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Data-driven Emission Model Structures for Diesel
Engine Management System Development

Markus Graht 2, Krister Johanssdnand Tomas McKelvey

Abstract—This paper discusses some specific data-driven delivery into the cylinder is more or less directly conteall
model structures suitable for prediction of NOx and soot emis- by the EMS while the composition of the air charge and
sions from a diesel engine. The model structures can be describedcynnder wall temperature are highly dependent on the past

as local linear regression models where the regression parameters . - . . -
are defined by two-dimensional look-up tables. It is highlighted engine history including the past EMS control of the air

that this structure can be interpreted as a B-spline function. Usig  SyStem components, e.g. EGR valve control, EGR cooling,
the model structure, models are derived from measured engine variable geometry turbine (VGT) and intake throttle sefin

data. The smoothness of the derived models is controlled by The air system is “driven” by the exhaust from the combustion
using an additional regularization term and the globally optimal hence the properties of the exhaust gas from the combustion

model parameters can be found by solving a linear least-squares . fl the diff t ai t ts. The ai i
problem. Experimental data from a 5-cylinder Volvo passenger influences the drirerent air Sysiem components. The aiesys

car diesel engine is used to derive NQand soot models, using a components and the cylinder comprise an interconnectqul loo
leave-one-out cross validation strategy to determine the optimal which has a dynamic behavior which is important to include
degree of regularization. The model for NG emissions predicts in order to accurately model the transient behavior of tial to
the NOx mass flow with an average relative error of 5.1% and gngine system. This dynamic dependence also includes turbo
the model for soot emissions predicts the soot mass flow with an . . .
average relative error of 29% for the measurement data used and compressor dynz_imlt_:s. The _C(_)mbustlon Process _results n
in this study. The behavior of the models for different engine Crankshaft torque which is the driving force of the vehi@g.
management system settings regarding boost pressure, amountincluding a vehicle model, and a driver model making gear-
of exhaust gas recirculation, and injection timing has been shifts and torque requests a full dynamic drive cycle can be
studied. The models react to the different engine management simulated numerically.

system settings in an expected way, making them suitable for Levels of o f nit id d ti
optimization of engine management system settings. Finally, the evels of emissions of nitrogen oxides (NPand soot in

model performance dependence on the selected model complexity diesel engines are limited by law. Hence, a simulation based
and on the number of measurement data points used to derive EMS design approach need means to also model the produced

the models has been studied. amounts of these matters. In this contribution we focus on
emission models which can predict the emissions of a diesel
engine given partial knowledge of the boundary conditiohs o
the combustion. Examples of such conditions are properties
Efficient design of advanced engineering systems requirefSingested air charge, engine speed, amount of fuel irjecte
a model based approach. A model is normally a simplifiggjection strategy and timing etc.
description of a complex scenario, physical unit or systemn general, models can be derived from two opposite direc-
which is tailored towards the intended use in the desigibns. The classical approach is to use first principles ritogle
process. This paper focuses on models and sub-models |&iding to multi-dimensional computational fluid dynamic
use in diesel engine management system (EMS) design &u#D) models combined with detailed models for the com-
optimization. bustion chemistry. Such models give insight into fundamlent
The EMS design is primarily driven by a goal to miniproperties of combustion but are less able to quantitativel
mize fuel consumption while keeping emissions within thgredict the levels of emissions and the computation times ar
legislative bounds. The engine emission certification e&ycl very long. Models of this type are described in detail in [22]
e.g. NEDC [11], include a large portion of transient openati and [24].
Hence, the engine simulation model for EMS design must beLess demanding is to use zero-dimensional or low-
at a detail level such that transient engine behavior can #nensional combustion models, which are based on first
modeled including emissions. principle models, but that are substantially reduced in ehod
From an EMS design perspective an engine model can demplexity. Examples of this are models for N@missions
decomposed into a number of interconnected sub-systemgsed on the extended Zeldovich mechanism described in
The combustion in the cylinder is primarily dependent o[8] and [1]. Although less computationally demanding, thes
the properties of the ingested air charge, temperaturesmiddels are too simple to give accurate predictive inforamati
the cylinder wall and how the fuel is delivered. The fuef13]. Another example of reduced models is a mean value
model for soot emissions described in [18].

1_Department 97500 Complete Powertrain Engineering, Volvo Canpo- On the opposite side of the scale is the use of experimental
ration, Gothenburg, Sweden

2Department of Signals and Systems, Chalmers University ofridoby, data.f_rom a specific engi_ne geometry where the bound.ary
SE-412 96, Gothenburg, Sweden conditions for the combustions are varied as much as pessibl

I. INTRODUCTION



Such data, of course, have excellent predictive perforemaremployed

for the cases covered in the experiment if measurement . -

errors can be neglected but provide no information about y(x, ) :ZO‘JBJ(‘”) )
engine conditions not included in the experiment set. If the =t

behavior of the predicted variable is assumed to slowly vawhere B;(x) are known functionsR™ — R, anda; denotes

in comparison with how densely the conditions are varigtie j-th component in the vectar. Often B;(x) are called
during the experiments, a smooth function can be used lasis functions or regression functions. Given the data the
interpolate between the experimental points. Such models parameter vectorx can be determined by minimizing the
known as data-driven, or black-box since the predictedwstp difference between the data outppitand the modef(z?, a)

are based on simple functions of the measured data. If asing a suitable metric. Employing the Euclidean distarxe a
interpolating approach is adopted the complexity of the @hoda metric the optimal parameter vector is

in terms of number of parameters is the same as the number N "

of measurements. In some cases when a very large amount of a2 arg minz ly' — Z%‘Bj(xz)HQ- (4)
measurements are at hand it might be required, for example o = =

due do storage requirements, to use less complex models, . _ _ _ .
Then the experimental data can be used to derive mody@s metric is favorable from a numerical point of view since

of lower complexity by minimizing the prediction error forth€ Criterion to optimize is convex and an analytical soluti
the measured data. Such an approach is also beneficial wRgHtS: Minimizing the Euclidean distance is also equivate
measurements are corrupted by noise. A lower model cof@XImizing the likelihood function, if measurement errars
plexity will suppress the influence of the measurement noiggSumed to have a Gaussian distribution [17]. The minirgizin
on the prediction performance (variance error). Howevsing: argument is the solution(s) to the set of linear equations

a lower model complexity increases the approximation error N n . 4
(bias error) and these two types of errors must be balanded ou Y “(y* — > a;B;(2"))Bi(a’) =0, k=1,....,n (5)
This is commonly known as the bias and variance trade-off. =1 j=1

Several different types of data-driven emission models §(&qyn as the normal equations. Employing a vector notation
described in the literature. Examples of this are models; the known function values

based on neural networks [2], [4], models based on Gaussian
processes [3], global regression models [5], and globzato B(z) £ [Bi(x), Ba(x), ..., Bn(z)] (6)
model approaches where a global model for the emissions . .
is constructed by switching or weighing between di]‘fererﬂ1e predictor can be expressed as an inner vector product
local models depending on the engine speed and injected fuel j(x,a) = oI B(x) (7)
operating point of the engine [21], [16], [14]. _

This paper will discuss some specific data-driven modgltroducing the vector

T

structures suitable for prediction of NOand soot. The 2 [ 1 9 N]T c RN ®8)
model structures can be described as local linear regressio y=Wovhe

models where the regression parameters are defined by tand matrix

dimensional look-up tables. It is highlighted that thisusture A L ) N1 T

can be interpreted as a B-spline function and we show how the B= [B(x ), B(z%),..., B(x )} ) 9)

globally optimal model parameters can be found by solvinge minimization problem in (4) can be rewritten as
a linear least-squares problem. Experimental data from a 5-
cylinder Volvo passenger car diesel engine is used to derive &
NOx and soot models, where a leave-one-out cross validation

approach is used to control the smoothness of the function, & matrix B has full rank andN" > =, the minimizing

vector & is unique and is given by
II. DATA-DRIVEN PREDICTION MODELS & = (BTB)—IBTy (11)
The basic assumption behind a prediction model is the o o
existence of a functional mapping(-) from the input space If the vectpry is in the range oB the model will interpolate
(domain),z € R™ to the output space € R (the codomain) the data, i.e.
also denoted as

L

argmin ||y — Ba|? (20)
«@

y'=9(z' a), i=1,...,N. (12)
y=f(z) )

Given samples of data pairér’,y?), i = 1,...,N it is
desirable to infer the functional relatiofy-). This inference
. . . w

can practically be achieved by employing a parametrlz?ﬁz
function

If n =N andB has full rank, the range d8 is R and the
model will be interpolating for any value of. Whenn < N

say that the model complexity has a lower dimension than
data and, in general, the model will approximate the,data

R ; i.e. |y —B@l||? > 0. The behavior of the prediction model for
y(w,0) = f(z,0) 2) z-values between data samplesis, besides the dependency
where « € R”™ is the vector of parameters. For practicabn the training data samples themselves, also dependent on
reasons most often a linearly parametrized model strudésurehow the basis function®;(x) are chosen.
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Fig. 1. lllustration of B-splines of degree 0, 1, and 2. Theifigshows one Fig. 2. lllustration of two-dimensional B-splines of degrée The figure

isolated B-spline and several overlapping ones. shows one isolated B-spline and several overlapping ones.

A. B-spline functions bivariate tensor spline functio®®? — R, can be expressed
B-spline functions are well suited for interpolating an@s -

approximating data-driven models [7], [8]. B-spline is gHor §(z,a) = Z Z aniBr (21) B; (z2) (15)

basis spline, and a B-spline is constructed by smoothlyrjgin
polynomial segments. The points on the indexing axis, where

the segments come together, are called knots. The shape : | i f order 1 is illustrated. The cladsas
B-spline depends on its degreeScalar B-splines of different ot two scalar splines ot order 1 IS liustrated. 1he classita
table lookup technique using linear interpolation betwee

degrees are shown in Figure 1, which illustrates the gene atl) lated val is al led bil . lati B
properties of a B-spline of degree tabulated values is also called bilinear interpolationr Bo

) . . ; . _given valuer = [x1,z2]7 within the square of the 2+2 axis-
« it consists ofg + 1 piecewisely constructed polynomials,” . . ) L
cach of degree points, the local interpolation af is given by
« the polynomial pieces join at inner knots. Y =0 + 7121 + Yoo + Y3T1%2 (16)
« at the joining knots, derivatives up to order— 1 are
continuous.
« the B-spline is positive on a domain spanned ¢y 2

k=1 j=1

gigure 2 the 2-D splines resulting from the tensor product

where v;, i=1,...,4 are selected such that= 4’ for the
four axis-point valuesr;. The 2-D tensor spline function
constructed from scalar splines of order 1 yields the same

knots, everywhere else it is zero. it lating funct the bil int lation @hok
o at a givenz, ¢ + 1 B-splines are non-zero. chehrﬁi%a;ng unction as the bilinear interpolation &inoxup

A function built up by B-splines is called a B-spline func-
tion. A scalar B-spline functio®R — R with a given knot
distribution can be expressed in a similar manner as in (3)B- Regularization
n The method of fitting B-spline functions to given data points
J(z,a) = Zajﬂj (2) (13) leads to the minimization problem defined in (4) and (10)
j=1 . If the matrix B has full rank, this minimization problem
has only one solution. However, if the matr® is rank
deficient, there are several solutions which minimize therer
In practice, this typically occurs when there are too few
gneasured data points available within some range of the B-
nepline function, and if the basis functions are not chosen
adequately. Also if the matriB is ill-conditioned the solution
to (10) most likely will lead to poor prediction models. To
handle this, the concept of regularization can be used. The
jdga is to introduce a penalty for the difference betweerBthe
spline coefficients corresponding to adjacent knots [20]s T
o results in a smoothing effect. A non-negative tuning patame
" regularizes the influence of the penalty, with large values
blz,0) = Zzaj’kﬁk’j () (14) Iegding to heavy smoothing and v?ce ve)r/sa. Includ?ng a term
for regularization the minimization problem becomes

wherey (z, «) is the function value for the input valug «;
is the B-spline coefficient for B-spline numbgrg; (z) is the
value for B-spline numbey at the input valuer, andn is the
number of B-splines used to build up the function. For a
spline of order 1 and a knot placing which coincides with t
dataz?, n = N andé; = y* and the B-spline will interpolate
the data. In this case the interpolation will be locally &ne
between two data samples. A multivariate functigfit —
R can be generated from scalar B-spline functions in seve
ways. Anadditive B-spline function can be defined as

k=1j=1

If scalar splines for each component of the vectoris
multiplied together atensor spline function is obtained. A main(||y — Bal]? +)\||DdaH2) a7)



where the regularization coefficiettis a tuning parameter, The model structure can be described mathematically as
and the matrixD, constructsd,;,, order differences of.. The n

first difference ofa, D« is the vector with elements; ; — 9 (z,2) = fo(xy,z2) + Zzl - fi (@1, x2) (19)
aj, j = 1...m. The matrixD; is sparse, withd; ; = —1 i=1

and d; ;41 = 1 and all other elements zero. By repeatin
this computation, we arrive at higher differencés,« is the
vector with elements{(a;+2 — aj41) — (aj+1 — o)} It is
highly unlikely that the possible null space 8 intersects
with the structured null space @, of dimensiond, leading
to that the constructioB” B + )\Dng has full rank and the
solution to (17) is

%/hereg)(:c,z) denotes the predicted emissian, and z, are
the input signals engine speed and injected fuel respégtive
z; are other emission affecting input signals to the model,
and finally fo (z1,22) and f; (x1,22) are model parameters
represented by two-dimensional bilinear interpolationpma
or equivalently, two-dimensional tensor spline functiaofs
degree 1.

Given a fixed knot-spacing in the space for the two-
dimensional spline functions, it is clear that the predicte
. . . N emissiony (x, z) is an affine function of the parameter vectors
For two-dimensional B-splines, the regularization maily « for each of the spline functions. Hence, the model structure

has to be adapted to be used in a wo-dimensional StrUCtuE%(n be written in the standard form (3). Fitting the model to

It can be noted that for two-dimensional B-spline functiongya4 including a regularization term is then given by (1e T
smoothing by means of regularization can be controlled-ing},oqel structure has been implemented for modeling ofNO

vidually_in the different axis djrections of thg B-;plinmh:ti_on and soot emissions from a passenger car diesel engine.
depending on which rows in the regularization matrix that

are included. Smoothing can be applied to only one of the )

axis directions, or to both directions. Also, smoothing ten A- NG« modeling

applied to act in both directions, but with different scglioy The formation of NQ is strongly dependent on the avail-

using different values for different rows in the regulatiaa ability of oxygen, and the temperature [15]. To include &hes

matrix. physical properties for the combustion process, the input
Regularization introduces a tradeoff between fitting thgignals chosen for the model for NGmissions, in addition

model to the data and smoothness of the model. Various meth-the engine speed and the injected fuel, are the injection

ods to find an optimal value for the regularization coeffitiediming, the pressure in the intake manifold and the ratio of

X are discussed in for example [10] and [23]. Here, a leavexygen in the intake manifold. Furthermore, as described in

one-out cross-validation strategy (LOOCV) is employedisThfor example [5] and [25], the NPemissions have been found

is performed by removing one of the data points, estimatirig correlate better with exponentials of different inpgrgils.

the model parameters using all other data points, and th@npossible explanation for this could be that the chemical

evaluating the prediction error for the point that was reetbv reactions responsible for NOformation have reaction rates

This calculation is repeated for each of the data points, adtld equilibrium with exponential behavior. Furthermoieg t

the root mean square error (RMSE) of the predictions fgodel structure is used to model a dimensionless measure

calculated. The regularization coefficients chosen such that of the NO¢ emissions. A dimensionless measure is created

the RMSE of the leave-one-out predictions is minimized. by dividing the NG mass flow with the engine speed and

injected fuel amount according to

~ 60- NO
[1l. DATA-DRIVEN EMISSION MODELS NOx = % (20)

2.5 Tl X2

The emission model structure introduced in [13] is a regreghere NOy denotes the dimensionless measure of the;NO
sion model where different emission affecting signals a@du emissions (-), NOx the NO mass flow (mg/s),z; the
as independent variables (inputs) and where all the regressengine speed (rpm), ang the injected fuel amount per cycle
parameters are given by two-dimensional bilinear intexppoh  (mg/cycle). The value 60 in the equation translates thenengi
maps with the engine speed and the injected fuel amountsged from revolutions per minute to revolutions per sespnd
inputs. Thus, for a given engine speed and injected amowitid the value 2.5 is the number of combustion cycles per
of fuel, the emissions are predicted by a linear regressiengine revolution in a five cylinder engine. The dimensissle
model and hence predict how changes in the independeméasure can be interpreted as mass of N@issions relative
variables affects the emission. The idea behind the modelinjected fuel mass. Instead of directly modeIng)X with
structure is that most of the actuators in a typical dieste regression model the logarithm of the emission level is
engine management system are controlled by a feedforwarskd. The complete structure for the f@odel is
map based on the engine speed and injected fuel. Therefore, . 3
using a regression model vyhere all regression parametws a 60 - NOx ) = fno (21, 20) + ZZNi g (@1, @)
are dependent on the engine speed and injected fuel, enables\ 2.5 - z1 - z2 =
the model to handle variations in emission affecting states (22)
that depend on speed and fuel without having to include themiere z;; denotes the injection timing;y, the fraction of
directly as inputs to the regression model. oxygen in the intake; 5 the pressure in the intake manifold,

ar = (BTB+AD.D,) " BTy (18)



TABLE | TABLE I

INPUT AND OUTPUT SIGNALS FOR THE MODEL FORNOx EMISSIONS INPUT AND OUTPUT SIGNALS FOR THE MODEL FOR SOOT EMISSIONS
Name  Description Unit _ i
Output signal: NOx  Estimated NQ mass flow gls Name  Description Unit
Input signals:  x; Engine speed rpm Output signal:  soot Estimated soot mass flow ma/s
T2 Injected fuel amount mg Input signals:  z; Engine speed rpm
ZN1 Injection timing CAD T2 Injected fuel amount mg
ZN9 Oxygen fraction in the intake - Zs1 Injection timing _ CAD
ZN3 Intake manifold pressure Pa Zs2 Global equivalence ratio ‘ -
Zs3 Partial pressure of oxygen in the intake Pa

and fno, fn1, fn, and fyg are wo-dimensional bilinear ., o riapje geometry, charge air cooling, an exhaust gas r

interpolation maps with the engine speed and the injected f%irculation (EGR) system with cooling, and has a displageme
as inputs. The output and input signals to the model foixN olume of 2.4 liters '

emissions are summarized in Table I. When optimizing the Measurements were performed on the engine in the com-

mc.)del' parameters 6'()r,]N(Oli7) theth component of 'the vector plete speed and load operating area, ranging from 750 to 4750
y is given bylog (25Tf2) where the superscrigton the ,m and from 0 to 60 mg of injected fuel per cylinder and
variables denotes theth value in the data set. This meangycle. Within the range, a number of speed/fuel operating
that the model is fitted in thivg domain. points were selected, and for each of the selected operating
points a set of experiments were carried out according to a D-
optimal design of experiment methodology, using the engine
. o ] speed, the amount of injected fuel, the injection timings th
Soot formation and soot oxidation are the two importanf,ty cycle to the EGR valve, and the duty cycle to the variable
mechanisms influencing the engine-out level of soot e”“SSiogeometry turbine (VGT) as control variables. For each setbc
The formation of soot is mainly dependent on the equivalenggeraﬁng point the engine speed was varied within a range
ratio. Large amount of soot is formed when combustion takgg 5o rpm, the injected fuel amount within a range of 10
pla.lce.at high equ_ivalen.ce ratios within the cylinder. Thgng, the injection timing within a range of 12 CAD, and
oxidation of soot is mainly dependent on the temperatuf§e duty cycle to the turbine and EGR valve within the full
and the availability of oxygen late in the combustion phasgorking range for each set of experiments. This means teeat th
[15]. To be able to represent the main mechanisms for sQgbrking range of the combustion system was exploited close
formation a_nd OX|da_t|0n, the S|gnals_ (_:hosen as inputs fer th, g5 fully as possible regarding the engine air system amd th
model, besides engine speed and injected fuel amount, WHj8ction timing, using only steady-state engine operatin
the global equivalence ratio, the injection timing, and thgya) 3713 steady-state measurements were performedeon th
partial pressure of oxygen in the intake manifold. Furthemen engine using this methodology.
also the soot emissions have been found to correlate betterw The fuel rail pressure and the injection strategy were set
exponentials of different input signals [5], [25]. Similaras  according to the settings in the engine management system,
for the NG, emission model, a dimensionless measure of thg4 therefore depended only on the engine speed and amount
soot emissions is created by dividing the soot mass flow wig injected fuel. The injection strategy varied betweemgsi
the engine speed and the injected fuel amount. The complgt&ninimum amount of two injections per cycle to using
structure for the soot model is given by up to four injections per cycle. Injection masses for the
different injections and dwell times between the injecsion

B. Soot modeling

60 - scot 3 were different for different engine speed/fuel operatioings.
log (25) = fso (z1,22) + Z Zsi * [s; (X1,22) The engine was equipped with sensors such that the pressure
010 T2 =1 22) in the intake manifold, the fresh air mass flow, and the exhaus

gas recirculation mass flow could be measured. The engine
was also equipped with measurement systems fok N@d
soot emissions. A Horiba chemiluminescence measurement
system was used to measure N@missions and an AVL
Smoke Meter was used to measure soot emissions. From the
MS, the engine speed, the injection timing, and the ingecte

| mass were registered.

wheresoot denotes the estimated soot mass flewthe engine
speed,r, the injected fuel amount;,; the injection timing,
zso the global equivalence ratio;; the partial pressure of
oxygen in the intake, and,,, fs1, fso and fs; are two-
dimensional bilinear interpolation maps with the engineesp
and the injected fuel as inputs. The output and input sign
to the model for soot emissions are summarized in Table II.

IV. RESULTS
C. Engine measurement data A. Model complexity investigation

To derive and validate the models, measurement data fronirhe complexity of the given model structure in terms of
a 5-cylinder Volvo diesel engine were used. The engine meimber of parameters is directly proportional to the nundber
equipped with a common-rail injection system, a turbockargspline knots used in the two-dimensional B-spline fundign
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Fig. 3. The performance of the model for N@missions for different number Fig. 4. The performance of the model for soot emissions for @iffenumber
of nodes used in the interpolation maps. The solid blue limsvsithe RMSE  of nodes used in the interpolation maps. The solid blue limsvstthe RMSE
of the logarithm of the dimensionless M@missions for the data points usedof the logarithm of the dimensionless soot emissions for tha daints used
to optimize the model parameters, and the dashed red line shenRMISE to optimize the model parameters, and the dashed red line shenRMSE
for the model validation data points. The mean value and stdndfaviation for the model validation data points. The mean value and stdrdieviation
for 100 models using different data sets for model parametémaattion and for 100 models using different data sets for model parametémigzttion and
model validation are shown for each number of nodes. model validation are shown for each number of nodes.

were tested for the models, ranging from two nodes to twelve
nodes in each of the two dimensions. For each of the different
number of nodes, equally distributed points between 750 and
4750 rpm and between 5 and 60 mg injected fuel per cycle
were added for the two input dimensions respectively.

From the measurements, 90% of the data points were
randomly chosen to be used to optimize the model parameters
and the remaining 10% of the data points were used for
validation. The parameters in the models for N(1) and
soot (22) emissions were optimized according to (17). A first L
order difference regularisation was applied to the dataditt e o .
where a leave-one-out cross-validation strategy was usseltt Measured NO, emissions (mgs)
the value of the regularisation coefficiehtaccording to the
description in Section 1I-B. The full procedure was repelaté:ig- 5. Measured versus estimated NMass flow when eight nodes are used

. . . . in all interpolation maps in the model for NGemissions. The blue dots show
100 times according to a Monte Carlo simulation methOdOIOQB{e data points used to optimize the model parameters, and dherosses
using different randomly chosen validation data sets faheathe data points used for validation.
tested number of nodes.

The results for the N©Q model and for the soot model,
using different numbers of nodes in the interpolation mafscreasing the prediction performance of the models.
are illustrated in Figures 3 and 4. As expected, the prexficti
performance of the models is poor when very few nodes .
are used. The performance increases as the number of ndate§Mission model results
increase until the number of nodes is around eight for bothUsing eight nodes, the model for NGemissions estimates
models. It can be noted that the prediction performance dadse NG mass flow (g/s) with an average relative error of
not significantly decrease again as the number of nodes &r&% for the validation data. An illustration of the model
increased even further. The reason for this is that the aegulperformance regarding NOmass flow is shown in Figure 5.
ization acts as a reduction of the effective model compfexiThe resulting interpolation mapgy,,« = 0...3, as defined in
and therefore prevent overfitting. Based on the predictigq@dl) are illustrated in Figure 6. The model for soot emission
performance of the models shown in Figures 3 and 4, tlestimates the soot mass flow (mg/s) with an average relative
number of nodes in the interpolation maps were chosen éoor of 29% for the validation data when eight nodes are.used
be eight both for the N@ and for the soot model. Using The model performance regarding soot mass flow is illusdrate
more nodes increase model complexity without significantip Figure 7. The resulting interpolation map,,:=0...3,

in (21) and (22). Different number of nodes, i.e. spline knot _w
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Fig. 6. lllustration of the resulting interpolation map&y,,z = 0...3, as

defined in (21), for the N@ model when eight nodes are used in all the map.
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Fig. 7. Measured versus estimated soot mass flow when eighs rodeised
in all interpolation maps in the model for soot emissions. Thes ldots show
the data points used to optimize the model parameters, and dherasses
the data points used for validation.
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Fig. 8. lllustration of the resulting interpolation maps,;,< = 0...3, as
defined in (22), for the soot model when eight nodes are uselt tileamaps.

as defined in (22) are illustrated in Figure 8. The interpofat
maps shown in Figures 6 and 8 do not have direct physical
interpretations. However, as discussed in [13], the emnssi
affecting inputs signals to the models can be chosen to be
represented as deviations from nominal values insteadsof, a
here, by their absolute values. By doing this, the resulting
interpolation maps would have meaningful interpretatidrise
interpolation mapsfx, and fs, could then be interpreted
directly as the logarithm of estimated N@nd soot emissions
during steady-state nominal engine operation, and the-inte
polation mapsfy,,: > 0 and f;,7 > 0 could be interpreted
directly as how deviations from nominal values for the vasio
input signals affect the emissions.

It can be noted that the prediction performance of soot
emissions is worse than the prediction performance of NO
emissions. This is expected, and there are several reasons

Jor this. First, engine-out soot emissions is a result of the

difference between formed soot and oxidized soot during the
combustion [15]. This means that two different phenomena
are relevant for the engine-out soot emissions, making them
in general difficult to predict. Also, soot emissions are enor
difficult to measure accurately than N@missions [19].

To illustrate the behavior of the models for N@nd soot
emissions regarding changes in controllable EMS settimgs,
engine operating point was chosen. The operating point is
defined by; engine speed of 1500 rpm, injected fuel amount
of 18 mg per cycle, pressure in the intake manifold of 1.3 bar,
ratio of oxygen in the intake manifold of 0.16, and injection
timing of 5.5 CAD after top dead center for the main injection
Using this operating point, the pressure in the intake nodahif
was varied between 1 bar and 2 bar, the oxygen ratio in
the intake manifold was varied between 0.15 and 0.21, and
the injection timing was varied between 4 CAD before top
dead center to 8 CAD after top dead center respectively. The
influence on estimated NQOand soot emissions due to these
EMS settings are illustrated in Figures 9, 10, and 11.

For the chosen engine operating point, the \Nénissions
increase and the soot emissions decrease when the injection
occurs earlier and vice versa. Also, the fl@missions in-
crease and the soot emissions decrease when the boosteressu
is increased and vice versa. Finally, the N@missions
increase and the soot emissions decrease when the oxygen
ratio in the intake manifold is increased (i.e., when the EGR
rate is decreased) and vice versa. All this is expected and
complies with basic properties of normal diesel combustion
as described in e.g. [15].

C. Measurement data availability analysis

An analysis on how the performance of the models forkNO
and soot emissions depend on the number of measured data
points used for the model parameter optimization has been
performed. First, 10% of the measurements in the complete
data set are randomly chosen as validation data points.exgiv
number of the remaining data points are randomly chosen to
optimize the model parameters, using the LOOCV method
for setting the value of the regularisation coefficient as
described in Section II-B. The performance of the resulting
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Fig. 9. The red star shows the estimatedyN&nhd soot mass flows for the Fig. 11. The red star shows the estimated\N&hd soot mass flows for the
engine operating point defined by; engine speed of 1500 rpjected fuel engine operating point defined by; engine speed of 1500 rpjected fuel
amount of 18 mg per cycle, pressure in the intake manifold of &r3fatio amount of 18 mg per cycle, pressure in the intake manifold of &r3 riatio

of oxygen in the intake manifold of 0.16, and injection timinf55 CAD  of oxygen in the intake manifold of 0.16, and injection timing%5 CAD
after top dead center for the main injection. The blue lineashihe estimated after top dead center for the main injection. The blue linenshthe estimated
NOx and soot mass flows when the injection timing is varied from 4 CADIOx and soot mass flows when the oxygen ratio in the intake manifold i

before top dead center to 8 CAD after top dead center. varied from 0.15 to 0.21.
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Fig. 10. The red star shows the estimatedyN&hd soot mass flows for the Fig. 12. The solid blue line shows the RMSE for the validatitata points
engine operating point defined by; engine speed of 1500 rpjected fuel Uusing the model for N§ emissions when different number of data points
amount of 18 mg per cycle, pressure in the intake manifold of ar3fatio are used to optimize the model parameters. The dashed red limes she

of oxygen in the intake manifold of 0.16, and injection timinfy505 CAD  RMSE for the validation data points when instead using aestareighbor
after top dead center for the main injection. The blue lineashtie estimated model approach. The lines show the mean values and standdediates of
NOx and soot mass flows when the pressure in the intake manifoldiadva the RMSE for 100 randomly chosen data sets. The figure showRM®BE
between 1 and 2 bars. of the logarithm of the dimensionless emissions.

model is validated by calculating the RMSE of the validationf parameter optimization and model validation data. Each
data points. For a given number of data points for modehlidation data point was estimated by the value of the point
parameter optimization, this procedure is repeated 108stimin the parameter optimization data set with smallest Eeelid
with randomly chosen data sets for parameter optimizatimh adistance with respect to the model inputs. The inputs were
model validation. Finally, the complete procedure is répega scaled according to the overall working range of the inputs
for different number of data points used for the model paramhen calculating the distances.
eter optimization. Eight nodes were used in all interpotati  The results of this study for N emission modeling are
maps in this study. illustrated in Figure 12, and for soot emission modeling in
As a comparison, the validation points were also esfirigure 13. As seen in the figures, the prediction performsnce
mated using a nearest-neighbor approach for each testedo$¢he B-spline models are uniformly better than the preaiict



different axis directions of the maps would be interestiag t

075 ‘ ‘ ‘ ‘ —— explore further. Also, the influence of the spline knot phaci
pline model ) N A
o7l ‘ , also needs further attention. Various methods for anadyzin
" optimal regularization coefficients and optimal knot plegi
065F 1 for B-spline functions are described in e.g. [20].
06l o The presented models for NOand soot emissions react

R on changes in the EMS settings for the controllable quastiti
1 { 1 boost pressure, EGR rate, and injection timing. This makes
ﬂ %% J{ the models useful in the application of optimizing EMS

055

RMSE [

05r settings with respect to NQ and soot emissions. In this

paper, the models have been evaluated using only steatdy-sta
engine operation. The main difference between steady state
engine operation and transient engine operation with ct¢pe
emission formation is caused due to the dynamics in the engin

0.45

0.4r

0 500 1000 1500 2000 2500 3000 3500 air system [12]. Since the models account for deviations in

0.35 L

# training data points

boost pressure and EGR rate, the models could potentially be

able to perform accurate prediction results also duringsient
Fig. 13. The solid blue line shows the RMSE for the validatitata points . P . Thi hp d b ified
using the model for soot emissions when different number of paiats are engine operation. IS, however, needs to be veritied.
used to optimize the model parameters. The dashed red line shevRMSE The equivalence between B-spline functions of degree 1 and

for the validation data points when instead using a nearegthbor model |; i ; ;
approach. The lines show the mean values and standard desiaf the linear/bilinear mterp0|atlon’ and the method to use BF@'

RMSE for 100 randomly chosen data sets. The figure shows theeRads functions to optimize the parameters in models consisting
the logarithm of the dimensionless emissions. of interpolation tables and maps could possibly be used

in several other applications. Interpolation based moadéls
similar structure are common in a typical engine management

performances when using a nearest neighbor approach. S¥stem [6], and also in several other systems.

expected, the prediction results improve when the number of

data points used to optimize the model parameters increase.

As an example, the number of data points that are needed in VI. SUMMARY

order for the prediction RMSE of the models not to increase ) o

by more than 10%, compared to when the maximum amountPaté-driven models for N and soot emissions based

of measurement data is used, is 1400 for thexN@odel and ©" two-dimensional bilinear interpolation maps have been
600 for the soot model respeé:tively. described and studied. The models have been expressed as

B-spline functions, and the model parameters have been
optimized using measurement data from a 5-cylinder Volvo
passenger car diesel engine. The concept of regularizhtisn
The performance of the models for N@nd soot emissions been used to control the smoothness of the functions, where
when derived using the B-spline method presented in thise degree of regularization has been chosen using a leave-
paper is better than the performance of the models whene-out cross validation strategy.
they are derived according to the method described in [13]-Using eight nodes in all the interpolation maps in the
This is achieved even though fewer nodes are used for fh@dels, the model for NQemissions predicts the NOmass
interpolation maps. flow with an average relative error of 5.1%, and the model for
Using eight axis-points in each direction for the four Bsoot emissions predicts the soot mass flow with an average
spline function maps means that each of the emission modgdfative error of 29% for the measurements used in this study
have a total oft x 8% = 256 parameters that are fitted usingrhe behavior of the emission models regarding changes in
the 3713 data points. The fitted model hence corresponds tgth@ EMS controllable parameters boost pressure, EGR rate,
data compression ratio Gf713/256 = 14.5. and injection timing has been studied. The models show
There are several advantages of this proposed methodap expected behavior that complies with well-known basic
optimize the model parameters. The models are descrig@dperties of diesel engine combustion.
mathematically using the B-spline approach, and the modelrinally, the prediction performances of the models depend-
parameters can be calculated directly as an explicit solutiing on the model complexity, in terms of number of model
to a convex linear least-squares problem. The models ave adgrameters, and also depending on the amount of engine

derived using all measured data points simultaneouslyclwhimeasurement data used to optimize the model parameters have
leads to that measurements do not have to be performedy&en evaluated.

the structured way as presented in [13], with a particuleallo
design of experiments.
The method of regularization is used to control the smooth- VIl. FUNDING
ness of the interpolation maps. The optimal smoothing param
eters in the different interpolation maps, and possiblp &fs ~ This work was supported by the Swedish Energy Agency.

V. DISCUSSION
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