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Transaction Costs and Agricultural Nonpoint-Source
Water Pollution Control Policies

Rodney B. W. Smith and Theodore D. Tomasi

Mechanism design theory is used to develop the properties of optimal pollution control
incentive schemes in the presence of adverse selection, moral hazard, and transaction costs.
The model presented here shows (a) with no deadweight costs (transaction costs), first-best
allocations are always possible; (h) in the presence of transaction costs (caused by raising
taxes), only second-best allocations are feasible; and (c) the conditions under which the
optimal incentive scheme implementing second-best allocations will be a nonlinear tax, a
standard(s), or a combination of both taxes and standard(s).
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Introduction

Shortle and Dunn (hereafter S-D) examined the relative efficiency of alternative policies to
control agricultural nonpoint-source (NPS) pollution. In their model, the regulatory agency
cannot observe the amount of pollution runoff from a farm due to the high cost of undertaking
this measurement: a distinguishing feature of NPS pollution. Moreover, in S-D the farmer
knows his own profit function, but the regulator faces (prohibitively) high costs identifying
all of the relevant parameters of the farmer's profit function; hence, there is asymmetric
information between the regulator and the farmer. The regulator, however, is assumed to be
able to monitor the farmer's input levels. Then, using a stochastic model of runoff, infers
(imperfectly) the amount of pollution runoff from the farm.I

Shortle and Dunn showed, using a model of a single farm, that despite the lack of
information in their model, the regulator can induce a farmer to choose an ex ante efficient
level of polluting inputs. This can be done using an incentive scheme directed toward
management practices in the form of a tax, a nonlinear function of the inputs used. The tax
is equal to the expected environmental damages caused by the runoff.

In the S-D model, no transaction costs are incurred when implementing the regulatory
policy. They clearly recognize this omission when summarizing their analysis (p. 674).
"[S]etting aside policy transaction costs... allowing for both a differential information
structure and a nonlinear damage cost function results in a situation in which only an
appropriately specified management practice incentive is optimal" (emphasis added). How-
ever, despite our tendency to ignore them, such costs are likely to exist.

It is common practice to ignore the cost of implementing a policy in economic analysis
and to focus attention on the (gross) efficiency implications of alternative regulatory
instruments. The direct costs of raising funds and administering policies could be "netted
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In an earlier article, Griffin and Bromley also examined the implications of using an estimated runoff function in design of
policy to control agricultural pollution. S-D extend the Griffin and Bromley model to include a stochastic element in the runoff
function, as well as asymmetric information between regulator and finn.
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out" later in a policy analysis. In this article we show that the existence of transaction costs
of implementing nonpoint pollution policy may be crucial in assessing the gross efficiency
implications of the alternative regulations. Specifically, we model transaction costs of policy
implementation as a proportional extra cost incurred when raising taxes. Then, contrary to
S-D's results, the regulator is not able to devise an incentive scheme that induces a farmer

I 2to choose ex-ante efficient levels of a polluting input.
In addition to the management practice incentive scheme just discussed, S-D examined

the efficiency properties of implementing farm management standards.3 They showed that
an optimal management standard-where the same input vector is assigned to the firm
irrespective of parameters of the profit function-never dominates an optimal tax structure
in their model. In our model, we show that a tax scheme is not always superior and is
(second-best) optimal only in special circumstances. We also show that, in general, the
regulator's optimal regulatory policy is a mixture of taxes and one or more standards; in
some cases it will consist solely of a standard. A distinguishing feature of our model is that
the policy instrument choice is an endogenous one (Chambers).

Before proceeding, it is important that we clarify the scope and limitations of our analysis.
First, the transaction costs we introduce are related only to those incurred by a government
agency implementing a policy. As noted by Dahlman, externalities generally will not exist
at all in the absence of suitably specified transaction costs. We maintain the existence of
transaction costs which prohibit a fully decentralized resolution of the agricultural pollution
problem.

Second, our model, as well as S-D's formal model, is that of a single farm. S-D
acknowledge the importance of considering several farms-which may raise additional
considerations of a second-best nature-but they do not resolve these issues, and neither do
we. Considering multiple sources in the modeling of optimal incentive schemes for NPS
pollution control remains an important topic for research.

Third, we are not very creative in our modeling of transaction costs. However, we are
not interested in detailing specific transaction costs per se; rather we are focused on the
implications of the existence of policy transaction costs for the analysis of agricultural NPS
pollution regulation. To introduce transaction costs we simply append a constant propor-
tional "social cost of funds" term that is meant to capture deadweight losses of distorting
taxes and other costs associated with taxation. This approach provides a proxy for the
detailed specification of policy transaction costs.

Our article is related to two strands of literature. One regards the problem of regulating
agricultural NPS pollution when there is an inability to monitor farm emissions, uncertainty,
and adverse selection (asymmetric information regarding the profit function). We follow
Griffin and Bromley and S-D in modeling these problems. While the approach to incorpo-
rating policy transaction costs into the analysis is not new, having been developed for
regulating a public firm, its implications for agricultural NPS pollution regulation have not
been described previously (Fudenberg and Tirole; Russell and Shogren). The other strand

2For the class of transaction costs considered in this study, first-best allocations cannot be achieved by any policy, because
policy costs must be netted out. In this case, efficiency comparisons among instruments are undertaken in a second-best setting,
and hence, policies that achieve an efficient allocation in such a world would be second-best efficient. However, as a reviewer
observed, different specifications of transaction costs might generate different policy implications. For instance, the (magnitude
of) transaction costs associated with implementing a tax may be different from those associated with implementing a standard,
or the policy implications associated with specific types of transaction costs may differ (e.g., do transaction costs that are
independent of tax levels have the same implications as transaction costs that depend on tax levels).

3They also examined incentive schemes and standards directed to estimated runoff and found that these are almost never as
good as a corresponding policy directed to management practices.
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of literature concerns the design of second-best environmental policies in the presence of
transaction costs, or when other distorting taxes exist in the economy.4

The Basic Problem

Our specification of the model closely follows that of Shortle and Dunn.5 In the absence of
regulation, a profit-maximizing farmer chooses an input x e R+ to maximize

n(x,0)= E{n(x,w,0)}.

Here, w, an ex post realization of a random variable that is unknown to the farmer at the time
x, is chosen (for example, rainfall); Ew is the expectations operator (with respect to the
random variable w); and 0 is a scalar index of farmer profitability (called the farmer's "type")
known to the farmer but not to the regulator. We refer to a farmer with profitability index
equal to 0 as a type-0 farmer. The parameter 0 might be interpreted as an index of a farmer's
managerial ability or an index of soil quality or a composite index of both. The expression
fi(x, w, 0)is the profit a type-0 farmer receives when using x units of the input and the state
of nature w occurs, and n(x, 0) is the expected profit to a type-0 farmer's using x units of
the input. From the regulator's perspective, 0 is a random variable with density function
k(0), the support of 0 is = [0, ], and Jk(0) dO = 1. Hence, there is asymmetric informa-
tion between the farmer and the regulator concerning the value of 0.

Assumption 1: (i) k(0) > 0 for all 0 e 9; (ii) for all w, n is strictly concave and thrice
continuously differentiable in x and 0; and (iii) n Io (.) > 0.

Assumption 1 part (i) guarantees there is no division by zero later in the text, and part
(ii) guarantees that expected profits n are strictly concave in x and 0 . Assumption I part
(iii) says that marginal profits increase with higher values of 0: in other words, the shadow
value of the input is nondecreasing in 0, or similarly, the higher the value of 0; the more
efficient is the farmer. The implications and importance of Assumption 1 part (iii) will be
discussed in the subsequent discussion on truthtelling.

The regulator's understanding of the relationship between runoff r and the input x is
represented by a stochastic runoff function, g:R3 -> R, with r = g(x, w, c). Here, £ is a
random variable representing the regulator's uncertainty about actual runoff. The agency's
joint density for c and w is given by f(w, 6). The expected runoff generated by the input x
is

r(x)= Jg(x, w, e)f(w, e)dw de.

Runoff causes water quality damage, D(r); we assume that D is convex and twice
continuously differentiable in r. The expected damage caused by the vector x is

4 For example, Lee and Misolek show that optimal emission taxes generally will not equal marginal pollution damages when
the revenue collected can reduce deadweight losses elsewhere in the economy. We extend this analysis to the NPS setting.

'The major difference is that we view the farmer as having only one (polluting) input. This assumption is made only to keep
the notation simple. Assuming that x is multidimensional and will leave our results unchanged; in this case, all operations
performed on x are vector operations.
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D(x) = JD(g(x, w, E))f(w, e)dw de.

Given knowledge of 0 and no transaction costs, the first-best (ex ante efficient) choice
ofx maximizes

n(x, 0)- D(x),

and solves the following first-order condition:

nx(X,0)-D'(x)= O,

where e1l is the partial derivative of the farmer's profit with respect to input x, and D'(x)
is the derivative of expected damages with respect to input x. The first-best problem can be
viewed as one in which the regulator observes the farmer's private information costlessly
and requires the farmer to choose the socially optimal input bundle or else be assessed an
extremely large fine.7

Direct Revelation Incentive Schemes Regulating Input Use

When the regulator does not observe 0 the knife-edged instrument just described is unavail-
able. In what follows, we assume both asymmetric information over 0 and the presence of
transaction costs and develop the properties of optimal incentive schemes. Currently there
are two general approaches to choosing such incentive schemes (leading to equivalent
optimal allocations): nonlinear pricing techniques (Maskin and Riley; Chambers; Lee) and
truthful direct revelation (TDR) mechanisms (Guesnerie and Laffont; Laffont and Tirole). 8

This article follows the TDR mechanism approach. 9

One of the distinguishing features of a direct revelation mechanism is that an "agent"
(farmer) announces his private information (efficiency parameters) to a "principal" (the
regulator). See Myerson (1989) for a general discussion of direct revelation mechanisms. In
the direct revelation mechanism (incentive scheme) considered here, the regulator an-
nounces a contract schedule {t, x} that maps farmer types into tax and input levels. After
observing the incentive scheme the farmer reports a type to'the government. The government
observes the farmer's reported type2 denoted 0, and pursuant to the announced contract
schedule, offers him the contract (t(O), x(0)).

Typically the mechanism design literature focuses its attention on the class of mecha-
nisms that maximize social welfare and are both truthful and voluntary. The mechanism is
truthful if it is optimal for the farmer to report 0 truthfully (i.e., report 0 = 0), and the

7This type of instrument is often referred to as a knife-edged instrument.
8Guesnerie and Laffont show that nonlinear pricing rules and truthful direct revelation mechanisms are equivalent resource

allocation devices (Proposition 1, p. 335).
9The information requirements for implementing a direct-revelation scheme are potentially demanding. For instance, to

implement the direct revelation tax scheme considered here, the government must know the structure of the profit function
and the distribution of 0.

Several authors have shown that nothing is lost when modeling a mechanism as a TDR mechanism (see Dasgupta, Hammond,
and Maskin; Holmstrom; Myerson 1989). This observation-called the revelation principle-says that for any equilibrium of
any general mechanism there exists an equivalent direct-revelation mechanism that involves truth telling.
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mechanism is voluntary if the farmer is better off choosing a contract (voluntarily) than not
choosing one. As for social welfare, recall that a major difference between S-D's model and
the model presented here is that we assume the regulator incurs transaction costs when
raising tax revenues. We model the effect of transaction costs on net tax revenues by
assuming the regulator realizes only X cents from each dollar the farmer is taxed,
0 < X < 1. If X is equal to one, then there are no transaction costs. For a given 0, the expected
profit to the farmer is l(x, 0) - t and the expected net social cost is Xt - D(x). Hence, the
net social welfare associated with a type-0 farmer is

B(x(O), t(0), 0) = (x(0 ), 0) - D(x( )) - (1 -)t(),

where k is equal to one in the S-D case. Given that n is strictly concave in x and D is
convex in x, it follows that B(..) is strictly concave in x.

Let (O,0) = n(x(O),O)- t(O). Given the social welfare function B, truth telling is
ensured if the following incentive compatibility constraint is introduced:

(1) 0 eargmax6 {r7 (,0)}, VO, e ®.

Voluntary participaton is ensured if the following individual rationality constraint is intro-
duced:

(2) 7r(0,0)>Ž, VO,0 e ,

where, without loss of generality, we set i equal to 0.10
The regulator's second-best problem (SB) is to choose {x(0), t(0)} to solve

maxm } ,( fB(x(Q), t(6), )k(O) dOQ

s.t. (l)and (2).

(SB) is a standard problem in the literature on designing mechanisms under private
(asymmetric) information (Guesnerie and Laffont; Chambers). Typically, before actually
solving this problem, the analyst transforms the incentive compatibility and individual
rationality constraints into simpler forms.

Incentive Compatibility and Individual Rationality

Guesnerie and Laffont show that equation (1) will be satisfied if and only if:

d(3) x(,(,)l:^ =n,(x(A),9)x'(6)-^()=o,

and

cflt is, of course, possible that the optimum involves driving the farmer out of business, but we do not consider this degenerate
case further.
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(4) x'() > O.

For a proof see Guesnerie and Laffont. Here, t ( )I| is the partial derivative of 7t with
respect to 0 (evaluated at 0 =0) and is the first-order condition for truth telling, and
x'( ) and t'(.) are the respective derivatives of the input and tax functions. Equation (3) says
that the input and tax functions must be chosen so that the marginal benefit from lying a
little-for example, reporting 0 = 92 + d -is just offset by the marginal cost of lying a
little; the marginal benefit is n x' and the marginal cost is t'. Equation (4) results from the
assumption that [n is greater than or equal to zero and, as shown in Guesnerie and Laffont,
comes from the second-order condition for truth telling. Given that profits are nondecreasing
in 0 , (4) says that a profitable (efficient) farmer should be allocated at least as much of the
input as less profitable ones. Equation (4) is often called the monotonicity condition.

To see why truthful revelation requires a nondecreasing input function consider the
farmer's marginal rate of substitution between x and t. By rearranging the terms in (3) this
is

dt
(5) n , 0).

dx

The regulator can use its knowledge of n to choose the incentive scheme as a function of
the units of x used and does this by setting the change in the tax given a change in x equal
to the marginal quasi-rent of the input.

Suppose for the moment that the farmer is one of two possible types: 02 or 01, 02 >01.
In figure 1, two isoprofit lines pass through contract A = (t, x,). I' is an isoprofit line for the
type-0' profit line for the type-02 farmer. By assumption the slope of/2 is everywhere steeper
than that of I. Note that profits increase in the southeast direction. A type-0 2 farmer (or a
type-0 farmer) has isoprofit line I (or I'). To get a type-0 2farmer to report 0 truthfully, the
regulator needs to offer another contract somewhere to the right of A and above I'; one such
contract being the point B. At B the farmer is better off reporting 0 . (If B were on 2 then
truthful reporting is still an optimal response, although it is not unique.) To keep the farmer
from reporting type 0' when it is really 02, the regulator makes sure that two things happen.
First, the marginal increase in t for the type-0 2 farmer, given a marginal increase in x, is
larger than the marginal increase in t that keeps a type-0 farmer on I' (given the same
marginal increase in x). Second, the marginal increase in t for the type-02 farmer, given a
marginal increase in x, is less than the marginal increase in t that keeps the type-0 2farmer
on 2.

If the input function violates (4) the tax scheme will not encourage truth telling by the
farmer. To see this, assume that the contract targeted for the type-0 2 farmer is to the left of
A and below I/-contract C, for example (i.e., the input function is decreasing in 0 ). Then
the type-0 farmer has no incentive to report 0 truthfully. In this case, she would report

= 02 and receive contract C; placing her on the higher isoprofit curve I'.
The individual rationality constraint requires that the tax scheme does not leave the

farmer with negative profits. Since this must hold for all possible farmer types (2) must hold
for each possible value of 0. This set of rationality constraints can be replaced by a single
constraint. By (3) and the envelope theorem, truth telling implies
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Tax level

Input level

Figure 1. The monotonicity condition and truth telling

(6) d~~-i(,) V4(),(6) )x'() t'() + o(e = (x(), 0'() - ( o)+(x()), ).
dO

By assumption, no (x(O), 0) > 0. So it follows that 7n (, 0) is increasing in 0 and (2) holds
as long as:

(7) 7(0,0) = 0."

The farmer cal always say that he is a type-0 farmer and get
n (O, ) = n(x(O), 0)- t() > n(x(O), o)-t(o)= r(o,o)=o.

tl

t33

x3 x 1 x2
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Optimal Incentive Schemes under Asymmetric Information and Transaction Costs

In this section we develop the regulator's optimal incentive scheme given transaction costs
and asymmetric information over the farmer's type. We proceed by first setting up the

regulator's optimization problem. Then we develop the optimal input function and end with

a characterization of the optimal tax function.
It can be shown that the second-best problem can be rewritten as an optimal control

problem with the slope of the input function, x'( ), being the control variable. Specifically,

the second-best problem (SB) is equivalent to the following optimal control problem:

maxx(O) iW(x(0),0)k(0)dO +H(x(Q), O_

s.t. x'(0)=(p(9),

(p(0)> 0,
m(0_,)= 0,

t(0) satisfies (4), and x(0) > 0;

where

W(x(O), O) = 1(x(O), ) + Z(o, )neo (x(O), ) - D(x(O)),

and

Z(O X)-=(1- · )[1 -K(O)]
[ k(0) '

For a proof see Guesnerie and Laffont, p. 360. The expression W(x, 0) is the expected net

social benefit of using x units of the input and kn(.-) + Z( -)Io (. ) is another representation

of farmer profits. Finally, the term (1 - K(O)) l k(O) is the inverse of the hazard rate: the
probability that the farmer's type belongs to [0,0 + dO] given that his type is not less than 0 .

Assumption 2: W(x, 0) is strictly concave in x.

Assumption 2 ensures that the optimal input function is unique.
The Hamiltonian associated with the above optimal control problem is

H = W(x(O), O)k(O) + [ (0) +y (0)]k ()k(0).

The costate variable, |i(0), represents the marginal expected net benefit to society of using

x(0 )k(0) units of the polluting input. The multiplier function y (0) is the expected marginal

net benefit of relaxing the incentive compatibility constraint. The necessary conditions for

an optimum include

-H. = -Wx(x(O), )k(O) = '(0),

284 December 1995
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(9) H(p = [(0 ) + y (0)]k(O)= 0,

(10) H, = H =(p(O)k(O),

(11) Lt( )(p(9)=Y (0)(P(0)=0,

and the transversality condition:

(12) t(0)= 0.

Choosing the Optimal Input Function

We construct the optimal input function in two steps. In the first step we solve the above
optimal control problem while ignoring the monotonicity constraint on {x}, equation (4).
This step gives us the unrestricted inputfunction, denoted {x**}. In the second step we
inspect the unrestricted input function to see if there are any subintervals of 0 over which
(4) is violated. Among other things, we show that if x**'(0) 0 for all 0, then the optimal
input function, denoted {x*}, is identical to {x**}. The second step (discussed shortly) is
required if there are any intervals of x**'} over which equation (4) is violated.

The First Step in Choosing an Optimal Input Function. Given that p(0) = x'(0) is the
control, if the monotonicity constraint is ignored the necessary condition (9) becomes
H,( = t(0O)k() = 0, or Li(0) = 0. So, integrating (8) between 0 and 0 and using (12) gives

_ ~0
(13) (Q)- (0) = W(x*(s),s)k(s)ds =0,

0

where

(14) Wx(x** (),0)= IxH(x**(O),0)+ Z(0, X)nFx(x**(0),O)- D'(x**()).

Equation (13) says that the unrestricted input function must be chosen so that the expected
marginal benefit from using x*(0) units of input is equal to the expected marginal damage
it causes. Given that W is strictly concave in x, the input profile satisfying (13) is unique.
Equation (13) holds only if Wx (x(), 0) = 0 for all 0 in [0,0]. Hence, the regulator must
choose the unrestricted input function so that Wx (x, 0) = 0 for all 0 [0, 0].

After choosing the unrestricted input function {x**} the regulator checks to see if there
are any subintervals of ® over which {x**} violates the monotonicity constraint, (4). To see
how the unrestricted input function behaves, we take the total derivative of (14) with respect
to 0 and isolate the x (0) term by itself:

(15) x* (0) (x + z )- + zoxo
Hn, -D''+ znLx

The denominator in (15) is simply the second derivative of the Hamiltonian with respect to
x and is negative by Assumption 2. So {x**} is nonnegative only if (X +Z 0 )nx 0

Smith, Tomasi
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+ZHI Oyx > 0. Given that there are no restrictions imposed on Z and I 0x 0, it is impossible to
tell whether {x } is decreasing (or increasing) over ®, or increasing over some subintervals
of 0 and constant or decreasing over others.

Before discussing the second step, we make the following four observations. First, in
S-D the regulator incurs zero transaction costs, that is, X = 1. With zero transactions costs,
(15) is given by:

**'(9) = x 0, V0 t E.x (0) - lx VO .

With zero transaction costs (k = 1) the monotonicity condition is satisfied over the entire
domain ofx, implying that the monotonicity condition can be ignored. If so, then the optimal
input function is equivalent to the unrestricted input function. Also, by (14) the input function
satisfies the condition for efficiency (when = 1 ). Moreover, when X = 1 and n1 1x > 0, the
monotonicity condition implies that each possible report of the farmer's type is assigned a
different input level, so an input standard cannot be optimal. These results accord with those
of S-D.

Second, as suggested in the previous paragraph, even if h <1, if the unrestricted input
function is increasing over its entire domain, then the optimal input function and the
unrestricted input function are equivalent. Sufficient conditions for a nondecreasing unre-
stricted input function are

[X + Z (O, )]Lno (x(o), ) + z(e, X )n,,O (x(0), )> 0, v eO.

Third, in the presence of transaction costs, ex ante efficient pollution levels cannot be
attained. Ex ante efficiency requires that input levels be chosen so that marginal profits are
equal to marginal damages (nx = D'). By (14) this condition will never hold when X is less
than 1.

Finally, if the unrestricted input function is everywhere decreasing, then the optimal
function must be a constant function. In other words, the optimal incentive scheme is a
standard. To understand this claim recall that the unrestricted input function must satisfy the
following (for all 0 e o):

o 0

ip() = Jp'(s)ds = W,(x(s), s)ds =0.
o 0

Given that x' =(p, equation (11) can be rewritten as:

(p()i(9)= x*(0)J Wx(s),s)ds = 0.

Since the (unrestricted) input function satisfying ,I(0) = 0 is unique, if it is strictly decreasing
then it cannot be the optimal input function, {x*} {x** }. Given that the bracketed term is
equal to zero only if x* = x**, the term (p(90)i(0) is equal to zero only if xc* is the zero
function, implying x*(0) = x for all 0 E [60,0]; the regulator implements a standard.
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The Second Step in Choosing an Optimal Input Function. If the unrestricted input
function is increasing on some subintervals of ® and decreasing on others, then the optimal
input function will be a connected function composed of (a) (increasing) portions of the
unrestricted input function and (b) constant functions (line segments). The subintervals over
which the optimal input function is constant is equivalent to a standard. The regulator will
choose standards for some, but not necessarily for all, farmer types. The second step involves
determining exactly when farmer types will be regulated using standards (bunched).

Guesnerie and Laffont observed the unrestricted input function might assume a myriad
of potential shapes. However, for a discussion on how to choose the optimal input function
when the monotonicity constraint is violated we direct the reader's attention to figure 2. In
figure 2 the unrestricted input function is represented by the curve abcdefg. This unrestricted
input function is increasing on the intervals [, 0 2] and [04,0 ] and decreasing on the interval
[0 2,0 4 ]. In this case, the optimal input function will include an interval like [0, 5] where
the value of the optimal input function is equal to a constant value x°, for all 0 in
[01,05 ]. A farmer reporting any type in this subinterval will be allowed to use x° units of
the input; thus, the optimal regulatory scheme is a standard in this interval. The optimal input
function x , then, would look something like the heavy curve abdfg: increasing from 0 to
0 , constant between [01,05], and increasing from 5 to 0 to.

The constant function is determined by choosing the values x° , 01, and 05 to solve the
following problem:

05

f,(x, 0 )k(0)dO = 0,
07

x° =X (03); X° =x *(0).

Here we have three equations and three unknowns x°, 0 7, and 0 5. The top equation says that
the parameters are chosen so the expected marginal net benefit of input usage (conditioned
on 0 being between 07 and 0 5) is zero. For complete details on choosing these values see
Guesnerie and Laffont or Fudenberg and Tirole (pp. 303-6).

The Optimal Price Function

Once the optimal input function has been chosen, determining the optimal tax function is
straightforward. First integrate (7) between 0 and 0 to obtain the following:

0

7(0,0)- 7(0_,) = n (x(s),s)ds.
0

Since n(0, 0)= 0, we have

0

c (0,0) = J n 0) (x(s), s)ds = (x(0), 0 - t().
0

Substituting x for x and solving for t, we get the optimal input tax function:

Smith, Tomasi
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Input level

X(O

x(0)~x

x (0)

0 1 0 2 0 3 0 4 0 5 Type

Figure 2. Choosing the optimal input function

0

t*() =I(x* (),0) - J (x*(s),s)ds.
0

The optimal tax is equal to the farmer's true profit less J no (.)ds. The integral component
of the tax results from the farmer's private information and is the minimum amount she must
be paid to reveal her true 0. A farmer who reports a true type equal to the lower bound of
possible types makes zero profits. If the true type is interior to ® then the farmer earns an
additional "information rent" and the value of that rent is equal to the minimum amount he
must be paid to reveal his true type. To interpret this result, observe that the farmer's total
profits increase at a rate equal to rio (.). The potential gain to a farmer with 0 = 0° - A (with
A > 0) from choosing the contract designed for a type-0 ° farmer is approximately equal to
frl ()A. To induce truthful revelation of 0, the approximate difference in the amount the
farmer is taxed, t'(.)A, must just offset the potential benefit of misrepresenting his true 0.
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Conclusion

In this article we reconsider the single-farm model of Shortle and Dunn and demonstrate
that their results depend critically on an implicit assumption that there are no transaction
costs involved in tax implementation. When such transaction costs are introduced to the
model, we show that it is no longer possible to achieve the ex ante efficient level of
agricultural pollution. Moreover, in some cases, the optimal regulatory policy consists of
management standards.

Shortle and Dunn also consider the problem of controlling pollution from multiple
polluters. An extension of our approach to this case involves some complications that await
further research. In particular, in this case the contract and, hence, the payoffs to any one
farmer will depend on the messages and true types of all of them. We must then consider
the type of equilibrium notion most appropriate to the model. However, this line of research
is promising for providing insight into how the regulation of heterogeneous emitters would
be altered when the regulator can receive information from firms about their types.

In our article, as well as in that by Shortle and Dunn, it is assumed that, while the farmer
has private information regarding her profit function, the regulator could monitor the inputs
used. Thus, while there is adverse selection, there is no moral hazard. A number of papers
in the NPS literature have considered the moral hazard problem (e.g., Segerson; Xepa-
padeas). Preliminary work on the case where both forms of asymmetric information are
present has been recently undertaken by Laffont.

In general, the problem of controlling NPS pollution is a vexing one for policy makers
because of the diversity of informational deficiencies involved. Yet, the problem is an
important one to investigate, given that NPS pollution remains a major source of environ-
mental degradation. While the practical application of the kinds of incentive schemes we
derive here has yet to be demonstrated, the derivation of their properties and the parameters
they depend on is a vital prerequisite to their implementation.

[Received December 1994; final version received August 1995.]
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