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Modeling Production Risk with
a Two-Step Procedure

Frank Asche and Ragnar Tveteras

This study deals with modeling of production risk by means of a two-step procedure.
In contrast to earlier studies of production risk, we do not immediately adopt
restrictive functional forms for the risky production technology. We first test for the
presence of production risk. If production risk is found to be present, the mean and
risk functions are estimated separately. This allows the use of more flexible func-
tional forms for both the mean and the risk functions than commonly found in the
literature. An empirical application to Norwegian salmon farming, where restrictive
specifications of the technology are rejected, demonstrates the validity of our
approach. Presence of production risk in many primary production sectors implies
that this approach should be considered in productivity studies.
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Introduction

Output risk is an inherent part of the production process in most primary industries,
e.g., agriculture, aquaculture, fisheries, mining, and oil extraction. In those developing
countries where subsistence agriculture predominates, production risk is an issue of
great concern. For producers in industrialized countries, output risk may not have the
same grave consequences, but is nevertheless an important economic issue since the
level of risk will, for example, determine insurance costs and interest costs on loans. In
the worst-case scenario, an adverse production shock can lead to bankruptcy for the
producer.

An important characteristic of risky production processes is that random production
shocks can be observed only after input decisions have been made. This is in contrast
to the standard certainty case, where the only determinants of optimal input demands
are the structure of the production technology and input and output prices facing the
producer. In the presence of risk, the producer’s risk preference structure and expecta-
tion formations also will be important in determining optimal behavior. In particular,
when it comes to relative input uses, a source of deviation from competitive levels is the
input’s marginal contribution to the level of output risk (Ramaswami). Some inputs may
reduce the level of output risk (e.g., pesticides), while others may increase risk (e.g.,
fertilizers).
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Most studies dealing with production risk are based on the Just-Pope (J-P) postulates
(Just and Pope 1978). However, specifications of risky production models which are in
accordance with the J-P postulates are often difficult to work with empirically, since the
optimization problem becomes nonlinear when popular functional forms such as the
translog are used. Because of this, the functional forms used in empirical work are often
highly restrictive. The most commonly used functional form in the J-P model framework
is the Cobb-Douglas. The usual econometric translog specification has multiplicative
interaction between the translog function and the error term. This specification violates
the J-P postulates, but may be extended to allow for greater flexibility with respect to
production risk (Kumbhakar).

Here, we exploit the fact that production uncertainty can be regarded as hetero-
skedasticity when the J-P postulates hold. In the J-P model, y = f(x; «) + h(z; B)e; inputs
x influence both mean output and output risk through a mean production function
Elyl = f(x) and a variance (risk) production function var(y) = h(z)? of, where z may
contain some or all of the elements in x and/or additional variables. This model
framework allows us to test for production risk (heteroskedasticity) and estimate the
parameters of the mean and risk functions in separate steps. There are several reasons
why this is useful. '

First, since production uncertainty appears as heteroskedasticity in an econometric
model, presence or absence of production uncertainty can be investigated using hetero-
skedasticity tests on the mean production function. Hence, when production uncertainty
is an issue, tests against heteroskedasticity should always be the first step, as this
might be interpreted as a test against production uncertainty in this context. This is in
contrast to the current practice in the empirical literature on production risk, where a
parametric model for the output variance is immediately specified when production risk
is considered to be present.

Moreover, White (1982) and Gourieroux, Monfort, and Trognon show that for maxi-
mum likelihood estimators belonging to the linear exponential family, asymptotically
normal estimators for the first-order moments can be obtained under a wide variety
of distributional misspecifications. Heteroskedasticity is one type of distributional
misspecification for which one can obtain parameter estimates with robust standard
errors. Thus, production uncertainty can be regarded as a special case of the general
problem of estimating models with standard errors that are robust to distributional
misspecification. This allows us to divide the problem into two parts. If the main focus
is on the mean function, a heteroskedasticity-consistent estimator will provide not only
consistent estimates, but valid inference as well. Likewise, if one is also interested in
the risk structure of the production technology, the variance function can be estimated
separately. Since the nonlinearity inherent in the Just-Pope framework in general is
due to the joint estimation of the mean and variance functions, this two-step procedure
may greatly simplify estimation. It will also allow the use of more complex specifications
for both the mean and the variance functions. Support for flexible functional forms and
firm-specific effects is found in a large number of empirical productivity studies which
do not deal with production risk, and restrictive functional forms like the Cobb-Douglas
and firm homogeneity are generally rejected.

The approach is illustrated with an application to the Norwegian salmon farming
industry. First, a flexible mean production function is estimated separately, and tests
for heteroskedasticity are undertaken. Having found evidence of heteroskedasticity in
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inputs, a flexible parametric model of production risk is estimated. We then test for the
validity of firm-specific levels of output risk and second-order terms in input levels. We
find that a flexible specification of both the mean portion and the risk portion of the
salmon production technology is appropriate.

Our analysis proceeds as follows. First, we discuss implications of the literature on
production risk. An approach to testing for production risk is then detailed. Next, we
present the two-step approach to empirical estimation of the parameters of a risky
production technology, followed by an empirical application to a panel data set of
Norwegian salmon farms. Our summary and conclusions are offered in the final section.

Production Risk

In their seminal paper, Just and Pope (1978) presented eight postulates for the stochas-
tic production function which they argued were appropriate on the basis of a priori
theorizing and empirical observations. Some of the J-P postulates impose restrictions
on the mean function which are analogous to those that apply to the usual deterministic
specification. However, there are also some additional flexibility requirements for
output variance. An important requirement for the output variance function is that
positive, zero, and negative marginal risk in input levels each should be possible. In
other words, inputs are allowed to increase or reduce the level of output risk. This is a
distinguishing feature from popular log-log production function specifications such
as y = f(x)e®, where f(x) is parameterized as a Cobb-Douglas or a translog, and ¢ is an
exogenous stochastic shock. For such specifications, marginal risks are always positive.
For the common additive specification y = f(x) + ¢, where the variance of £ is a constant,
marginal risks are always zero.

J-P presented a production function which satisfies all eight postulates—the Just-
Pope form—which has become the dominant form in subsequent theoretical and empir-
ical research on production risk. In its most general form, the J-P production function
is specified as

(1) y = f(x; ) + h(z; Ple,

where f(-) is the mean function and h(.) is the variance function (or risk function), x and
z are vectors of inputs (with parameters « and p) which may be identical or have some
unique elements. The exogenous stochastic disturbance (or production shock) is repre-
sented by ¢, where E[e] = 0 and var(e) = 02 A nice feature of the J-P form is the separa-
tion of the mean effect and the variance effect of changes in input levels. Mean output
is given by E[y] = f(x a), while the variance of output is given by var(y) = [A(z; B)I?c.. 2
From an econometric viewpoint, this formulation is also useful because the variance
function can be interpreted as a heteroskedastic disturbance term. This can be seen by
reformulating the J-P form as y = f(x; &) + u, where u is the error term with variance
var(u) = [h(z; B)1%0.

Since productlon risk may be modeled as heteroskedasticity, the parameters in the
mean production function cannot be efficiently estimated if the production risk is not
accounted for. In the empirical literature, this is done by estimating the production
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function and the variance function together, primarily by a feasible generalized least
squares (FGLS) three-stage estimator.!

The Just-Pope form has been criticized for not accommodating the potential effects
of input level changes on third and higher moments of the output distribution (Antle).
Some researchers have estimated production models which allow for heteroskewness and
possibly heterokurtosis in input levels (Antle; Nelson and Preckel; Saha, Havenner, and
Talpaz). These studies have addressed interesting aspects of production risk, but the
application of such models may be limited due to econometric intractability with respect
to estimation and testing, and a belief among researchers that heteroskewness and
heterokurtosis have limited significance for producer decisions. Producers generally face
a very complex environment. It can be argued that they will at most be able to form
expectations about the effects of inputs on output variance, while they have too little
information available to form reasonable expectations on the shape of the output
distribution or the effects of inputs on output skewness.

Testing Against Production Risk

The first issue to address when analyzing a production sector is to investigate whether
any significant production risk is present. A test of production risk can draw on the
theoretical framework of Just and Pope. Since production risk is specified as hetero-
skedasticity in the J-P framework, any test against heteroskedasticity can be used. If
heteroskedasticity is not detected, this can be regarded as evidence against production
risk, and the researcher can proceed within a conventional deterministic production
model framework.

When testing for heteroskedasticity, both a general test such as White’s (1980) test
and tests against specific alternatives might be used. Tests where the alternative has
a specific functional form ordinarily will have greater power against the chosen alterna-
tive than general tests (Godfrey). One might also argue that a test against hetero-
skedasticity may capture the effects of features of the data other than production risk.
This is certainly true, but if these problems introduce heteroskedasticity, they should
nevertheless be accounted for in the econometric specifications. Hence, while finding no
heteroskedasticity leads to the conclusion of no production risk, detecting heteroske-
dasticity does not unambiguously imply production risk.

This leads us into a general problem with treating production uncertainty as hetero-
skedasticity. It is well known that most misspesification tests have power against a wide
variety of alternatives (Godfrey; MacKinnon). It is therefore often recommended that
an appropriately specified econometric model should pass a “battery” of misspecification
tests (McGuirk, Driscoll, and Alwang). This is in general very reasonable, since a well-
specified econometric model should not show any sign of misspecification. However, one
should find heteroskedasticity when the production technology which generated the
data exhibits production risk. Thus, heteroskedasticity is not a problem for the economic
interpretation of the model when this is recognized.

!See, for example, Just and Pope (1979); Griffiths and Anderson; McCarl and Rettig; Wan and Anderson; Hallam, Hassan,
and I’Silva; Wan, Griffiths, and Anderson; Hurd; and Traxler et al. for empirical applications of the Just-Pope model.
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When production risk is of interest, the analyst is then faced with two options. One
can interpret evidence of heteroskedasticity as evidence of production risk and proceed
to investigate the economic structure of interest. While this is the most reasonable
approach when the economic structure is of interest, it creates an econometric problem
since the battery of misspecification tests is no longer useful. In particular, when
heteroskedasticity is present, a number of other misspecification tests are likely to
indicate that there is a problem with the model since these tests also have power against
this alternative. This makes it very difficult to evaluate the appropriateness of the
econometric specification of the model when production uncertainty is present. The
alternative option is to treat heteroskedasticity as an econometric problem, and attempt
to correct or eliminate this problem from the model until it passes the battery of
misspecification tests. However, with this approach it is difficult to find any justification
for investigating the economic content of heteroskedasticity—in our case production
uncertainty.

We think it is important to investigate production uncertainty and, accordingly, that
this is a situation where the econometric misspecification tests cannot carry too much
weight. However, this discussion clearly indicates that one should evaluate the esti-
mated model very carefully. In this context, three more informal criteria for choosing
functional form provided by Alston and Chalfant might be useful, as they are applicable
also more generally. Alston and Chalfant indicate one should (a) use a relatively flexible
functional form, (b) test for the sensitivity of the results to functional form (or more
generally, to model specification), and (c) be conservative in drawing implications from
results that might be sensitive to functional form or other joint hypotheses.

It also may be of interest to note that the possible existence of production uncertainty
in the current literature is usually investigated using a fully specified model with an
explicit parameterization of production uncertainty. One then checks whether pro-
duction uncertainty is present by evaluating the parameters in the variance function,
and even this procedure is often rather informal. For example, Wan and Anderson
conclude that “most of the estimates determining the marginal risk effects lack
statistical significance” (p. 85). A more appropriate first-step testing approach, if the
risk function is specified according to Harvey, would have been to test whether all the
parameters in the risk function except for the constant term were jointly zero. This
would be a test with homoskedasticity or no production risk as the null hypothesis.
Yet this approach requires estimating both the mean and the variance functions
simultaneously.

A Two-Step Procedure
to Modeling Production Risk

Provided that production risk is found to be present, there are two issues of interest—
the mean production function f(-) and the risk function A(-). Although it is not necessary,
these two functions are typically estimated jointly, thus complicating the estimation
procedure. Further, it frequently will be the case that information from only one of the
functions is of interest.

The fact that production risk appears as heteroskedasticity in the Just-Pope formu-
lation implies that ordinary least squares (OLS) parameter estimates of the mean



Asche and Tveterds Modeling Production Risk with a Two-Step Procedure 429

production function are inefficient, although they are still consistent. However, the
standard errors of the parameters affecting the conditional mean can be consistently
estimated by employing White’s heteroskedasticity-consistent estimator of the covar-
iance matrix, enabling valid inference without paying attention to the risk function. As
long as the information of interest is related only to the production function, one need
not be concerned with the risk function.

Furthermore, a heteroskedasticity-consistent covariance matrix does not assume any
particular functional specification of the risk function. This might in many cases be an
advantage, as the efficiency of both an FGLS and an ML estimator depends on the
assumption that the chosen functional form for the risk function is correct. One is no
better off by accounting for the risk function if it is incorrectly specified, since the
parameters in the production function still will be inefficient. However, there are
occasions when employing White’s estimator instead of a parametric specification is not
advantageous. As is the case for all semiparametric estimators, the heteroskedasticity-
consistent covariance matrix will be less efficient than a correctly specified parametric
model of heteroskedasticity in small samples.

It is well known that the parameters of the risk function may be estimated
consistently separately from the mean function (Harvey). This is, in fact, the basis for
all FGLS procedures used when estimating the production function in this kind of
application. However, to provide valid inference for the risk function parameters, they
must be estimated by a heteroskedasticity-consistent estimator (Saha, Havenner, and
Talpaz).

An advantage of separating the estimation of the mean and the variance functions is
that a more detailed specification is possible for each of the functions, since each of the
functions in general can be modeled as linear in the parameters. This might be of
importance, since the use of a too restrictive functional form can well be the source of
apparent production risk. In particular, the literature without production risk usually
rejects restrictive functional forms like the Cobb-Douglas in favor of more general
alternatives. Furthermore, a growing body of empirical panel data studies provides
strong support for the presence of producer heterogeneity in many sectors, including
agriculture. When panel data are available, one should account for firm-specific and
other group-specific effects, since the parameter estimates will be inconsistent if these
effects are not controlled for.

An Empirical Application to
Norwegian Salmon Aquaculture

Salmon aquaculture is one of the fastest growing sectors of biological production. From
1980 to 1997, global farmed salmon production expanded from 6,900 metric tons to
719,000 metric tons.? However, despite its impressive growth, the industry has experi-
enced a high degree of turbulence and large cross-sectional variations in profitability,
manifesting in a large number of bankruptcies and restructuring of the industry. The
observed cross-sectional differences in economic performance can be partly attributed

% See Asche for a brief review of the industry.
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Table 1. Overall Summary, Nonnormalized Variables Statistics Sample

Variable Mean Std. Dev. Minimum Maximum
Output (y) in kg 355,982.3 236,220.9 11,050 2,014,140
Materials (M) in real NOK*® 998,381.0 907,280.9 9,657 9,636,125
Feed (F) in kg 340,299.1 242,741.0 2,358 2,479,452
Capital (X) in real NOK* 2,572,787.1 2,277,836.4 4,707 37,212,584
Labor (L) in hours worked 7,034.5 3,694.1 250 42,906
Fish input (I) in kg 150,379.0 109,897.5 50 1,015,800

Note: n = 1,953 observations.
#Deflated by Consumer Price Index (CPI).

to stochastic production shocks. It can be argued that salmon aquaculture is more risky
than traditional land-based livestock production, because of salmon’s high sensitivity
to its marine environment.? In general, animals are less sensitive to their environment
and farmers have a higher degree of control on important biophysical variables in land-
based meat production. The high sensitivity of the salmon to its environment, together
with the rough weather conditions under which farms are forced to operate, probably
means that there will be a relatively high permanent level of output risk compared to
other types of meat production.

The production function for the Norwegian salmon farmers is specified with five
inputs: fish feed (denoted F), fish input (), capital (K), labor (L), and materials (M).* It
is estimated on an unbalanced panel with a total of 1,953 observations on 372 farms
observed from three to nine years during the period 1985-93. The data were collected
from the Norwegian Directorate of Fisheries’ annual survey of fish farms. Summary
statistics for the sample are provided in table 1, where NOK denotes Norwegian Kroner.

The most important input in salmon farming is fish feed, with a cost share of about
40%. Feed is expected to increase the level of output risk, ceteris paribus. Because the
salmon is not able to digest all the feed, the excess is released into the environment as
feed waste or feces. This organic waste consumes oxygen, and thus competes with the
salmon for the limited amount of oxygen available in the cages. In addition, feed waste
alsoleads to production of toxic by-products, such as ammonia. Furthermore, production
risk is expected to increase with the quantity of fish released into the cages, due to the
increased consumption of oxygen and production of ammonia. Labor input, on the other
hand, is expected to have a risk-reducing effect, since the ability to monitor the fish,
repair equipment, and time feeding will increase. There is a large body of research in
other fields (e.g., marine biology) which implicitly supports the hypotheses on risk
effects of feed and fish input, and also some evidence on labor input (J. ohannessen; Ervik
et al.). In contrast, we do not have any strong a priori presumptions on the risk effects
of capital and materials input.

® Important parameters for salmon are the oxygen concentration, sea temperature, salinity, and concentrations of &isease
bacterias/viruses and toxic algaes.

*Salvanes (1989, 1993) and Bjgrndal and Salvanes estimate cost functions for the Norwegian salmon industry, but without
taking account of uncertainty.
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Several studies have documented that there is substantial heterogeneity in
Norwegian salmon’ farming in terms of the quality of management and workers,
production technology, and the biophysical conditions at the farm site.® Consequently,
different production outcomes for two farms using the same vector of inputs may be due
to firm-specific effects of a more permanent nature as well as stochastic biophysical
shocks.

We assume that the salmon production technology has the general Just-Pope form:

(2) Yy = f( X, D, a’ui)+uit’ Var(uit)" (lt’ » B, ')7

where i and ¢ are firm and time subscripts, respectively; x,, is a K-vector of input levels;
D, is a time-specific dummy variable; & and P are vectors of parameters; p; is a firm-
specific effect on mean output; and A, is a firm-specific effect on output risk. By imple-
menting firm-specific effects both in the mean and risk portions of the technology, we
are able to separate the effect of unobserved firm characteristics on the mean and
variance of output. Similarly, the inclusion of time dummies in both f(-) and A(-) allows
us to analyze the effects of technical change on E[y] and var(y) separately.

A linear quadratic (LQ) mean production function is used here (Driscoll, McGuirk,
~ and Alwang):

T;
C) Yie = Xk: 0%y + 0. 52 E Q% 1% i gt: a,D,

g i

+ ; e D,y 1 + 1y + 1.

t=

s

13

For the variance function, we employ a special case of Harvey’s specification, var(u) =
exp[zP], where the z’s are input levels or transformations of input levels, e.g., logarithms
of inputs and second-order terms.® A nice property of the variance function in Harvey’s
formulation is that positive output variances are always ensured. Note that in the Just-
Pope model, var(y) = var(z). In our specification, the argument of the exponent is a
linear quadratic function with time- and firm-specific effects:

(4) var( ) = exP(z ﬁkxk it 052 E Bk]xklt it * Z Bt‘D + A‘)

In the present analysis, we use only the linear quadratic functional form for the mean
and variance functions. However, very similar results have been obtained for salmon
aquaculture with other flexible functional forms. Hence, the conclusions drawn here
based on the linear quadratic specification will not change much if f(x) instead is
specified as a Leontief, or A(x) is specified with a translog or Leontief in the exponent.’

® See, for example, Berge and Blakstad, and Johannessen for documentation of the producer heterogeneity in salmon
farming. Surveys of a large number of farm sites have shown that there are considerable differences in the biophysical
productivity.

® The first element of z, 2,, is taken as unity. This implies that var(e) = exp( Bo)-

7 Estimated elasticities derived from different functional specifications of the mean function and the variance function
are provided in Tveteras.
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Table 2. Goldfeld-Quandt F-Test Statistics

Central Fish
Observation Materials Feed Capital Labor Input
Omitted® (M) (F) (K) : (L) V)]
One 11.202 24.620 0.861 17.279 21.846
1/6 12.626 30.712 0.861 20.250 25.006

Note: The test statistic is F-distributed with {n, - K} and {n, - K} degrees of freedom, where n, and n, are
the number of observations in the two subsamples and K is the number of parameters in the model.

® The two subsamples for which separate regressions were estimated for each input have 976 and 814
observations, respectively, in the two tests.

Testing for Production Risk

The LQ mean production function was first estimated by OLS on the salmon farm panel
data set. Based on the OLS estimates, we tested for heteroskedasticity or the presence
of significant marginal output risk in input levels using a number of heteroskedasticity
tests.

A Breusch-Pagan (B-P) test was first undertaken (Breusch and Pagan). The B-P test
statistic is 1,864.04 (p-value 0.000), and is distributed as x* with 440 degrees of freedom
(df). Hence, the hypothesis of homoskedasticity can be rejected at all conventional signif-
icance levels.

Next, Goldfeld-Quandt (G-Q) tests were performed for all five inputs (Goldfeld and
Quandt).’ The LQ mean function was estimated under the assumption of firm homo-
geneity. The G-Q test involves sorting of data by right-hand variables, splitting the
observations into two subsamples, and estimating separate regressions for each sub-
sample. The G-Q test was not undertaken with firm-specific effects included since there
is a risk of being left with only one observation on some firms. Two tests were run for
each input; in the first test only the central observation was omitted, and in the second
test the 1/6 central observations were omitted. Table 2 presents the F-distributed test
statistics. For all inputs except capital, the G-Q test rejects the null hypothesis of
homoskedasticity with wide margins at conventional significance levels. For capital, the
homoskedasticity hypothesis is maintained.

Harvey tests were also performed for the specified model with a restricted specifi-
cation of the variance function.'® This test is based on the second-stage estimates. The
null hypothesis of the Harvey test is that all coefficients of the multiplicative variance
function, except the intercept B, are zero. The Harvey test statistic is RSS/4.9348,
where RSS is the residual sum of squares of the estimated variance function, and

® The most general test of heteroskedasticity (and other possible misspecifications) is the White test (White 1980). Due to
the large number of regressors required by the White test in the context of our model specification, it was not undertaken
here.

®In the Goldfeld-Quandt test, the observations are ranked by the independent variable, of which the variance is assumed
to be a function. The sample is then divided into two groups with n, and n, observations, and the model is estimated
separately for these two sets of observations. The test statisticis F= sf/ s,f, where s%is the OLS estimator of the regression
variance o”.

1 The second-order input terms and firm-specific effects are omitted from the restricted specification.
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is asymptotically distributed as x* with degrees of freedom equal to the number of
regressors. The estimated Harvey test statistic is 165.249 for the restricted variance
function. This is much higher than the critical y* value of 27.688 (13 df) at the 1% signif-
icance level. Hence, the null hypothesis of homoskedasticity is rejected.

In all, the tests provide substantial evidence of output heteroskedasticity in input
levels, and accordingly indicate that output risk is present in salmon farming.

Modeling the Mean Function

Since production risk was found to be present, we reestimated the mean function using
White’s heteroskedasticity-consistent covariance estimator to provide valid inference.
Parameter estimates are presented in table 3.

Statistical tests support the flexible specification in terms of second-order 1nput terms
and time dummies.' It is difficult to provide a meaningful interpretation of the esti-
mated parameters, and empirical results are consequently presented in terms of
elasticities. Table 4 reports overall sample average elasticity estimates.’? We see that
the output elasticity, E,, is positive for all inputs. As expected, feed is found to be the
most important output in terms of output elasticity, with a sample average value of 0.51,
followed by fish input with a sample average output elasticity of 0.27. Returns to scale
(RTS), which is the sum of the & output elasticities, is 0.89. In other words, the sample
average farm has exhausted scale economies. The average annual rate of technical
progress (T'C) is 4.2%. This high rate of technical progress is not surprising, since our
data set covers a period characterized by intensive learning and rapid introduction of
new innovations in feed, salmon genetics, and medication technologies. The finding is
supported by other studies of the industry (e.g., Asche).

Modeling the Risk Function

Next, the variance function was estimated in a separate step, using the predicted resid-
uals from the estimated mean function. Variance function parameter estimates are
provided in table 3, and derived elasticity estimates in table 4. The standard errors of
the (’s are White-adjusted.

Table 5 presents the results of Wald tests on the structure of the risk component
of the production technology. First we tested for a pooled variance function, where a
common intercept (8,) is assumed instead of N firm-specific intercepts (1)), i.e., {A, = A,
= ... = Ay = Bg}. The pooled specification was clearly rejected by a Wald test at the 1%
significance level, with a test statistic of 2,118.23 and 372 degrees of freedom (p-value
0.0000). Hence, salmon farms are heterogeneous also with respect to the level of
production risk.

' The null hypothesis that all the coefficients of the second-order terms were jointly equal to zero was rejected by an F-test
at the 1% significance level with an F-statistic of 4.23 (15 and 1,519 df). The null hypothesis of a common intercept was also
rejected at the 1% level with an F-statistic of 3.03 (372 and 1,513 df).

"2 In this example, we have presented only elasticities derived from a generalized quadratic form. However, other flexible
functional forms for the mean and variance functions, such as the generalized Leontief, provide very similar elasticity
estimates. Results are available from the authors upon request.
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Table 3. Parameter Estimates for Mean and Variance Functions

Mean Function OLS Estimates w/White-Adjusted Standard Errors

Parameter Coefficient Std. Error t-Value Parameter Coefficient Std. Error t-Value
Oy 0.098 0.026 3.827 Cpgs -0.022 0.070 -0.313
v 0.429 0.059 7.333 Cpgs -0.039 0.069 -0.566
. 0.095 0.037 2.580 g 0.024 0.064 0.368
o, 0.098 0.055 1.769 s 0.033 0.072 0.458
o 0.340 0.051 6.619 [ 0.098 0.063 1.568
s -0.001 0.003 -0.287 oo -0.056 0.067 -0.832
Cprr 0.045 0.018 2.589 Cpgy 0.053 0.069 0.763
. -0.014 0.014 -1.025 " Opgs 0.020 0.054 0.373
Ly -0.037 0.016 -2.222 Crgs 0.063 0.054 1.163
ik 0.000 0.012 0.031 s -0.020 0.050 -0.396
- -0.008 0.019 -0.431 Gar -0.057 0.050 -1.134
Cpg 0.000 0.018 -0.001 Crgg -0.025 0.049 -0.504
oy 0.013 0.087 0.355 g0 0.039 0.042 0.987
[ 0.077 0.029 2.617 g0 0.019 0.045 0.428
Ox 0.004 0.005 0.905 . -0.012 0.058 -0.212
G -0.087 0.017 -2.225 o -0.010 0.043 -0.228
- 0.003 0.016 0.204 e 0.025 0.062 0.397
. -0.030 0.015 -1.951 e £ 0.025 0.076 0.324
oy -0.017 0.031 -0.542 gy -0.058 0.055 -1.050
oy -0.020 0.015 -1.287 g -0.070 0.062 -1.126
g -0.168 0.047 -3.562 g0 -0.165 0.059 -2.808
g -0.117 0.047 -2.500 g0 -0.093 0.057 -1.619
Ggr -0.028 0.048 -0.574 e -0.112 0.057 -1.968
Olgg -0.026 0.056 -0.454 (39 -0.123 0.052 -2.354
o -0.017 0.051 -0.344 Ccas -0.052 0.038 -1.368
oo 0.018 0.046 0.398 Cgss -0.015 0.036 -0.402
gy -0.015 0.048 -0.308 sy -0.056 0.036 -1.545
[ 0.016 0.046 0.359 Ogsq -0.039 0.036 -1.085
Cages -0.094 0.050 -1.892 o -0.061 0.037 -1.664
Cprs -0.109 0.037 -2.986 Qg -0.078 0.037 -2.128
O prs7 -0.084 0.034 -2.506 Cxor -0.024 0.038 -0.621
yges -0.055 0.029 -1.905 Ccon -0.014 0.032 -0.445
Cagso -0.052 0.029 -1.788
Cagon 0.024 0.027 0.888
Caon -0.020 0.026 -0.760
Cproz -0.014 0.023 -0.639

Adjusted R* = 0.937, Log-likelihood function = 974.771

( continued )



Asche and Tveterds ‘ Modeling Production Risk with a Two-Step Procedure 435

Table 3. Continued

Variance Function Parameter Estimates

Parameter Coefficient Std. Error t-Value Parameter Coefficient Std. Error t-Value
By 0.095 0.212 0.449 Bax 0.053 0.038 1.385
Br 0.428 0.351 1.220 Brx -0.178 0.163 -1.095
By -0.307 0.230 -1.339 B 0.073 0.136 0.541
By 0.474 0.418 1.185 B ~0.246 0.171 ~1.441
B; 0.717 0.320 2.242 B -0.517 0.300 -1.723
B -0.028 0.029 -0.963 B -0.080 0.120 -0.664
Baz 0.138 0.178 0.772 Bas -0.409 0.288 -1.420
Bar 0.079 0.122 0.649 Bes -0.367 0.286 -1.281
Bur -0.262 0.151 -1.740 Ber -0.304 0.267 ~1.138
Bux -0.002 0.105 -0.019 Bes ~-0.390 0.234 -1.667
Brr -0.092 0.106 -0.860 Bao 0.089 0.216 0412
Brx 0.070 0.133 0.526 Bso -0.116 0.219 -0.528
B 0.518 0.230 2.251 Bo: 0.215 0.225 0.953
B 0.056 0.189 0.299 Bas 0.174 0.207 0.842

Adjusted R? = 0,124, Log-likelihood function = -4,208.30

Table 4. Sample Average Elasticity Estimates

Mean Function Elasticity Estimates®

E, E; E, Ey E, RTS TC

Mean 0.044 0512 = 0.274 0.015 0.039 0.886 0.042
Std. Dev. 0.102 0.151 0.117 0.046 0.071 0.199 0.082

Variance Function Elasticity Estimates®

VE, VE, VEy VE, VE,, TVE TCV
Mean 0580 0149  -0.162  -0.195  -0.093 0.279 0.080
Std. Dev.  0.580 0.411 0.566 0.865 0.505 0.906 0.268

*E, = output elasticity with respect to input 2; RT'S = returns to scale (the sum of E,’s); TC =rate of technical
change mean production function.

"VE, = (0var(y)/ax,)(x,/var(y))is the output variance elasticity with respect to input 2; TVE = total output
variance elasticity (the sum of VE,’s); TCV = rate of technical change variance production function.
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Table 5. Results of Wald Tests of Risk Structure

Wald Degrees
Hypothesis Statistic of Freedom p-Value
Intercept equal for all firms (pooled model) 2,118.23 372 0.0000
No marginal risk effects of inputs 58.15 20 : 0.0000
No second-order risk effects of inputs 33.26 15 0.0043
No time-specific effects on output risk 12,51 8 0.1298
Only firm-specific effects 122.82 28 0.0000

Next, we tested the hypothesis that there are no marginal risk effects of inputs, i.e.,
that all the B,’s and B,’s are jointly equal to zero. This hypothesis was rejected at the 1%
level with a Wald test statistic of 58.15 and 20 degrees of freedom (p-value 0.0000). We
also proceeded to test the appropriateness of the second-order approximation in input
levels. The null hypothesis that all B;,’s are jointly equal to zero was rejected at the 1%
level with a Wald test statistic of 33.26 and 15 degrees of freedom (p-value 0.0043).

The importance of time-specific effects on the level of output risk was also tested. A
Wald test of the null hypothesis that all time-specific effects are equal was not rejected
at conventional significance levels. The Wald test statistic was 12.51 (8 df), with an
associated p-value of 0.1298. Finally, a test was conducted on the joint hypothesis that
all parameters except the A’s are equal to zero, i.e., that only firm-specific effects explain
different levels of output risk across farms. With a Wald test statistic of 122.82 and 28
degrees of freedom, this hypothesis was also rejected at conventional confidence levels
(p-value 0.0000). Hence, it seems likely that time-invariant firm-specific effects are more
important than time-specific effects for output risk differences between farm obser-
vations in our data set.

In summary, the Wald tests provide support for a flexible specification of the risk
portion of the technology and show that farms are heterogeneous also with respect to
the level of production risk. These findings are interesting, considering that earlier
studies have used very restrictive specifications (e.g., Cobb-Douglas) and postulated that
firms are homogeneous.

Let us examine what further information the estimated variance function provides '
about the structure of production risk in salmon farming. Derived elasticities from the
estimated variance functions are presented in table 4. According to the output variance
elasticities with respect to inputs (VE,, where k = F, K, I, L, M), labor, capital, and
material inputs all have a risk-decreasing effect, while both fish feed and fish input have
arisk-increasing effect. Fish feed in particular seems to have a large effect on the level
of output risk, with an elasticity of 58% for the sample average firm. This confirms our
a priori expectation that an increase in the amount of feed released into a confined area
will make the marine environment less hospitable for the farmed fish due to increased
competition for oxygen and production of nontoxic by-products. The potential for loss
will therefore increase in the event of adverse stochastic shocks—for example, disease
outbreaks or high sea temperatures.
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Following Ramaswami, the implications of the estimated variance function elasticities
are that a risk-averse producer will employ more labor, capital, and materials input
than the risk-neutral producer, but also will employ less fish feed and fish input. The
total variance elasticity, which is the analog to the returns-to-scale measure derived
from the mean production function, is 27.9%. In other words, an increase in the scale of
operation through a proportional increase in input levels not only leads to an increase
in mean output (as we found earlier), but also to an increase in the level of output risk
for the average farm. The degree of risk aversion will thus determine whether such an
expansion will provide a higher expected utility for the salmon farmer.

According to table 4, the average annual rate of technical change was 4.2% for the
mean function and 8% for the variance function, implying that both mean output and
output risk increased for the sample average salmon farm during the period 1985-93.
The positive technical change for the mean production function is supported by other
studies of the industry (e.g., Asche). An examination of the estimated parameters
associated with the time dummies suggests that the statistical support for technical
change is weaker for the variance function than for the mean function.'® One should also
be careful in interpreting the estimated time-specific effects only as being determined
by technological change, since “global” biophysical shocks such as sea temperature
changes and large-scale fish disease outbreaks also will be captured in these parameter
estimates.™

The degree of risk aversion determines whether technical change leads to an increase
in the expected utility of Norwegian salmon farmers. The more risk averse farmers are,
the more weight they will assign to the increase in production risk relative to the
increase in expected output (Ghosh, McGuckin, and Kumbhakar). According to theory,
the rationale of the average salmon farmer for adopting a riskier production technology
is that the increase in mean output associated with the new technology is sufficiently
large to provide an increase in producer welfare (i.e., expected utility).

Summary and Conclusions

In this study, we have exploited the fact that production risk can be treated as hetero-
skedasticity when the Just-Pope postulates hold. This allows us to estimate separately
the mean and the risk functions. The parameters in both functions and their standard
errors then can be estimated consistently using White’s heteroskedasticity-consistent
covariance matrix. This is useful in applied work, since it allows the use of more flexible
functional forms than is the current practice. In particular, instead of using the
restrictive Cobb-Douglas form, we use a second-order approximation for both the mean
and risk portions of the production function. We also introduce firm-specific effects in
both the mean function and risk function.

We test for the presence of heteroskedasticity in an application on a panel data set
of Norwegian salmon farms. After having detected heteroskedasticity, we estimate the

It should be noted, however, that Tveteras estimates a positive rate of technical change for the variance function for all
the flexible functional forms employed in that paper. The high consistency across different econometric specifications should
at the minimum indicate that production risk did not decrease during the period.

" Unfortunately, we do not have additional information in the data set which would allow us to distinguish between such
global (spatially correlated) biophysical shocks and technological change.
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risk function in the next step. Extensive testing is undertaken on the risk structure of
the salmon farming technology. We find that farms are heterogeneous with respect to
production risk. In other words, farms employing the same input levels have different
levels of output risk. Inputs are found to be risk-controlling instruments, and the
second-order approximation is also supported by statistical tests.

The theory of firm behavior under risk shows that the structure of production risk
plays an important role in production decisions of risk-averse producers, both with
respect to optimal input levels and to adoption of new technologies. Since production
risk is an inherent feature of the production process in most primary industries, the
approach outlined in this study should be considered in empirical investigations of
productivity for these industries.

[Received October 1998; final revision received April 1999.]
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