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Technical Efficiency of Rural Water Utilities

- Arunava Bhattacharyya, Thomas R. Harris,
Rangesan Narayanan, and Kambiz Raffiee

Technical efficiency of rural water utilities is determined using frontier production functions.
An indirect production function is developed to model the two-step production process of a
local government-controlied firm. Data from 26 rural Nevada water utilities are used to
estimate inefficiency in terms of firm-specific variables. A multistep estimation procedure
is used instead of single-step maximum likelihood estimation. Model selection tests are used
to choose the best model. Privately owned utilities are most efficient; self-governing water
districts are the least efficient. Municipal governments operate the most and least efficient
utilities.

Key words: half-normal, indirect production function, model selection test, normal-expo-
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Introduction

Many rural citizens cling to principles of Jeffersonian democracy, desiring provision and
control of community services at the local or small jurisdictional level. However, Chicoine,
Deller, and Waltzer argue that small-scale operations provided by local jurisdictions,
particularly rural, are inherently inefficient and costly. Some studies indicate that structural
and managerial limitations, in addition to federal and state government mandates, have
hampered both the effectiveness and efficiency of small rural governments (Sokolow;
Seroka; Deller 1995).

Not only does small staff size make monitoring and evaluating public-service provision
difficult, but often the distance separating these communities makes jointly providing public
services impractical (Cigler). Given local budget constraints and federal mandates, effi-
ciency in providing public utility services and commodities, such as water, is imperative.
However, little empirical research has examined the technical (production) efficiency of
small rural governments (Deller 1992). This study attempts to determine the technical
efficiency of rural water utilities and to identify the most influential factors.

Small rural government effectiveness can be evaluated with Inman’s two-step decision-
making process, where the first step corresponds to provisionary decisions and the second
step refers to production-related decisions. The provisionary effectiveness addresses the
local officials’ ability to develop policies to raise and allocate necessary revenue for the
production of various services. The production decisions refer to the purely technical process
of transforming inputs into public goods and services. The second step of the process is not
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independent of the first. Provisionary decisions, especially budget constraints, affect pro-
duction decisions. Earlier studies mainly look at production efficiency, independent of the
provision decision (Deller and Halstead; Deller and Nelson; Deller 1992). This article
integrates both production and provision restrictions to address production inefficiency of
rural water-supply systems.

Since the 1977 publication of Aigner, Lovell, and Schmidt, the use of frontier functions
in estimating firm-level technical inefficiency has gained momentum. The error term of a
frontier production function has two components: one that allows for random error around
the frontier, the stochastic element of the frontier, and the other for one-sided error, the
inefficiency effect. The random error results from factors beyond the firm’s control, for
example, weather, strikes, and damaged products. The one-sided error term measures
deviation of the observed production from the frontier production, which is under the control
of a firm. Therefore, the technical inefficiency under a frontier specification can be explained
in terms of firm differences. We not only quantify the deviation of the observed production
from the frontier production, but we also explain the deviation in terms of firm-specific
variables.

Estimating a frontier specification requires decomposing residuals of the estimated
production function into white noise and technical inefficiency effects. For this, the distri-
bution of the one-sided error term must be specified. Four different distributional assump-
tions have been used in the frontier literature to specify the one-sided error term. These are
(a) truncated-normal, (b) exponential, (¢) half-normal, and () gamma. The shape or position
of the estimated frontier may be affected by the choice of distribution (Stevenson). However,
few studies have attempted to statistically determine which particular distributional assump-
tion most closely follows the data-generating-process (DGP).' In this article, model selection
tests are used to select the distributional form for the one-sided error term, closest to the
DGP.

Specifying and estimating standard frontier models relies on strong distributional as-
sumptions about the error terms and their interrelationships. We use a two-step estimation
procedure to minimize the need for strong distributional assumptions (Kumbhakar and
Hjalmarsson; Heshmati and Kumbhakar). Since technical inefficiency is under the firm’s
control, it is likely that a model that explains technical efficiency in terms of firm-specific
variables would have higher explanatory power. In this study, the likelihood dominance test
(Pollak and Wales) is used to determine whether such a model has better explanatory power
than a standard stochastic frontier model. If selected, such a model can directly address
policy issues because the factors influencing the firm’s level of efficiency can also be
identified.

Following Averch and Johnson, researchers have attempted to determine ownership
effects on the efficiency of privately and publicly owned utilities, which face different
rate-of-return regulations. It is often argued that private utilities overinvest in capital (capital
padding) to justify high rate of return or prices. Therefore, in this study, private and public
utilities are treated differently.

lCowing, Reifschneider, and Stevenson and Reifschneider and Stevenson have examined and estimated inefficiency under
different distributional assumptions. Their results indicate a wide variation in the expected value of the inefficiency disturbances
under different distributional assumptions. Howevet, no statistical test has been performed to compare the alternative models.
Recently, Bhattacharyya, Bhattacharyya, and Kumbhakar have used model selection tests to compare alternative models.
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Although extensive research has been done to examine and compare the performance of
public and private utilities, little research investigates the possible differences in efficiency
levels among publicly owned utilities, their varying regulations and responsibilities, and
their differing administrative structures and mode of operations. This study examines these
possible differences. At least three types of public ownership can be found among rural water
utilities: municipal, county, and special district-operated water systems. Given that munici-
palities and counties offer an array (or package) of public services, competition among public
service providers may increase efficiency and gain in economies of scope. On the contrary,
the special district water purveyors, specialized units with the primary goal of supplying
water, lack economies of scope resulting from administering an array of public services.
This study explicitly introduces alternative ownership effects into the empirical models.

Model

As explained earlier, the supply of local public goods is assumed to follow a two-step
process: what services to provide and how to provide them cost-efficiently. The local
government’s provisionary decision (first step) is assumed to set the maximum expenditure
for production of the sth public good or services, that is, water supply system in this study.
In the second step, the utility or the production unit maximizes output, y, subject to the
expenditure constraint.

The optimization problem in the second step, therefore, is

nH max y = 0(X, Z),
2) s.t: C—-WX=0,
3) Xz0,,

where y e®! is total output; W e R", is the price vector of variable factors: X e R,
Z eRY is the vector of quasi-fixed inputs and control variables; 0, is a null vector of
dimension n; and C is expenditure. The production technology of a utility is represented by
¥ =0("). All constraints in the above problem are written in inequality form to allow for the
following possibilities: (a) the budget constraint may not be satisfied with equality, and (b)
the quantity of variable inputs is nonnegative. Based on the above criteria, local officials
select the optimal level of inputs given the vector of variable factor prices (W) and quasi-fixed
factors and control variables (Z). Solving the first-order conditions yields the following
optimum values of the endogenous variables: X=X(W,C, Z), A = A(W,C, Z), and
- I'=G(W,C, Z), where A and I are the Lagrangian multipliers of constraints (2) and (3),
respectively.” Substituting the solution of X into (1), the optimal value of the objective
function is obtained as:

4) y=3W,C,Z).

%At the solution point, one or more of the Lagrange multipliers, & and [, could be zero indicating that the associated
constraint is not binding. However, we assume that the Lagrange multipliers are nonzero.
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Equation (4) is an indirect production function (IPF). With an IPF output is a function of
exogenous variables—prices of variable inputs (W), expenditure (C ), and quasi-fixed
inputs (Z). The advantages of such an IPF specification are () it defines the production
function of a water utility conditional on the provisionary decision taken by the organization
in step one of the decision-making process; () the classic problem of simultaneity bias
involved in estimating a single-equation production function is avoided; and (c) the impact
of change in budget on production can be directly examined.

A natural measure of technical inefficiency of a production unit is the Farrell’s measure,
defined as deviation of the observed output from the “frontier” output level. A two-compo-
nent error term, defined as & = v —1, is appended to (4). The error component T captures
technical inefficiency of the representative water utility defined as deviation of the observed
output from the frontier output, and v is a random error term. The term T is nonnegative,
that is, T 2 0. If T =0, the firm attains its production frontier which is stochastic due to the
presence of the white noise term v. The more realized production falls short of the stochastic
frontier, the greater is the level of technical inefficiency. The stochastic frontier IPF is

(4.1) y=3W,C, Z)exp(e).

To impose a priori minimum restrictions on the underlying technology and to allow for
Farrell’s measure of technical inefficiency, a short-run IPF for a typical water utility is
approximated by a translog functional form as:

%) lny=a0,+Za,.1nWi +Z°‘,/ InZ; +a, lnC+%{ZZo¢” InW,1In W,

i= =1 i=1 i=1

+ZZOLM InZ,InZ, +0L“.{1[1C}2} + ZZOL” InW,InZ,
J=l4= i=l j=1

+ZOL,(_ InW,InC+ Zajc InZ, InC+e.
i=1

J=1

Symmetry and the homogeneity of degree zero in input prices are imposed on the [PF. The
symmetry condition requires

Oy =0y O, =0, j =0, Op=0, and a;,=o,.

The homogeneity condition requires

" n
Z(x,+oct,=0, Za,‘,+aw=0 Vi=1...,n,
i=1 ’

=1

n n
Zah, +a, =0, ZOLU +a,=0 Vi=1l...,m
=1 i=1

The specification of (5) with the imposed conditions captures technical inefficiency of a
water utility. The constant expenditure input demand function for the ith input can be derived
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from the IPF using Roy’s identity, that is, X; =—((0y/0W;)/(dy/0C)). This enables the
share of the ith input in total variable cost to be determined as:

o+ a,InW+>a, InZ +a,. InC

dlny/d8Inw, ; T ; o

“oiny/omC oy D +on
Y a‘.+oct.clnC+2cx,.(,an,.+Zaj(,anj

i=1 =

(6) Si =

where S; =W.X,; / C, and &, is an additive error term. The numerator of o, is the elasticity
of output with respect to the price of the ith variable factor, and the denominator is the
elasticity of output with respect to the producer’s budget.

Equations (5) and (6), with symmetry and homogeneity conditions imposed, define a
complete system of equations. The input price vector is defined as W =[W,, W,, W,, T,
where the subscripts, £, L, and M denote three variable factors; energy, labor, and materials,
respectively, thatis, X =[X,, X, ,X,,]". The vector Zis definedas Z ={Z,,Z,,Z,], where
the elements of Z are capital (K), input-water (P), and density of population (D), respectively.
The budgeted expenditure is defined as C = Zi WX,.

Rural water utilities face different sets of regulations depending on their organizational
form. This difference in ownership forms may affect the decision-making process of these
water utilities, and these effects can be captured by adding another additive term to the error
component of the stochastic translog IPF and the share equations. Since it is reasonable to
assume that the ownership effects are fixed across firms with similar ownership structure,
these error components are introduced as dummy variables for each ownership group in the
IPF. These ownership attributes-are assumed known to the firm but are not observed by an
econometrician.

The ownership-specific dummy variables are introduced in the IPF in (5) as follows.
Since the input-share equations are derived from a translog IPF, interactive variable
DUM,, x InW, is introduced into the production function, where DUM,, is a vector of the

ot ot
ownership dummies, and ¢ = 1,..., 7T indexes various ownership forms. Such a specification
imposes cross-equation restrictions on the fixed-effect parameters between the production
function and the share equations. By doing so, the unobserved organizational characteristics

are introduced not only in the IPF but also in the share equations. The term Z:’a ;InW, of
DUM )InW,,
and the parameter o, in the share equation (6) is replaced by the term (&i +

> la,,DUM,

ot

the production function in (5), therefore, is replaced by Z;’(&i + Z:I(x

ofi

).Given this specification, appropriate adding-up constraints must also be

n—1

imposed on the fixed-effect parameters as o, = — o ;. So whether structural differ-

otn =] "ol
ences exist among the water utilities regarding hiring of variable factors due to the
differences in ownership forms can be examined by testing the significance of o ,; parame-
ters individually and/or jointly.

The primary goal of frontier methods is to identify inefficiency. A question of interest is
whether inefficiency occurs randomly across firms or whether some firms have predictably
higher inefficiency than others. If the occurrence of inefficiency is not totally random, then
it should be possible to identify factors that contribute to inefficiency. Factors causing

oti
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deviation from the production frontier are under the control of the firm. The level of
inefficiency would likely be better explained in terms of firm-specific factors. These factors
are incorporated directly in the model by specifying the inefficiency parameters in terms of
firm-specific variables.” Instead of assuming that E(t) and V(t) are invariant across firms,
as in the standard frontier specification, they become firm-specific which allows estimating
inefficiency and explalmng inefficiency in terms of firm differences.

Let t be a function of a vector of firm-specific variables, O € R¥, as:

(7 Tr=W(@ 0,

where f=1,..., F indexes firms, 1 1s a nonnegative random variable which captures part
of 1nefﬂ01ency, and Q includes the firm-specific variables that explain the extent to which
the observed production level falls short of the corresponding stochastic frontier production
level. Detailed discussion of the specification of O vector is provided later in equation (12)
and in the data section. Both 1, and v ' are assumed to have means and variances that are
invariant across firms, that is, E(t A=VOEC)=y()A and V()= v () Vi)
=y (-)*B. Thus, y () is firm- -specific and & and B are constants. If y () 1s a constant, the
model reduces to a regular stochastic frontier (composed error) model. Therefore, we can
statistically test both hypotheses with this specification.

Estimation

Since the number of parameters to be estimated is greater than the number of available data
points, a simultaneous-equation estimation technique is used rather than a single-equation
estimation method. This increases the number of effective data points by the factor of the
number of additional equations. The system of equations can be estimated using the
maximum likelihood (ML) method, and for that a set of assumptions regarding distribution
of the error terms y, t©, and v and their interrelationships are required. Without loss of
generality, these models can be estimated in two steps (Kumbhakar and Hjalmarsson;
Heshmati and Kumbhakar; Bhattacharyya, Kumbhakar, and Bhattacharyya). First, the
parameters of the IPF and its share equations are estimated simultaneously. Second, the
parameters associated with technical inefficiency are estimated conditional on the parame-
ters of the production function. Given all estimated parameters, firm-specific technical
inefficiency can be calculated as proposed by Jondrow et al. The advantage of this two-step
estimation method lies in its independence from a set of strong distributional assumptions
regarding the error terms and their inte:rrelationships.4

Since E(t ;) =y ()4, the production function in (5) is extended by adding y () to it.
Failure to include y ,(Q; B) in the production function leads to biased and inconsistent
parameter estimates, especially if the variables in the y (Q; B) function are not orthogonal
to those on the right-hand side of the production function. The resulting production function
is

3See Battese and Coelli for the advantage of such a specification, relative to that of running a separate regression of the
predicted inefficiency estimates on some firm-specific variables.

At the first step of the two-step estimation process, no distributional assumption other than zero mean and constant variance
is needed on the error terms of the IPF and the share equations. The error terms across equations are allowed to be correlated.
Distributional assumptions on the one-sided error term and the random error term are needed in the second step for estimation
of the inefficiency parameters. In the case of a single-step ML estimation, a set of strong assumptions are needed not only to



Bhattacharyya, Harris, Nraayanan, Raffiee Technical Efficiency of Rural Water Utilieis 379
(8) lny/_y/(WZCDU ()t’(x‘ (X, a‘())+\V/(Q B)+8/a

where y () is the right-hand side of the translog IPF in (5) with homogeneity and symmetry ‘
conditions imposed and ownership-specific dummy variables included.

The error vector (¢ ;, §,,) is assumed to have zero mean and constant variance-covariance
matrix and is mdependent across utilities. Since there are (» —1) independent input share
equations, one of them is dropped to avoid singularity of the variance-covariance matrix of
the share equations. Thus, we have a system of nonlinear seemingly unrelated regression
(NLSUR) equations, where the error terms are correlated across equations. The multivariate
normality assumption on the error vector is not made. Because of heteroskedastic error terms,
parameter estimates, except o,, are consistent but not asymptotically efficient. Het-
eroskedasticity-consistent standard errors are obtained using White’s correction (White). >

Next, the predicted residuals, B,, of the production function are obtained using the
consistent parameter estimates, & and o, that is, excluding o, and setting [3 0. B, ,
therefore, contains all inefficiency factors and white noise errors as:

9 By=a,+e, =0, -y (N, +Vv,.

At this step, distributional assumptions regarding 1, and v, are needed to develop the
required log-likelihood function to obtain consistent estnnates of the rest of the parameters.

Four different distributional assumptions have been used in the literature for specifying
the one-sided error term, 1 ,: (@) truncated-normal, (b) half-normal, (c) exponential, and (d)
gamma. In this study, instead of assuming any particular distributional structure as a
candidate for inefficiency specification, the first three distributional assumptions are tested
to determine which particular one follows the DGP most closely.(’ Model selection proce-
dures for nonnested models, as proposed by Vuong, are used to determine the appropriate
distribution for specifying the one-sided error term of the translog IPF. However, for all three
distributional specifications, the random error part (v,) of the composed error is assumed
distributed normally with zero mean and constant variance, that is, v, ~ i.i. d.N(0,c ‘,)

The most commonly used distributional assumption in the literature for the one-sided
error term 1, is the half-normal, that is, 1, is independently distributed, such that is1 %
obtained by truncation at zero of the normal distribution with mean zero and variance o!
Under a half-normal specification with normally distributed v, the log-likelihood functlon
for utility £, following Aigner, Lovell, and Schmidt, can be expressed as:

1 1 ) g/ﬁ r
(10.1) InLyy, =A—Elnc§-—gs;-+ln® ]
wherecs?,- =’ +\y_,-(-)2crl2,64,- =y (), /6,e,=v, -1, =B, —a

®() isthe cumula-

0’

SWith heteroskedasticity the estimated variance-covariance matrix is not consistent. The White correction (1980) does not
altel the estimated parameters but provides a consistent estimate of the variance-covariance matrix of the estimated parameters.

A gamma distribution has mainly been used for deterministic frontier specifications. Gamma-exponential (Greene 1990)
and gamma-normal (Beckers and Hammond) models have been theoretically proposed, but empirical application of either
stochastic specification greatly increases the complexity of estimation procedure (Greene 1993). Moreover, Ritter and Simar
show that there are other major problems in using a normal-gamma frontier model.
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tive standard normal distribution function, and A is a constant which can be dropped from
the estimation.

Under an exponentlal distribution specification of the one-sided error term, 1,, with
v, ~iid NO,c 2y, the log- hkehhood function for utility £, again following Aigner, Lovell,
and Schmidt, can be expressed as:

2 8/- 8/- o,
(10.2) lnLNEf ~InG , +2 S ———+In®| - - |,
G/- G/- G, cy/.

where E(t )=6 , =y (), and V(1 ;) =6} =y ,()’c].

Stevenson has argued that the zero mean assumption in Aigner, Lovell, and Schmidt is
an unnecessary restriction. Instead, the one-sided error term 1 + can be taken as a variable
obtained by truncating the distribution of a variable with possibly nonzero mean at zero.
Under a truncated normal specification for the one-sided error term 1, with

;~iid N@O,c ‘,) the log-likelihood function for utility f'can be expressed as:

’ 1 (e, —n) i n
(103) lnLTNfz—Incx—E—;G%——lnd) W +In®d G* s
where G2 =G§»+ci, u =(ciu—c.2,-sf)/0.f, and 0'*2 =(cs.";o§)/(csf,- +o2).
Maximizing each log-likelihood function (10.1-10.3), summed over all utilities, gives
consistent estimates of the parameters associated with the estimation of technical ineffi-

ciency, that is, a,, 6/, 62, p, and B ¢+ Since B, is not observed, it is replaced by:

ay 3,.=1ny-[2(a +Za0,,DUM0,)an,.+z&lian/+d,,lnC

i=t j=l

+E{iiaﬂan1nW+iia InZ;InZ, +a,.{InC} }

i=l I=] j=t g=1

+iia InWInZ; +Zoc 1nW1nC+Zoc InZz, lnC]

i=l j=1 i=1

which converges in distribution to B, asymptotically as as and o are consistent estimators
of as (Griffiths and Anderson).

To incorporate firm-specific effects in efficiency estimation, a linear function approxi-
mation of w (Q,) is used in estimation. It is

(12) v, =B,+Bp InPL+Pg InSL+ BSIDUMS] + BSzDUMS2
+BDUM; + B o DUMgp, + B pyy e PMC,

where PL is the total mile length of distribution pipelines; SL is the system loss of water in
million of gallons; DUM;s are dummy variables to capture differences in sources of water
inputs; DUM is a dummy variable that captures whether a water utility treats water before
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delivery,; DUMj, is a dummy variable that accounts for a utility that only supplies water or
a utility that also treats sewer, and PMC is the percentage of metered connection. These
variables are discussed further in the data section.

Ifall B parameters associated with firm-specific variables are zero and 3, =1, then the
half-normal and normal-exponential models represent the corresponding models specified
by Aigner, Lovell, and Schmidt. Under similar conditions, the truncated-normal model
reduces to the one specified by Stevenson.

Tests for Model Selection

Two different model selection tests are used to select the appropriate model. First, the
likelihood dominance criterion (LDC) is used to select between models with inefficiency
specification in terms of (12), that is, Model A, and the standard frontier model, that is,
Model B, under each of the three distributional assumptions.7 Next, the Vuong test is used
to select the appropriateé model from the two strictly nonnested models. A sequential test
process is followed to select among the competing models. That is, if the truncated-normal
model (Model I} is better than the normal-exponential model (Model II), and Model 1I is
found to be better than the half-normal model (Model III), then Model 1 is chosen. But in
the second test, if Model III turns out to be closer to the DGP than Model 11, then another
test is done between Model I and Model 111 to select the best of the three competing models.”

Likelihood ratio tests to select between two competing models can be conducted by
evaluating the test statistic ST = [[(F—1)/ F] x t,. In ST, ¢, is the ¢-statistic of the regres-
sion of a series of one, {1}, on m, where m, is the difference between the log-likelihood
values of two models, for example, F; and G, evaluated at each data point and ' is the total
number of observations. If the estimated test statistic S7 > €, then the null hypothesis that
the two models are equivalent is rejected in favor of F being better than G, where € is
the critical value from the standard normal distribution. If, on the other hand, ST < —€, then
one rejects the null hypothesis in favor of G, being better than Fj. If |ST|<C, then one
cannot discriminate between the two competing models given the data.

Efficiency Estimates

Given the parameter estimates, the i.i.d. component of technical inefficiency can be esti-
mated for both distributional assumptions from the conditional mean of t , given a.,-(f 1)
or its mode (v ). For the truncated-normal model the conditional mean is

(L. /c‘s)].

(131) E[‘clflsf]:T’f = U« +0-~|:(D(ﬁ*/6) y

and the mode is

"The LDC prefers Model A over Model B if Ly — L, <[C(N, +1)=C(N, + 1)}/ 2; and Model B is preferred over Model
Aif L, —L,>[C(N, =N, +1)~C(D]/2, where L, and L, are the values of the log-likelihoods of Models A and B,
respectively; N, and N, are the number of respective independent parameters in Models A and B; and C(N) is the critical
value of the chi-squared distribution with N degrees of frecdom. If two hypotheses have the same number of parameters, the
one with a larger likelihood value is preferred in that case.

$Two models F, and GQ are strictly nonnested, ifand only it f; N G; = ¢. Models 1, Il, and I11 are strictly nonnested because
each of them follows a different distributional assumption (Vuong, p. 317).
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o (A, iffL>0;

0, otherwise,

where ¢(-) is the standard normal density function. Similarly, for the normal-exponential
specification, the conditional mean and mode, respectively, can be expressed as:

D P T A
(14.1) Elty le,]=%,, =6, A/~+¢( ') :
. . (D(Af)
- 6,4, ifd, >0
(14.2) Mty le =1, = / =
: ' 0, otherwise,

where /AI_,. =(g, /6,-6, /cAsf). For the half-normal specification, the conditional mean of
T, given g, is

(15.1) ey e 1=% 1, =i +Q{MJ-

(fi/$) ]
and the mode is

- n, ifg, >0
(15.2) My le =Ty, = { ’

0, otherwise,

where p, =876 /(1+87) and 9 =870 /(1+87)”. Anindex oftechnical efficiency (TE)
is then estimated from:

(16) TE; =exp(~t,), and/or T~E,/':eXP(‘;,/‘)'

The full-efficient utility has technical efficiency of 1.

Data

The data set used in this study was collected by surveying 26 rural Nevada water utilities in
1992. The water utility companies of rural Nevada differ greatly in size, composition, service
diversity, water-input accessibility, and ownership form. Descriptive statistics of the vari-
ables used in the study are reported in table 1. Prior to estimation the data are normalized
such that the mean of each variable is one without affecting shares or other proportions.
Variable inputs are classed into three categories: energy (X;), labor (X,), and materials (X,,);
measured in thousand kilowatt hours (KHW), labor hours, and thousands of dollars,
respectively. Energy price (W) is obtained by dividing the total energy cost by KWH of
energy used. The unit price of energy, therefore, includes all fixed costs (charges) associated
with energy use. The labor price (W) is calculated by dividing labor cost by the total hours
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Table 1. Summary Statistics of the Variables

Variable Description Mean SD
E Energy (1,000 KWH) 460.49 669.69
L Labor (1,000 hours) 6.09 6.34
M Material costs ($ thousands) 26.88 39.26
W Energy price ($/1,000 KWH) 62.31 25.97
W, Labor wage ($/hour) 10.30 4.08
Total expenditure (§ millions) 90.99 91.50
y Water supplied (million gallons/year) 236.77 265.43
Zp Water input (million gallons/year) - 258.08 296.49
Zy Capital ($ thousands) 1,346.90 1,587.00
Zp Population/square mile 1,163.10 2,889.10
PMC Metered connections/total connections 0.71 0.44
PL Distribution pipe length (miles) 26.32 37.85
SL System water loss (million gallons/year) 23.21 41.50
Numbers
DUMp=1 Firms treating water 10
DUMg, =1 Firms with surface water 13

DUMg, =1  Firms with groundwater
DUMgp =1  Firms with water and sewer
F Total number of utilities 26

of labor used by a utility, assuming a total of 2,040 working hours per person in a year. For
materials, defined as a composite cost of all materials used, no price data are available.
Assumed constant across utilities, materials price becomes the numeraire in estimation
(Eakin and Kniesner). Output (y) is the total water supplied in millions of gallons by a utility
(net of system loss) per year.

Wide variations across utilities are observed regarding variable inputs use and their
prices. Variation in energy use and its price is due to the following: (a) utilities’ operations
size, (b) volume discount on energy consumption received by large utilities, and (c)
water-input sources. A utility that uses groundwater usually consumes more energy com-
pared with a utility that draws from a mountain lake or spring. Variation in labor input price
may reflect local market conditions and the structure of the institution. Some utilities in our
sample are very small and only hire part-time labor for some specific operations. As a result
their per hour wage rate is low compared with a utility that hires full-time labor.

One major problem in a study of water utilities is how to account for the water input.
This is one of the most important inputs, but pricing owned-water input (from owned-
sources) is very difficult because there is usually no competitive market for that water. Some
researchers like Ziegler and Bell use a two-step method to determine the price of owned
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water, specifying a relationship between the expenses of self-supplied water and the quantity
of water. Costs associated with drawing water depend on the type of water-input sources.
Some studies have attempted to measure the imputed value (opportunity cost) of owned
water and have used the price of purchased water as a price estimate (Teeples and Glyer).
Due to the difficulties associated with obtaining data for estimating the imputed cost of
owned water input, Zp, especially for the rural water utility companies, water input is
introduced as a control variable in this study following Feigenbaum and Teeples. The total
amount of water produced (million gallons) by and/or available to a firm for delivery during
a year is considered as water input.

In addition to water input (Z,), population density (Z,) and capital (Z;) are introduced
as control variables. Since most water utilities are natural monopolies and by regulation they
must serve a given geographical area, population density plays an important role in defining
their network infrastructure. Densely populated areas require higher water pressure, more
fire hydrants, and frequent repairs and maintenance. Population density (Z),) is defined as
the service population per square mile of an area served,; capital (Z) the current value of the
water utilities’ assets.

The variables used in the second step of estimation for explaining inefficiency of a utility
in Model A are DUMj,, DUMSl , DUM,, , DUM;, PMC, InPL, and InSL. This may not be
an exhaustive set to explain technical inefficiency, but technical inefficiency departure from
the frontier can be systematically explained in terms of the above set of variables. Technical
efficiency of a rural water service may depend on the size of operation and vintage of the
infrastructure. Total length of distribution pipelines (PL) is used as a measure of the size of
operation. The system loss variable (SL), the quantity of water loss in the distribution process
due to leakages and breakdowns of pipelines, is introduced to capture the vintage of
infrastructure. There would be higher system loss and more maintenance the older the
infrastructure becomes. Thus, higher system loss will not only widen the gap between the
observed output and the frontier output but also would increase the water delivery cost.

The service quality depends partly on the product pricing structure. With metered water
service, customers pay for blocks of water used and the rates are usually progressive. The
administrative cost of metered pricing is high compared to flat-rate pricing. However,
Bhattacharyya et al., show that metered service makes users conservation-conscious and
makes utilities more efficiency conscious. This is because through metering the utility
becomes aware of leaks for early repair and possible areas of overcapacity. This in turn helps’
a water utility to plan for a more efficient water distribution system. Moreover, the time and
cost of reading water meters induce a water utility to process the water consumption
information to improve water use efficiency. The variable PMC accounts for these firm
differences. The PMC is the ratio of the numbers of metered service connections to total
service connections.

The water delivery cost and technology depends on water sources. In some cases,
especially in mountain areas, water delivery cost from high altitude sources is low and little
maintenance is required. On the other hand, groundwater requires not only lumpy invest-
ments to pump out water and carry it to any destination but also requires frequent mainte-
nance. Dummy variables DUM; are used to account for different water sources. Three
possible combinations of sources are: only surface, only ground, and both surface and
ground. DUMj, =1 if only surface source is used and zero otherwise, and DUM, 5 = lifthe
source is exclusively groundwater and zero otherwise. If a utility uses both sources,
DUM;, =1 and zero otherwise.

Seven out of 26 sample firms not only supply water but also provide sewer services. This
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diversity of services is likely to generate economies of scope for the firm. Such a firm can
recycle the treated waste water for outdoor watering. The same set of technical and
administrative staff (except for some specialized work) can maintain both facilities. Firms
are controlled for such complementariness by introducing a dummy variable DUMy,, in the
v (Q; B) function. DUMy;, equals one if the utility provides both sewer treatment and
drinking water, and zero otherwise. Finally, a dummy variable DUM; is included. DUM; =
1 if a utility treats water before final delivery, and it assumes a value of zero if the utility
does not treat water input. Treating water before delivery improves the quality of service.
However, it is costly and in some cases requires substantial investments. Whether treatment
improves a water utility technical efficiency is an empirical question, the sign and signifi-
cance of the estimated coefficient of the dummy variable DUM; would indicate that.

Results

The parameter estimates obtained from the first step, with heteroskedasticity corrected
standard errors, are reported in table 2. This part is common for all three distributional
specifications and is required for estimating inefficiency of the water utilities. Thirty out of
44 parameters are statistically significant at the 10% level. (Note that the intercept parameter,

a,, is not reported in table 2 as it is estimated in the second step). These parameters are used
to estimate B using (11). Table 3 reports the ML estimates of the constant term, « ,, and
the six dlfferent sets of parameter estimates, obtained from the estimation of the three
different log-likelihood functions (10.1-10.3) with and without the firm-specific variables.
In estimating all three specifications of Model A, 57 is normalized to unity as it cannot be
identified along with the intercept term B, in (12).

The LDC tests reject all three models without firm-specific variables, that is, Model Bs
in favor of Model As. Thus, models which explain inefficiency in terms of firm differences,
that is, Model As, are preferred. Next, we perform the Vuong test to select among Model As
the one that is closest to the DGP. Two classes of nonnested models are compared at a time.
First, the normal-exponential model, Model IIA, is compared with the haif-normal model,
Model IIIA. The estimated test statistic is 1.43. Therefore, the model selection test fails to
discriminate between the two models at even 90% level of confidence. Similar comparison
is done between the truncated-normal, Model IA, and the normal-exponential, Model IIA.
The estimated test statistic is 3.31, which rejects the Model I1A in favor of the Model 1A at
the 95% level of confidence. Next, Model IA is compared against Model IITIA. The estimated
test statistic of 5.32 rejects the half-normal specification in favor of the truncated-normal
specification at the 95% level of confidence. The nonnested model selection tests indicate
that the truncated-normal specification is closest to the DGP out of the three distributional
specifications.

Since the LDC model selection tests preferred Model As compared to Model Bs,
efficiency estimates obtained under Model A are presented. Although the subsequent Vuong
tests selected the truncated-normal (IIIA) specification over the normal-exponential (I1A)
and half-normal (IIIA), inefficiency estimates of all three A models are reported. The
estimates of average technical efficiency evaluated at the mean and mode of all three models,
IA, ITA, and IIIA, are shown by types of organization in table 4. The average efficiency
estimates from Model Bs are also provided.

Ideally, these estimates of technical efficiency should reflect the effects of cross-sectional
variability in the data. For example, the variability of energy prices between utilities in the
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Table 2. Parameter Estimates of the Indirect Production Function of Rural Nevada Water

Utilities
Parameter Parameter Parameter
A -0.27E-3 o oy - 0.55E-5 o ep 0.0046
(0.35E-3) (0.156—4) (0.0011)
a, ~0.72E-3 o e - 0.0029 . ~0.0088
(0.56E-3) (0.0010) (0.0015)
oy 0.98E-6 o gp - 0.0013 & pp 0.0086
(0.21E-5) (0.43E-3) (0.0048)
o 0.99E-3 o p ~0.0023 o 0.0073
(0.62E-3) (0.73E-3) (0.0103)
o p 1.0488 o ok 0.0039 o py 0.0140
(0.0104) (0.0013) (0.0063)
o, 0.0595 o 0.87E-5 ooy - 0.0043
(0.0109) (0.60E-5) (0.0022)
oy 0.0071 o - 0.0036 o,y 0.0021
(0.0098) (0.62E-3) (0.97E-3)
o e 0.826-3 o p -0.0016 g ~0.0026
(0.50E-3) (0.46E-3) (0.0018)
oy 0.0015 o p -0.0022 o 0.0043
(0.87E-3) (0.19E-3) (0.0022)
o yag 0.65E-5 ok 0.0049 o,y 0.0021
(0.19E-4) (0.36E-3) (0.96E-3)
oo 0.0066 oy -0.97E-5 o, 0.0026
(0.0011) (0.37E-5) (0.0018)
o pp -0.0150 o yp - 0.38E-5 oy p 0.20E—4
(0.0050) (0.21E-5) (0.77E-4)
o pp 0.0248 o ~021E-6 oy - 0.14E-5
(0.0032) (0.17E-5) (0.23E-4)
o gk - 0.0349 o gk 0.56E-5 oy 0.76E-5
(0.0093) (0.42E-5) (0.44E-4)
o 0.0021 o op 0.0029 L 382,51
(0.73E-3) (0.49E-3)

Note: Asymptotic standard errors are in parentheses, and L. is the value of the log-likelihood function.
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Table 3. Maximum Likelihood Parameter Estimates under Alternative Distributional Specifi-

cations
Model
A 1A HIA IB 1B ns

Parameter T-N N-Exp H-N T-N N-Exp H-N
a, -0.0412 -0.1830 -0.2019 -0.0412 -0.1513 -0.1749

(0.0379) (0.0335) (0.0496) (0.0015) (0.0345) (0.0274)
B, 0.3815 0.3085 0.7703

(0.2034) (0.0585) (0.4864)
Br 0.3371 0.1853 -3.3024

(0.1542) (0.0844) (1.0988)
Bso -0.7077 -0.1443 0.7872

(0.1621) (0.0635) (0.4926)
Bs 0.3754 0.0143 1.0733

(0.2244) (0.0974) (0.9810)
Bs, 0.5102 0.1694 ~2.1843

(0.2081) (0.0626) (0.9462)
B puc -0.2567 -0.0252 0.2616

(0.1284) (0.0504) (0.4035)
Bp 0.3464 0.1990 0.2683

(0.0746) (0.0338) (0.3843)
B 0.60E-3 -0.1673 -0.2502

(0.0041) (0.0214) (0.1438)
c, 0.1369 0.0434 0.0499 0.0434 0.2281 0.0743

(0.0348) (0.0710) (0.1032) (0.0127) (0.1026) (0.0485)
o, 0.1327 0.0434 0.2412

(0.0224) (0.0244) (0.0603)

n 0.1158 0.1235

(0.0818) (0.0383)

Note: Asymptotic standard errors are in the parentheses.
Glossary: T-N is truncated-normal; N-Exp is normal; H-N is half-normal.

sample may be due to the volume discounting used by the large firms in their purchases of
energy. The lower energy prices may then be systematically directed toward the large firms
and may also reflect higher efficiency (in addition to possible market power) on the part of
those large firms. This observation is consistent with the literature on the volume discounting
(Carlton and Perloff). A failure to accommodate the possible volume discounting effect from
purchases of energy may bias efficiency estimates against larger firms. Due to incomplete
information on volume discounting in energy purchases by the large firms in our sample,
we were not able to explicitly include the effects of volume discounting in our econometric
model.
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Table 4. Mean Technical Efficiency of Water Utilities by Ownership

T-N Model N-Exp Model H-N Model
Utility [A 1A 1A ITA A A
Group Units Mean Mode Mean Mode Mean Mode
Private 2 0.9061 0.9130 0.8002 0.8002 0.7860 0.7860
(0.0233) (0.0468) (0.0714) (0.0714)  (0.0605)  (0.0605)
County govt. 5 0.8350 0.8666 0.7660 0.7678 0.7368 0.7368
(0.0937) (0.0767) (0.1019) (0.1057)  (0.0751)  (0.0752)
Water dist. 7 0.8569 0.8624 0.7653 0.7690 0.7436 0.7484
(0.0746) (0.0834) (0.1068) (0.1152)  (0.1115)  (0.1228)
Municipality 12 0.8643 0.8956 0.7981 0.8028 0.7837 0.7872
(0.1133) (0.1099) (0.1249) (0.1318)  (0.1212)  (0.1263)
Model A 26 0.8599 0.8824 0.7833 0.7868 0.7641 0.7670
(0.0934) (0.0913) (0.1084) (0.1146)  (0.1048)  (0.1105)

Model B 26 0.8763 0.8796 0.8028 0.8062 0.7928 0.7839
: (0.0928) (0.0928) (0.1051) (0.1109)  (0.0934) (0.1130)

Note: Standard deviations are in parentheses.
Glossary: T-N is truncated-normal; N-Exp is normal-exponential; H-N is half-normal.

Since model selection tests preferred Model [A over the other two models, efficiency
estimates obtained from the truncated-normal specification (Model IA), reported in columns
3 and 4 of table 4, are used for discussion. Parallel inferences also can be drawn using the
efficiency estimates obtained from the normal-exponential (Model ITA) and half-normai
specifications (Model IIIA), as reported in columns 56 and 7-8, respectively, of table 4.
The modal estimates of technical efficiency, representing ML estimates (Jondrow et al.), are
used for interpreting the results. The average technical inefficiency of rural Nevada water
utilities is 13.05%, that is, on average they are 88.24% technically efficient, with highest
technical inefficiency 39.32%.

Among different organizations, the privately owned utilities are most technically effi-
cient, with average efficiency 91.3% and a minimum of 88%. Water utilities managed by
water districts are most inefficient, with an average technical efficiency 85.65%, that is, they
produce 15.22% less than their frontier output level. The maximum technical inefficiency
of district-operated units is 32.69%. Water utilities operated by county governments are, on
average, almost as inefficient as the district-operated units, with average technical ineffi-
ciency 14.62%, and a range of 0.31% to 23.22%. The average technical efficiency of the
municipality-operated water utilities is 90%, with estimated technical efficiency range from
67.49% to 100%. Municipal governments own both the best and the worst efficient water
utilities.

Estimated parameters of the v (Q; B) function explain inefficiency in terms of firm
differences. The estimated parameter of PMC is negative, while that of PL is positive,
indicating that increased metered connections (PMC) increases technical efficiency, and
bigger infrastructure (PL) reduces technical efficiency. Because the average PMC is 0.71,
technical efficiency may be raised by moving from a flat-rate system to a metered connection
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system. The estimated coefficient of system loss (SL) is positive under the truncated normal
specification; therefore, higher SL would increase technical inefficiency, and the sample
firms can improve their efficiency level through better maintenance of existing pipelines.
However, the estimated parameter is not significant. .

Parameter estimates of both source dummies, s and B , are positive and significant,
showing that firms relying on a single source of water input, either only surface or only
ground, have higher technical inefficiency, ceteris paribus, than firms who use both sources.
Firms that rely on surface water as their exclusive source of water input are technically less
inefficient, ceteris paribus, than firms who rely exclusively on groundwater. The estimated
parameter of the treatment dummy, B, is positive and significant, demonstrating that the
water utilities that treat water before delivery are more technically inefficient than those that
do not. As a negative value of B, indicates, utilities that provide both water supply and
sewer treatment services are technically more efficient than the ones supplying drinking
water only. This combination of the management of sewer treatment and water supply
facilities may improve technical efficiency for utilities.

Conclusion

Small rural governments’ effectiveness can be evaluated with Inman’s two-step decision
making process, in which the first step corresponds to provisionary decisions and the second
step refers to production-related decisions. Past studies of local government-owned utilities
have examined production efficiency independent of provisionary decision. This study
incorporates the provisionary decision in the production function, through an indirect
production function. Technical efficiency of rural water utilities is determined using frontier
production functions. Previous studies have only distinguished between private and public
utilities and have not considered the implications of the differences in ownership of public
utilities. Here, public utilities are classified into three ownership forms: (¢) municipal
government operated, (b) county government operated, and (c) water district operated units.
Model selection tests are used to identify the form of the distribution for the one-sided error
term that follows the data generating process most closely.

Model selection tests are also used to discriminate between the competing models which
explain technical efficiency, with and without firm-specific variables. Empirical results
provide evidence to choose the models in which inefficiency parameters are functions of
firm-specific variables. The models with normal-exponential and half-normal specifications
for the one-sided error term are inferior to the ones with a truncated-normal specification.
Empirical results show that technical efficiency of the water utilities in rural Nevada
averages 88.24%. The private firms are more efficient than the publicly owned water utilities.
Among three different types of public water utilities, the ones managed solely by water
districts seem to be the least efficient. Water utilities run by municipalities are found, on
average, to be most efficient. '

The following advice can be provided to rural water utilities to increase efficiency: ()
increase metering and consolidation of service area, () reduce water loss in the distribution
process, (c) combine drinking water production and sewer treatment management, and (d)
diversify water-input sources. Further investigation is needed to understand (a) the wide
variation in the efficiency of the municipality-owned units and (b) the higher inefficiency
of the units owned by water districts.

[Received January 1995, final version received October 1995.]
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