Z)K
)

GWGT
]

,

(14)
where ρ is a quadratic form in (∇Z)K:

ρ := (∇Z)KGR−1GTKT (∇Z)T − (∇Z)GWGTKT (∇Z)T (15)
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Chosing K such that
ρ = 0 (16)

makes (14) a linear eigenvalue problem in Z. It is worth noting that the
solutions to (12) and (16) do not depend on the magnitude of ∇Z, only its
direction. Also worth noting is that (16) is satisfied if the columns of G are
linearly independent, and

K = GWRG†, (17)

where G† is the Moore–Penrose pseudoinverse of G. Although this choice of
K will not satisfy (10) in general, it actually does when the system can be
decoupled into independent one-dimensional optimal control problems.

On the boundary ∂Ω the direction of ∇Z is fixed (perpendicular to the
boundary) and (16) and (12) then define the boundary conditions on K
(independent of the exact shape of Z).

4 Solving the problem

We can now determine a solution to the original optimal control problem by

• solving (14) without the ρ-term. For a fixed K, this is a linear elliptic
eigenvalue problem, where the principal eigenfunction is sought.

• solving the system (10) of PDE:s for the symmetry of the Hessian of
V . For a fixed Z, these PDE:s are linear in K.

• combining the above with (15) and (16) such that the ρ-term disappears
from (14). For a fixed direction of ∇Z, this is a quadratic equation in
K for every point in Ω.

The free variables are Z as well as each of the n × n elements of K.
Hence, in each point on Ω we have n2 + 1 degrees of freedom, but we only
have n(n− 1)/2+2 equations. This leaves n(n+1)/2− 1 degrees of freedom
that we can use in any way we like to facilitate the numerical solution of the
problem. A common way to utilize excess degrees of freedom is to introduce
an optimization objective. For example, the objective

φ =

∫

Ω

∑

i

∑

j

‖∇Kij‖
2dΩ (18)

means that the solution that minimizes φ should have components of K that
are smooth in x.
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Figure 1: Iso-curves for the elements of the matrix K (one plot for each of
the elements in the 2× 2 matrix).

The fastest way to solve this problem is probably to iterate between solv-
ing for Z and solving for K, but for the example presented in the next section
we have simply used a NLP solver to solve for all variables simultaneously.

The nonlinear optimization solver minimizes φ at the same time as it
solves (16), (14) and (10). As a starting guess for K we can use (17), and as
a starting guess for Z we can solve (14) for ρ = 0, which is a linear eigenvalue
problem given our starting guess for K.

5 Numeric example

As an illustration of the method, we solve a 2-dimensional optimal control
problem using a collocation method.

We consider the system given in (1), with f(x) = Ax, l(x) = xTQx, and
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Figure 2: Iso-curves for the solution Z to the eigenvalue problem.

the following numeric parameters:

A =

(

0 1
0 0

)

(19)

G =

(

1 0
0 1

)

(20)

Q =

(

1 0
0 1

)

(21)

R =

(

1 0
0 4

)

(22)

W =

(

1 0
0 1

)

(23)

on the domain
−1 ≤ x1 ≤ 1 (24)

−1 ≤ x2 ≤ 1. (25)

This is a Linear Quadratic Gaussian (LQG) system, but with state con-
straints. The A-matrix is that of a double integrator, though inputs are
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Figure 3: Iso-curves for the solution V to the HJB equation of our original
system. The plot does not extend all the way to the boundary. If it did,
there would be an infinite number of curves. In an analogue to Hilbert’s
hotel paradox, each curve goes all the way around, yet the curves are more
densely packed along the top and bottom than along the left and right edges.
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Figure 4: Contour plots of the absolute value of the residual of the HJB
equation (3). The distance between curves corresponds to 0.02λ. The col-
location points, where the residual is zero by construction, are marked with
black crosses. (The residual is unbounded close to the boundary, where sev-
eral terms in the HJB equation go to infinity, but the expected value of the
residual is still bounded, because the probability goes to zero faster than the
residual diverges.)

affecting both states here. (The case with only one input is easier, and can
be solved using an exact linearization of the HJB equation as in [10].)

The system of equations is solved using collocation [2]. We take the
Gauss–Legendre points in each dimension as collocation points, and approx-
imate Z and the elements of K as m-dimensional polynomials of appropriate
degree. To set up the collocation problem the TOMLAB/PROPT [6, 11]
software was used, and the resulting nonlinear problem was solved using
TOMLAB/SNOPT [5]. The resulting K and Z are shown in Figures 1 and
2 respectively.

In order to obtain a starting guess, we initially set the off-diagonal element
of A to zero, which results in a separable system of two one-dimensional
optimal control problems with known analytic solutions [8].

Note that we do not actually need to compute V if we are only interested
in the control policy. The control depends on ∇V , but not on V itself, and
we can compute it from Z and K using (13). However, we did compute
Z (for plotting purposes) by selecting a reference point and computing line
integrals from that point to every other point. Figure 3 shows the result for
a varying number of collocation points. In theory, it does not matter which
path we choose to integrate along. In practice though, there will always be a
residual error in the symmetry equations such that the choice of path has a
slight effect on the computed Z. For the plots presented here, we integrated
along straight lines to the origin, although it could be argued that integrating
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along the direction of the gradient would be a better choice.

6 Accuracy and mesh size

When solving partial differential equations numerically, the mesh size, or in
this case the number of collocation points in each dimension, always plays an
important role. Using a finer mesh, or more points, usually gives a smaller
residual error but at the expense of requiring more computational resources.

Optimal control problems often involve a high number of states, and
any method that relies on parametrization a function in the state space will
need an exponential number of parameters. This is known as ”the curse of
dimensionality”.

The method derived here also suffers from this curse. The number p of
free parameters that are solved for is

p = (n2 + 1)cn (26)

where c is the number of collocation points in each dimension. This number
depends on how smooth the sought functions are. If Z and the elements of
K can be approximated by low-order polynomials on Ω, then c can be small.

Even though p is exponential in n, we can consider relatively large systems
if c is small enough. Figure 3 shows solutions for c = 3, c = 6, and c = 12.
There is a clearly visible difference between the solutions for 3 × 3 points
(blue dots), and the solution for 6 × 6 points (red). However, the solution
for 6 × 6 and 12 × 12 points (black lines) are nearly identical. Although
three points per dimension resulted in a slightly suboptimal solution, this
low number of points per dimension should make it feasible to solve optimal
control problems in relatively high dimension.

The solution for c = 3, although slightly different from the other two,
looks like it may be acceptable. Letting c = 3 and n = 8 gives p = 426465. A
problem in eight states would thus require solving for less than half a million
unknowns, which should be feasible on an ordinary personal computer with
a good numeric algorithm.

Figure 2 shows the solution Z to the eigenvalue problem. Unlike V in
Figure 3, Z is smooth all the way out to the boundary, and is therefore
well-approximated by a low-order polynomial.

Figure 4 shows the absolute value of the residual of the HJB equation (3)
for the same solutions as in Figure 3. It can clearly be seen how the residual
decreases with an increasing number of collocation points.
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7 Discussion and future work

The numerical results verified that the method works for this example. In
particular, it is very encouraging that the solution using very few collocation
points is very similar to the ones with a large number of points. However,
more work is needed to determine the circumstances in which this method is
applicable.

Another interesting issue is whether the set of PDE:s (10) always has a
solution. We know that V exists, because we have chosen our system such
that an optimal control policy exists. We also know that Z exists, because
it is the principal eigenvalue of an elliptic partial differential equation. This
means that, knowing V , we could compute a K to match a given Z as long
as ∇Z 6= 0. For ∇Z = 0, equation (6) gives ∇V = 0, so Z will have the
same optimum as V if K is positive definite everywhere.

We used a commercially available NLP solver to solve for K and Z at
once. This allowed us to quickly test the method, but at the expense of
computational effort. The next step is to develop an iterative algorithm, as
outlined in Section 4, to address convergence rate and other numerical issues.

8 Conclusion

We have derived and demonstrated a method for solving the HJB equation
for a stochastic system with state constraints. Rather than solving for the
cost-to-go function V directly, we solved for a matrix function and an eigen-
function that together define the control policy. Although we needed to solve
for a larger number of functions, these functions could be well approximated
by low order polynomials, such that the number of numeric parameters in
the parametrization of the solution was low.

This suggests that the presented method, combined with an efficient nu-
meric algorithm, is a good way to mitigate Bellman’s so-called curse of di-
mensionality, and solve the HJB equation for these kinds of systems in higher
dimension than what has previously been feasible.
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