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Econometric Production Models with Endogenous
Input Timing: An Application to Ecuadorian
Potato Production

John M. Antle, Susan M. Capalbo, and Charles C. Crissman

In this article, a model was developed in which the quantity and timing of
input and harvest decisions are endogenous. The endogenous timing model
allows all of the information about input and harvest behavior to be utilized,
and it provides a basis for linking econometric production analysis to the time-
specific analyses in other scientific disciplines used to assess the environmental
or human health impacts of agricultural production practices.

The case study of fungicide use on Ecuadorian potatoes was conducted with
a unique data set containing detailed information on both quantity and timing
of input use. The results showed that both quantity and timing of chemical
use were responsive to economic variables.
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Introduction

Econometric production models typically are specified with inputs aggregated over time
during the production process. Antle (1983) argued that input decisions in agricultural
production processes usually are made sequentially, and showed that sequential decision
making has important econometric implications for specification and estimation of pro-
duction models.

In implementing dynamic production models with sequential input decisions, the re-
searcher must choose how to define the production stages. For example, Antle and Hatchett
define three production stages in relation to the growth stages of the wheat crop to study
water input decisions; Mjelde, Dixon, and Sonka model the corn production cycle with
eight production stages; and Skoufias divides the production process into planting and
harvest stages to investigate labor input decisions. In so doing, these authors assume that
the number and timing of sequential production decisions are exogenously determined.
Put somewhat differently, the existing literature treats the duration of time or the length
of time intervals between input decisions and the number of decisions as exogenous.

In many agricultural production processes, however, the number and timing of input
decisions may be more important than the quantity of inputs used. The classic example
of this would be an integrated pest management technology, where managers sample the
pest population and then apply a standard treatment when the population passes a thresh-
old level. Another example is the timing of harvest activities for perishable crops.

The purpose of this article is to develop and estimate a sequential production model
for which the number and timing of production decisions are endogenous to the production
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process. This study demonstrates that the endogenously-determined timing of input de-
cisions can be formulated as the duration of time between production decisions. The
sequential decision model of Antle (1983) is a special case of the model developed here.
The endogenous timing model is applied to fungicide use in Ecuadorian potato production
where the timing of decisions is an important characteristic of the production process.
This case study utilizes a unique data set containing detailed information on the quantity
and timing of pesticide use.

There are several other reasons why it may be important to treat the timing of production
decisions as an endogenous variable. The recent emphasis on the environmental and
health impacts of agricultural production creates a need for researchers in economics to
develop models that can be linked to models from other disciplines that are location and
time specific (Antle and Capalbo; Opaluch and Segerson; King et al.). For example, models
of surface and ground water contamination by agricultural chemicals utilize data on the
location and time of chemical application in relation to the time of weather events (Wag-
enet and Rao). Models of exposure of farm workers to pesticides utilize information on
both the amount and frequency of pesticide use (Antle and Pingali). Thus, if economic
production models are to be linked with biophysical and health models, they must be
able to represent the timing of input decisions in relation to the timing of physical and
health-related events.

There are also econometric reasons why the timing of input and harvest decisions should
be specifed as endogenous rather than as predetermined decisions. One obvious reason
is for statistical efficiency and accuracy: if timing of decisions conveys important infor-
mation about the production process and about decision making, ignoring it will lead to
biased and inefficient estimates. A second econometric consideration is that if production
stages are defined exogenously, then some stages may be observed with zero input levels.
Because the input quantities are endogenous variables, the econometrician then must use
models for limited dependent variables with complex error distributions. Consistent and
efficient estimation of these models necessarily requires the use of nonlinear estimation
procedures which are particularly complex in dynamic models (Pudney). Moreover, the
problem of choosing a functional form becomes problematic with zero input levels. The
log-linear model, one of the few that yields closed-form solutions to dynamic input demand
functions, does not readily accommodate zero input levels. In contrast, the approach
presented in this article utilizes all of the information contained in the data, and can be
implemented with linear or log-linear models.

The remainder of the article proceeds as follows. A review of the dynamic production
model with exogenously determined timing of input decisions is presented in the first
section. In the second section, the theoretical model is developed with endogenous timing
of input and harvest decisions. A discussion of econometric issues that arise in translating
the theoretical model with endogenous timing into an applied model can be found in the
third section. In the next section, the model is applied to fungicide use decisions in
Ecuadorian potato production. The article concludes with some observations about the
implications of the endogenous timing model for production economics research design.

Dynamic Production Models with Exogenous Timing

In this section, the sequential decision model is reviewed with exogenous timing of input
decisions, and its econometric implications, following the discussion in Antle and Hatch-
ett. Consider a production process with three sequential operations, such as pest man-
agement. The decision maker is assumed to solve

2

Max Et[r] = Et[pq2 ]- Ewjx],
{xo,X1,x2 } j=O

where ir is profit, p is output price, q2 is final output, wj is the price of input xj , and Et
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represents the mathematical expectation conditional on information available at time t.
The timing of each production decision is predetermined at the beginning of the production
process in this model. The input quantity decisions are made either at the beginning of
the production process, and thus are also predetermined, or are made sequentially based
on information that becomes available during the production process.

The technology is represented by the stage-level production functions

q = qo(xo, Eo) and
qt= qt(xt, qt-, t) t= 1, 2,

where t, is the random component in production due to weather, disease, etc., and q,_ is
the previous state of the crop, assumed to embody the effect of all inputs and random
components in earlier stages. Observe that these stage functions have a recursive structure
and that substitution of q0 and q, into q2 gives what Antle and Hatchett referred to as the
composite production function:

q2 = q(o, Xl, X2, E0 E1, E2).

The sequence of events in the decision-making process is as follows: The input x0 is
chosen at the beginning of the production process, given initial expectations of prices,
future crop states, and decision rules for optimal inputs x* and x*, given by

x* = x(wl, q0, w) and
X2 = 2(w2, ql, w2),

where ot denotes the parameters of the decision maker's subjective distributions of future
output and prices at time t. Thus, at the beginning of the production process, the farmer
chooses x0 to solve

Max Eo[pq2 WoXo - wx*W2 - *],
xo

subject to the production functions defined above. After x0 is chosen, production begins;
stage 0 production disturbance E0 and state variable q0 are realized. At the beginning of
stage 1, the farmer observes q0, and using an expectation of x*, chooses x, to solve

Max El[pq2 - WoXo - w 2X - ],
xl

subject to the production functions. After x, is chosen, stage 1 production begins, distur-
bance ec is realized, and state variable q, is realized. At the beginning of stage 2, the farmer
observes q, and chooses final input x2 to solve

Max E2[py2 - wX - wx - W2X3],
X2

subject to the production functions.
Intermediate outputs q0 and ql usually are not observed by the econometrician; thus

the system of equations that is estimated is represented by the factor demand functions
x* and x*, with the intermediate outputs recursively substituted out of the model. The
resulting system of equations is thus of the form:

X = Xl(W1, W2, Xo, E0 , 01);

(1) X2 = x 2(W2 , Xo, XI, Eo, l, c 2); and

q2 = q(Xo, X, X2, E0, E1, 2).

The recursive structure of this system shows that the intermediate inputs xl and x2 are
functions of the production errors when the input decision problem is solved sequentially
and farmers update their information set before each decision. Therefore, estimates of
the production function or the factor demand functions which do not account for the
correlation of the inputs with the production function disturbances generally are biased.
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Figure 1. Decision times (ti) and intervals (6i)

Another problem that arises in the application of this model is that zero input quantities
may occur, and this is especially likely in production processes where inputs such as
pesticides are used. This precludes using the Cobb-Douglas model or other models in-
volving logarithmic transformations of the variables.

Dynamic Production Models with Endogenous Timing

The timing of production decisions is now assumed to follow the pattern illustrated in
figure 1. Time t is defined as continuous on the nonnegative real line, and production
activities occur at discrete points in time. There are N + 2 decisions occurring at times
ti, i = 0, 1, ... , N, H, with land preparation, planting, and related activities at time to =
0, intermediate production activities at times t, ... , tN, and harvest at 't. The intervals
between decisions are defined as 6, = t, - tiI, i = 1, ... , N, and 6H = tH - tN, so that

H

bi = tH
i=1

is the time from planting to harvest.
Define a random vector ci on time interval 6, to represent weather events on that interval

(e.g., temperature, rainfall). For each partition of time 6 = (61, ... , 6N, H), define the
conditional density of weather events as ¢(E, I i- ), where the vector of errors that occurred
in earlier stages is i- 1c = (Ei,..., €i _). Henceforth, this notation is used to denote a vector
of previously determined variables.

A general representation of a discrete, time-dependent production process then can be
written as

qO = qO[Xo, Ej,

t = qt[xt, qt-1, tt] 0 < t < tH,

qH = qH[XH, qt, EH],

where the subscripts on the functions indicate that the response of output to inputs depends
on when the inputs are applied. For empirical purposes, this representation is not useful
because in continuous time there are an infinite number of possible times at which input
applications could occur on the (0, H) interval, and thus, by implication, there are an

to------0-I I I 1 I I ) time t
to=O t 1 t 2 t 3 . . tN- 1 tN tH
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infinite number of possible production functions. One way to operationalize this model
is to specify the production function with time-varying parameters. This type of varying
parameter model is parameter intensive and is likely to suffer from the multicollinearity
problem (see Mundlak and Hellinghausen). Moreover, in applications of these models, it
typically is assumed that the model is log-linear and that the coefficients are linear functions
of exogenous "state" variables. If one of these state variables was the time interval between
input decisions, and the length of this interval was assumed to be an endogenous variable,
then the log-linear variable coefficients model would become nonlinear in the parameters
and would not possess a closed-form solution to the input decision problem.

The approach followed here is to represent the production process in each stage as a
function of inputs employed and the time the activity occurs in relation to other activities
in the production process. The ith production activity occurs at time ti = til + 6,, and
production qi is a function of: output from the previous stage, qi-_; the time interval i,;
the input vector x*; and the random events ei that occurred during bi:

q0 = qo[X0 , E0],

(2) qi = qi[Xi, qi- , til, 6, ei, i= 1, ... , N,

qH = qH[XH, qN, tN, H, EH].

According to this model, parameters vary by stage of production rather than being explicit
functions of time. The functions qJ[] are assumed to be concave in xi, qi_, and ,i. The
explanation for the concavity of the production function in 6i is derived from the physiology
of crop growth. As crop growth proceeds, there is a point in time where each operation,
such as cultivation, fertilization, pest control, etc., yields its greatest contribution to final
output, given the state of crop growth and previous production activities. Observe, how-
ever, that concavity does not impose an algebraic sign on the terms 0

2qi/OdxidO. In some
types of operations, such as cultivation with a tractor, increasing the interval between
operations might increase the marginal productivity of the tractor power by reducing soil
compaction; thus, c2qi/xidSbi > 0. In some other operations, such as pest management,
shorter intervals between pesticide applications could result in improved pest control,
giving d2 qi/dxidbi < 0. Thus the sign of these cross-derivatives is an empirical question.

Recursively substituting the stage functions qi into qN in (2) gives the composite pro-
duction function,

(3) qH = qH[XH, qN[qN-1[ ... ], tN-1, 
6

N, EN], tN, N, EH]

qc[Hx, Nt, N, HE],

where HX = (xo, ... , XH), and Nt, N6, and HE are defined similarly. As observed by Antle
and Hatchett, because intermediate products usually are not observed, the composite
function qc typically is estimated in econometric models.

Various sequential decision rules arise, depending on how the decision maker uses
information, and the structure of these decision rules plays a key role in the econometric
model, as emphasized in Antle (1983). Two scenarios are considered here. First, the
manager could be assumed to update information continuously or with a greater frequency
than decisions are made, and to make decisions conditional on that information. For
example, as the production process moves through time, the manager could update in-
formation on a daily or weekly basis, and take an action when it is judged optimal to do
so. An example of this type of behavior is a farmer observing a crop on a periodic basis
and applying a pesticide when some indication of pest infestation occurs; the farmer could
be basing decisions on personal experience or using a threshold determined by entomol-
ogists. Because the econometrician typically does not observe all of the weather conditions,
pest populations, and other factors that influence the farmer's decision, this type of decision
framework leads to the latent variable models in the econometrics literature. In this type
of model, the observed actions take on a limiting value if the exogenous latent variable
is below a threshold (e.g., no pesticide is applied if a pest population is below a threshold
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level), or take a positive value if the latent variable is above a threshold (e.g., a pesticide
is applied if more than a threshold level of a pest is observed). The statistical properties
of these models can be difficult to ascertain and the associated econometric methods are
complex (see Aigner et al.).

Another complication of the analysis of production decision making occurs because
information is costly. There are opportunity costs to monitor field conditions, and costs
involved in planning and implementing decisions. In view of these econometric and
theoretical considerations, the information updating behavior of the farm manager is
simplified by the assumption that information is updated when other observable pro-
duction activities occur. Thus, it is assumed that when the (i - l)th decision is imple-
mented at time ti_, the manager updates information and plans the subsequent action
(xi) and its time of implementation (t = t- _ + ,). Because til is known, the choice of t
is equivalent to the choice of ,i. With this assumption, the properties of the model with
endogenous timing are similar to the Antle-Hatchett model described above, except that
the timing decision is endogenous. An important implication of this model is that every
decision corresponds to an observable action; hence, there are no latent exogenous vari-
ables in the model and all observed values of the endogenous decision variables are
positive.

The firm's objective function is assumed to be to maximize expected net returns. Output
price p is received at time of harvest tH with density function 4(p I t). Input prices are
assumed, for convenience, to be known. Thus, at time tN, the manager plans the harvest
activity by selecting the harvest inputs XH and the time interval to harvest SH to maximize
expected net returns:

(4) EN[lr] = f (PqH[XH, qN, tN N,, H] WHXH - CN)4-(P I TN + H)(H, I N|) dpdeH

= EN[P I 6H]EN[qH I XH, qN, tN, AN] - WHXH - CN,

where cN is factor cost at time N. Second-order conditions must be satisfied to assure a
maximum. Observe that the concavity of the production function is not sufficient in this
case because of the dependence of expected price on time. Thus, it must also be assumed
that the behavior of output price is such that expected returns is a globally concave
function. Assuming the second-order conditions are met, the harvest decision satisfies

(5) E[p I OH] a WH=
dXH dXH

and

OEN[r ] EN[qH I '] OEN[p I 6H]
(6) = E[P I b ] + X EN[qH I ] = .

a6H a6H a6H

Note that the input decisions occur before output is realized, and thus a discount factor
should be introduced into equation (3). As long as the time period between decisions is
relatively short, however, the discount factor is likely to be near one and therefore is not
included in the presentation for simplicity.

Equation (5) is the usual first-order condition for optimal input choice to maximize
expected net returns. Equation (6) states that the optimal timing of harvest balances an
expected price and an expected productivity effect. Expected price may be either increasing
or decreasing with time. Recall that expected output is assumed to be concave in AH; that
is, expected output increases with time up to crop maturity, and then may reach a plateau
or decline as quantity or quality decrease. Rearranging (6) shows that, in equilibrium, the
expected rate of price change equals minus the expected rate of output change:

aEN[P I H] 1 d EN[q I '] 1
86H EN[P I 5H] 06H EN[q I]

Thus, if price is expected to decline, the farmer will harvest where OEN[qH I ]/dH > 0.
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Figure 2. Harvest timing in relation to expected price change

As illustrated in figure 2, a declining expected price at time tN will lead the farmer to
choose the time interval to harvest, 6*, such that harvest occurs at time tH < tM before
the maximum yield is attained. Conversely, when price is expected to be increasing, the
farmer will harvest where OEN[qH I ]/bH < 0, i.e., to the right of tM in figure 2. Thus,
the harvest time generally should be a decreasing function of the expected harvest price.
If a discount rate were included explicitly in the model, it would be subtracted from the
left-hand side of this equation, thus demonstrating that the higher the discount rate, the
earlier the harvest decision. The system of equations (5) and (6) can be solved for the
decision rules:

(7) * = *(EN[p], W, qN, tN) and

5* = 5*(EN[p], WH, qN, tN).

At time tN_ 1, the manager chooses XN and AN to maximize

EN-[r] = EN-1 [P I t N- + BN + 6 H]EN--1[qH I XN, XH, qN-1, tNN-, N5, H]

- CN-1 - WNXN - EN-1[WHXH *

The first-order conditions are:

(8)
EaEN [qH ·] _ dE_ -[X*

EN-1[P I * N- - _N ' ]H E -N [4 -0
OxN OXN

and

aEN-_,[p I'] ENl[qH '] ENi[x*X]}
(9) EN-i[qH I '] + EN-I[P I ] N + WH- - 0.

doN daN dbN

Equations (8) and (9) differ from (5) and (6) by the terms representing the impact of
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decisions at tN-1 on expected harvest input XH. It seems plausible that intermediate decisions,
such as pesticide use and cultivation, have little or no impact on the quantity or timing of
inputs used in harvest; thus, OdEN_[X*]/Ox, = 0 and dEN_-[X*]/ad N = 0. It is also plausible
that intermediate input timing would not affect harvest timing and thus not affect the
expected price at harvest, in which case aEN_[P I -]/6N = 0. Under these conditions,
equations (8) and (9) imply that intermediate input timing is made to maximize output,
i.e., the solution occurs where OEN_ [qH I ]/d6N = 0, and the input quantity xN satisfies the
usual condition that expected value of marginal product equals factor price. Under these
assumptions and the assumed concavity of the production function in xN and 6N, the
comparative static properties of the factor demand function, x*[EN-_[p], wN, qN-1, tN-_],

can be shown to be the same as the neoclassical model, i.e., x*/OEN_,[p] > 0 and ax*/
OwN < 0. In the case of the optimal time interval, 6*[EN- [p], wN, qN-1, tN_], comparative
static analysis shows that the signs of the price effects depend on the effect of timing on the
marginal productivity of xN. In particular, d6*/dwN >(<) 0 as d2EN_,[q I i]/- bN <(>)
0, with the signs reversed for the output price effect.

Applying the same procedures for i < N, let + = (*+, ... , *), etc. It follows that the
values of xi and b, chosen at time til to maximize

E,_ 1[r] = Ei,_ I t,_- + b, + b Y* Ei- [qH Ixi, Xi
+l

, qi-, ti-, ti, Ji,, i +l]
j=i+ 1

H

-- w, - wiE i- l [x]
t=i+1

are generally of the form

(10). xi = xi*[Ei_ [p], w', qi-,, ti-,]

i. = bi*[Ei-l[p], w', qi-l, ti-].

Note the dependence of these functions on wi = (wi, ... , WN, WH), because decisions at t4
generally depend on future planned decisions.

Econometrics of Production Models with Endogenous Timing

The results of the previous section can be summarized as follows. At time ti of the ith
production activity, the decision maker is assumed to update information and to plan the
quantity and timing of subsequent actions. Application of the dynamic programming
algorithm to the problem of maximizing the farmer's objective function yields the system
of behavioral equations of the form (10). This section discusses econometric issues that
arise in translating this system of theoretical demand functions into an econometric model.

Typically, neither the intermediate-stage production functions in (2) nor the system of
equations represented by (10) can be estimated because the intermediate outputs qi, i <
H, are not observed by the econometrician. Recursively substituting the intermediate-
stage functions (2) into (10) yields

(11) * = xr[E_[P], w, i -i , i-it, 'i-', i- le] and

* = b[Ei-i[p], w, i-1, i-it, i-165 i-1c],

where - x = (xO, ... , xi-1) and other variables are defined similarly. The recursive system
of equations, consisting of the composite production function (3) and the system of demand
functions (11), is defined in terms of observable variables and is estimable. The composite
production function depends on the error terms from all of the production stages. Statistical
estimation must account for the joint dependence of output and inputs on the production
errors, and for the statistical properties of the errors. Thus, as noted above in the discussion
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of the model with exogenous timing, an estimate of the production function that does not
take this joint dependence into account will be biased. Antle and Hatchett describe a
seemingly-unrelated regression estimator and a maximum likelihood estimator that can
be used for this model. If the system of factor demand equations (11) is estimated without
the production function, then each equation contains errors from previous production
stages and exogenous and lagged endogenous variables. Therefore, if i-'x is statistically
independent of i'c, the factor demand equations can be estimated consistently and effi-
ciently using a suitable generalized least squares estimator. If the lagged inputs on the
right-hand side of (11) are correlated with lagged disturbances, then an instrumental
variables estimator or a maximum likelihood estimator is required for consistent or
efficient estimation.

Econometric estimation of the production model can proceed in several ways. One
approach, now standard in the literature, is to parameterize the production function,
derive the implied first-order conditions (expressed either as demand functions or as
"share" equations), and then estimate the system of equations with across-equation pa-
rameter restrictions imposed for statistical efficiency. Several difficulties arise in applying
this approach to the dynamic production model represented by the system of equations
(3) and (11). First, few functional forms for the dynamic production functions in (2)
provide closed-form solutions to the factor demand functions in (11). Antle and Hatchett
derive a solution for the dynamic Cobb-Douglas production model under the assumption
of exogenous input timing; it is a straightforward, if tedious, exercise to show that a Cobb-
Douglas version of (2) can be solved for the demand functions (11) in log-linear form.
However, this Cobb-Douglas model is restrictive in its behavioral implications. In ad-
dition to the usual restrictions of the log-linear form, such as unitary elasticities of sub-
stitution, it implies elastic factor demand functions. Problems also arise in the specification
of the time variables /i in the Cobb-Douglas model, because producers may be observed
operating where the marginal product of 6i is negative [see equation (6) and fig. 2]. It also
is possible to solve a quadratic model for explicit factor demand functions, under the
restrictive and implausible assumption that the production functions are additively sep-
arable in inputs across production stages. The statistical efficiency gained from imposing
one of these restrictive functional forms may be an illusion, because the apparent efficiency
gain comes at the cost of specification bias. For this reason, Antle and Hatchett suggested
an alternative approach, namely, to flexibly approximate the factor demand functions
and the production function, without imposing the across-equation restrictions.

A second problem that arises in estimating the model with endogenous timing is that
the total number of input decisions is a random variable. Thus, for each production cycle
represented in the data (planting to harvest) there is a different number of observed input
quantities xi and intervals b,. It is not possible to write the model in the usual form with
a prespecified number of parameters unless certain assumptions are made about the
constancy of parameters across production stages. For example, if all farms make at least
K < N decisions, and the parameters of the functions qi, i = K + 1, ... , N, in (2) are
assumed to be the same, then even though N will vary from farm to farm, the model
contains a fixed number of parameters. Under this assumption, it would be possible to
parameterize the stage-level production functions and derive the full system of equations
consisting of the composite production function (2) and the factor demand functions (11),
subject to the qualifications of functional form discussed above.

The approach to econometric specification and estimation pursued in this study is
motivated by the philosophy that the objective of econometric research is to extract as
much information as possible from the data without imposing untested maintained hy-
potheses. In view of the specification problems identified above and the limited a priori
information available about the structure of the stage-level functions in (2), it is judged
most appropriate to utilize a flexible parameterization of the system of demand equations
(11) without imposing across-equation restrictions implied by a parameterization of the
production functions. For each application event, a system of quantity and timing equa-
tions is estimated and subjected to specification tests. Tests for parameter constancy across
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applications can be performed, and if the parameters are not found to be different, the
data across sets of applications can be pooled under the assumption of parameter constancy
to increase statistical efficiency.

An Application to Ecuadorian Potato Production

In this section, the system of dynamic factor demand equations in (11) is specified for
the case of fungicide use in potato production in the Carchi Province in northern Ecuador.
Potato production in Carchi is concentrated in a highland zone 30 kilometers south of
the Colombian border. Only half a degree north of the equator, production occurs in
altitudes between 2,800 and 3,400 meters on steeply sloped, deep volcanic soils. There
are virtually no changes in day length, little seasonal temperature variation, and limited
variation in rainfall. The cropping system is dominated by potatoes and pasture for dairy
cattle. Because of the equatorial location and rainfall patterns, there are no distinct planting
or harvesting seasons; virtually all recorded planting dates are on different days, evenly
distributed through the months of the year. Conditions in Carchi are highly favorabls e to
potato production, with farmers in the sample obtaining average yields of 22 metric tons
(MT) per hectare (ha) as compared to a national average of 8 MT/ha and yields of around
30 MT/ha in the United States.

Production data were collected in a farm-level survey conducted in the Carchi region
on 40 farms during 1990-92. Because crops are planted and harvested continuously
throughout the calendar year, data were collected for parcels, where a parcel is defined as
a single crop cycle on a farmer's field. Excluding pasture, a total of 490 parcels were
registered, of which 338 were potato. From these, a total of 320 potato parcels were used
in the estimation sample. The potato fields not used had incomplete harvest data due to
the local practice of selling an unharvested field to third-party haresters. The 320 parcels
in the sample represent 178 different fields.

Detailed parcel-level production data were collected on a monthly basis. Potato pro-
duction in Ecuador is management intensive, and there are as many as 20 distinct op-
erations during the six-month crop cycle. Post-harvest farmer recall of detailed data on
pesticide use is unlikely to be accurate. Thus, the investment in monthly visits was deemed
essential to the success of the data collection effort. See Crissman and Espinosa for further
details on sampling and data collection procedures.

The late blight fungus (Phytophthora infestans) is the principal disease and the tuber-
boring Andean weevil (Premnotrypes vorax) and several foliage damaging insects are the
principal pests affecting production. The control of these three threats requires distinct
strategies relying primarily on chemical pesticides.

Late blight can be a devastating disease where, in a susceptible variety, entire fields can
be destroyed overnight. Effective control relies on prevention. Most fungicides are contact-
type, killing the fungus encountered on the surface of the plant. Manufacturers of these
products typically recommend treatment at prescribed intervals depending on the weather.
During periods of rainy weather, the frequency of spraying increases as conditions for
fungus development are better and the rain washes the fungicide off the foliage.

The data contain 1,881 observations on fungicide applications, where the unit of ob-
servation is a day when one or more fungicides were applied. The patterns during the
production cycle of the timing of the individual applications are illustrated in figure 3.
The data show that most fields were treated with fungicides at least four times. The
dispersion in the timing of the applications reveals a wide range of pest management
behavior that presumably reflects differing physical and economic conditions faced by
farmers. The quantity data reveal that the amounts applied follow the development of
the foliage, with average application amounts increasing through the first several sprays
and then remaining at about the same level for the remaining sprays. After plant senes-
cence, foliage does not contribute to tuber development and farmers cease to use fungicides.
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Figure 3. Timing of fungicide applications

Quality Adjustment of Pesticide and Output Data

A critical problem in the analysis of pesticide use is that farmers apply many different
types of materials to control a given pest, such as late blight or Andean weevil. In the
Carchi survey, 27 different insecticides and 41 different fungicides were used. These
pesticides are composed of a wide array of organic and inorganic chemicals of differing
potencies. Simply aggregating quantities of products applied, or quantities of active in-
gredients applied, would fail to accurately measure the variation in pest control services
embodied in the different materials. Thus, in analyzing pesticide use, production econ-
omists face a quality-adjustment problem similar to the one that exists with the mea-
surement of capital stocks and other types of inputs.

So that these materials could be compared in standardized units, a hedonic price model
was utilized to quality-adjust quantities and prices of pesticides, following Antle (1988).
In this model, pesticide price is assumed to be a function of pesticide quality or effec-
tiveness, as reflected in the application rate and type of pesticide. To help identify the
quality component of price, other variables that reflect farmer and crop characteristics
unrelated to quality but related to pesticide use also are included in the model.

The fungicide price was regressed on: the application rate (RATE), a dummy variable
indicating whether the fungicide is a systemic or nonsystemic type (TYPE), the variety
of the potato (VDi), the altitude of the field (ALT), the application number (APPNO), the
days after planting of the application (DAP), the size of the field treated (AREA), and a
trend variable to account for inflation (TREND). The results of the log-linear model which
fit the data best, with t-statistics in parentheses, were:

In(PRICE) = 35.22 - .441n(RATE) + 1.77TYPE + .16ALT
(3.48) (-45.09) (51.75) (2.79)

(Continued)
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+ .01APPNO + .003DAP - .21AREA + .04AREA 2

(1.54) (6.33) (-8.15) (6.13)

.7TREND + .0005TREND2 + .08VD2 + .07VD3
(-3.12) (3.57) (2.23) (1.78)

+ .12VD4 + .13VD5 + .05VD6 + .11VD7
(1.96) (3.03) (1.15) (2.09)

N= 3,385, R2 = 0.924, F = 2,725.77.

According to the interpretation of the application rate as an indicator of quality, the
negative sign of the RA TE coefficient indicates an inverse relationship between application
rate and quality, as expected. The TYPE coefficient indicates that the systemic fungicides
are much more expensive than the nonsystemics. This result corresponds to the fact that
much smaller amounts of systemic pesticides are used per standard application as com-
pared to nonsystemics, so the systemics are interpreted as higher quality than the non-
systemics. Setting all variables other than RATE and TYPE to their sample means to
generate a numeraire value, the predicted value of the above equation was then used to
generate weights to quality-adjust all fungicides relative to this numeraire unit of mea-
surement. An implicit quality-adjusted price is obtained by dividing the value of each
pesticide applied by the quality-adjusted quantity. A similar hedonic procedure was con-
ducted for the two groups of insecticides corresponding to the soil and foliage pests.

Potato quality is a major factor affecting prices received by farmers. Consumer pref-
erences for potatoes are functions of potato variety, as well as a set of quality characteristics
such as size, shape, and insect or disease damage. Thus, to standardize potato output for
quality, a hedonic model was estimated in which potato price was regressed on dummy
variables representing potato variety and potato quality. Varieties are classified as native,
local improved (LOCAL), and national improved (NATIONAL). Potato quality was coded
into the data according to a classification system from highest value to lowest value uses,
including categories for commercial potatoes shipped to the urban markets (CLASS1),
seed potatoes (CLASS2), potatoes used for home consumption (CLASS3), and those for
nonhuman consumption (CLASS4, 5, 6). The hedonic regression results of the linear
model which fit the data best were:

PRICE = 5,993.85 + 292.61LOCAL - 429.55NATIONAL
(104.41) (5.08) (-7.31)

- 2,155.63CLASS2 - 3,773.38CLASS3 - 4,834.09CLASS4
(-46.57) (-69.88) (-90.60)

- 5,032.12CLASS5 - 4,640.04CLASS6
(-29.61) (-25.09)

N = 2,600, R2 = 0.803, F= 1,511.08.

The results indicate that the local varieties receive a price premium of about 5% relative
to the native varieties, whereas the national varieties receive a 7% discount, presumably
because of taste and cooking qualities. Relative to the potatoes shipped to the urban
market, those sold as seed in local markets, consumed at home, or for nonhuman con-
sumption were priced substantially lower. This equation treats commercial-grade potatoes
of native varieties as the numeraire. Thus, predicted values from this equation, with the
variety dummy variables set equal to zero, are interpreted as quality weights corresponding
to this numeraire. Multiplying these weights times the quantities of each quality of potato
gives a quality-adjusted quantity measured in numeraire units. An implicit quality-ad-
justed price was obtained by dividing the value of output by the quality-adjusted quantity
produced on each field.

As described in the previous section, the dynamic factor demand equations are functions
of expected output prices. In principle, it would be desirable to construct a market model
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to represent price expectations under the assumption of rational expectations. Lacking
suitable data for the construction of a market model, a simple model of expected output
price was constructed under the assumption that farmers know that nominal output prices
can be decomposed into two components: a trend, reflecting general price level inflation
which averaged about 50% per annum during the study period; and a seasonal component,
reflecting a cyclical pattern of market conditions driven by seasonal variations in pro-
duction. Thus, the quality-adjusted output price was regressed on a time trend and monthly
dummy variables. The estimated equation indicated there are significant trend and sea-
sonal components in the data. The predicted values of the model were used as estimates
of expected output prices in the factor demand models.

Estimation Results

The system of factor demand equations (11) for fungicide applications was specified in
log-linear form, thus enabling coefficients on all variables except dummy variables to be
interpreted as elasticities. The input price vector was specified to include the fungicide
price, the price of insecticides applied to treat Andean weevil, the price of other insecticides,
and the daily wage for pesticide application and other "management" activities, all nor-
malized by expected output price. Inputs applied at the beginning of the season also should
enter the equation. Quantity variables included in the model are field size, fertilizer, field
preparation animal labor, and field preparation human labor. The dynamics of the model
were represented by the inclusion of lagged dependent variables and a variable indicating
the time of the previous application. Preliminary estimates of the model indicated that
one lag effectively represented the dynamics, so the second and higher lags were not
included in the results presented here.

The data represent time series of each farmer's applications during a single cropping
cycle of a potato field. To solve the problem of a random number of total applications
across fields, the seventh and higher numbered applications were assumed to have the
same parameters and were pooled for each field. The error structure of the factor demand
equations could contain serial correlation due to weather events that span more than one
application. However, because the time series is only seven observations long for each
field, there are not enough degrees of freedom to estimate a different autoregressive process
for each field. Moreover, beause fields may be planted at any time during the year and
applications occur at widely varying intervals, there is little reason to believe that different
fields exhibit the same autoregressive processes; therefore, it would be unreasonable to
pool the data from different fields to estimate the error process. Consequently, an auto-
regressive error process was not estimated, although it is recognized in the design of the
estimation procedures that the errors may be correlated over time.

It is also possible that the error covariance matrix may exhibit heteroskedasticity. This
hypothesis was tested by applying the method of Antle (1983) to test whether the variances
of the quantity and timing equations are statistically significant functions of the exogenous
variables. The null hypothesis of homoskedasticity could not be rejected for any of the
equations, so heteroskedastic corrections were not made.

The quantity and timing equations form a simultaneous system with lagged endogenous
variables. As noted above, serial correlation in the errors is possible, in which case the
lagged endogenous variables would be correlated with the error terms of the equations.
Therefore, the choice of estimation method should consider the presence of endogenous
variables as regressors. Hausman tests were used to compare ordinary least squares (OLS)
and two-stage least squares (2SLS) estimates for each equation (quantity and timing) for
each application. The OLS estimates were not found to be significantly different from
2SLS for any of the quantity equations and for five of the seven timing equations. In view
of the trade-off between efficiency and bias in using OLS or 2SLS estimates, and because
only a limited number of excluded exogenous variables were available for use as instru-
ments for 2SLS estimation, it was judged that OLS estimation was the preferred method.
Therefore, OLS estimation was used to produce the results presented in tables 1 and 2.
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Standard F-statistics were computed to test the hypothesis that the parameters of equa-
tions for individual applications are equal across applications 1 through N. For pooling
all applications, the test statistic for the quantity equations was F(13,1790) = 41.22 and
the statistic for the timing equations was F( 14,1783) = 18.71. These statistics both exceed
the critical value of approximately 2.1, indicating clear rejection of the hypothesis that
the parameters of all applications are equal for either quantity or timing equations. Next,
the hypothesis of equal parameters was tested for pairs of applications (1 and 2, 2 and 3,
etc.). The only pairs for which parameter equality was not rejected were (4, 5) and (5, 6).
Finally, groups of three applications were tested (1, 2, and 3; 2, 3, and 4; etc.). The only
case for which parameter equality was not rejected was for the quantity equation with the
combination (4, 5, 6). Therefore, it was concluded that it was not suitable to pool the
applications. This finding also demonstrates that aggregating the data over time would
be inappropriate.

The parameter estimates show several important features of the model. First, the quan-
tity equations (table 1) generally fit well considering that the data are cross-sectional, with
R2 statistics in the 0.88 to 0.92 range. In contrast, the timing equations (table 2) explain
between 16 and 31% of the variation in the timing intervals between applications. These
results appear to be due to the preventative character of late blight control, and to the
fact that farmers lack accurate methods to predict late blight infestations. Thus, the timing
of treatments is likely to be based more on a fixed schedule of applications, with the
schedule based on farmers' experience, rather than on a sequential updating scheme.
Considering the potentially catastrophic nature of late blight infestations, the timing of
applications also is less likely to be responsive to economic variables than other pest
control decisions. This situation can be contrasted with an integrated pest management
technology that uses weather data and measures of pest incidence to time treatments in
relation to an economic threshold. Both environmental conditions and economic variables
would be expected to play a more important role in explaining the timing of input decisions
with this type of pest management.

Second, despite the tendency for the timing equations to fit the data less well than the
quantity equations, the results demonstrate that both the quantity and timing of fungicide
applications are significant functions of prices. The own-price elasticity of the quantity
demanded is close to unity for all applications. The own-price elasticity of the timing
decision is significant for the first four applications, and ranges from a value of .55 for
the first application to .17 for the fourth. As hypothesized in the discussion of the com-
parative statics of the model, the sign of this timing elasticity is positive, indicating that
a higher price leads farmers to spray less frequently, ceteris paribus. The insecticide price
coefficients are mostly insignificant, indicating there is not a strong interrelationship be-
tween insecticide and fungicide use. The labor wage coefficient is positive in the quantity
equations and negative in the timing equations, indicating that labor generally substitutes
for pesticides.

Third, the results indicate that fungicide timing generally has a statistically significant
effect on fungicide quantity, and vice versa. The positive coefficient on the time between
applications in the quantity equation indicates that as frequency of application declines,
quantity increases. Similarly, the positive coefficient of the quantity variable in the timing
equation indicates that as quantity increases, frequency of application declines.

The results also show dynamic relationships across applications. The positive coefficient
of the lagged endogenous quantity variable corresponds to the observed pattern of in-
creasing rates of application as the foliage develops and the crop matures. The positive
coefficient on the lagged endogenous variable in the timing equations of the later appli-
cations indicates that, after the third application, the length of time between applications
tends to be positively related across applications. This phenomenon, as well as the dy-
namics of the quantity equation, could be explained in part by field characteristics that
relate to pest incidence and unobserved farmer characteristics such as risk attitudes. For
example, it is clear from the data that some farmers generally treat more times and apply
higher rates than other farmers, regardless of pest incidence. The dynamics of the early
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applications seem less systematic. The negative and significant coefficient of the time
variable in the timing equation for application 2 contrasts with the positive and significant
coefficient for application 6. This outcome corresponds to the changing pattern seen in
figure 3, where the intervals between applications are longer on average and more variable
in the early applications than the intervals between later applications.

The other input quantities (area, fertilizer, land preparation labor, and animal power)
are generally positively and significantly related to fungicide quantity, as expected. The
fertilizer quantity has a negative and significant effect on the time interval between ap-
plications. This effect is explained by the relationship between fertilizer and foliage de-
velopment. Fertilizer use stimulates foliage development, which is positively related to
tuber yield. Late blight attacks the foliage, so it follows that farmers who apply larger
quantities of fertilizer per hectare also will have a greater incentive to use fungicide to
protect their investment in the crop. The data show that fertilizer's share in variable
production cost is 20%, the largest of any input.

Finally, parcels in the numeraire zone are generally at higher altitudes and more humid,
and thus more conducive to late blight than parcels in other agro-ecological zones rep-
resented in the sample. The coefficients of the zone dummy variables and the altitude
variable in the timing equations confirm this.

Conclusions

In this article, a model was developed in which the quantity and timing of input and
harvest decisions are endogenous. The model was estimated for fungicide input decisions
in Ecuadorian potato production. This approach has numerous advantages over static
models in which inputs are aggregated over time or models in which input decisions are
sequential but the number and timing of decisions are exogenous. Most importantly, the
endogenous timing model allows all of the information about input and harvest behavior
to be utilized, and it provides a basis for linking econometric production analysis to the
time-specific analyses in other scientific disciplines used to assess the environmental or
human health impacts of agricultural production practices.

The Ecuadorian case study of fungicide use on potatoes was conducted with a unique
data set containing detailed information on both quantity and timing of input use. The
results showed that both quantity and timing of chemical use were responsive to economic
variables. It also was found that the demand equations' parameters were not constant
across applications during the growing season, and that there was a systematic pattern in
these differences. Therefore, the assumption of constant parameters could lead to biased
predictions of responses to changes in economic and technological variables.

To make this modeling approach feasible, data must be collected in such a way that
both the quantity and timing of input decisions are recorded. It could be argued that
collecting production data in this way is more costly than conventional survey methods
that do not record when input decisions are made. However, the experience of the authors
suggests that in cases where the timing of input decisions is an important part of the
production process, the only way to ensure the quality of the data is to collect data on an
ongoing basis throughout the growing season. This can be accomplished either through
periodic farm visits to collect intermediate input data, as was done in this study, or by
obtaining agreements with farmers in advance to keep records during the season.

Several extensions of the model presented in this article could be explored in future
research. The key behavioral assumption made in this study, namely that farmers se-
quentially plan subsequent decisions when the previous one is implemented, needs to be
tested. This test would involve formulating and estimating the more complex limited-
dependent variable model that results from the assumption that information is updated
more frequently than when observable production activities take place. Another issue that
could be investigated concerns the fact that sequential production processes generally
involve multiple, jointly-dependent intermediate inputs. For example, in the case of
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Ecuadorian potato production, both insecticides and fungicides are used, and the use of
one may affect crop growth and thus the use of the other. The issue of the timing of
harvest decisions also could be investigated, as in the recent study by Ramos. Because
yield reaches a plateau as the crop matures and then may decline, the question of appro-
priate functional forms for models with harvest timing decisions needs to be investigated.
Harvest timing decisions should depend critically on price expectations, and more so-
phisticated price expectations models may need to be incorporated into the econometric
analysis.

[Received November 1993; final revision received February 1994.]
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