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A Class of Separability Flexible Functional Forms

Paul J. Driscoll and Anya M. McGuirk

Quadratic flexible forms, such as the translog and generalized Leontief, are
separability inflexible. That is, separability restrictions render them inflexible
with regard to separable structures. A class of functional forms is proposed
that is flexible with regard to general production structures and remains flexible
regarding weakly separable structures when separability restrictions are im-
posed, thus permitting tests of the separability hypothesis. Additionally, the
restricted forms are parsimonious; that is, they contain the mininum number
of parameters with which flexibility can be achieved.
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Introduction

Of all the simplifying assumptions made in empirical production and demand analysis,
perhaps the most powerful is separability. Separability of the production or utility function
permits the researcher to focus on a subset of factor or consumer demands, thereby
reducing the size of the problem to tractable dimensions.

One problem with the separability hypothesis, though, is that it is difficult to test.
Blackorby, Primont, and Russell (BPR) have shown that restrictions necessary to impose
weak separability on generalized quadratic functional forms (GQFFs), including the trans-
log, the quadratic mean of order p (includes the quadratic and the generalized Leontief
forms), and the generalized Cobb-Douglas, render these forms "inflexible" (the parameters
of a flexibile form can be chosen so that the function value, marginal products, and
elasticities can take on any arbitrary set of values at any point). BPR have shown that
weak separability restrictions proposed by Berndt and Christensen (BC) overly restrict
the form of the aggregators in the separable structure. For instance, in the case of the
translog, BPR have shown that the BC weak separability test is actually a test for homothet-
ic weak separability where all aggregator functions are Cobb-Douglas. The problem that
arises with the BC tests for weak separability is that only special cases of weak separability
are actually tested, and there is a danger of misinterpreting the results if the underlying
function is characterized by a more general form of weak separability. On the basis of the
BPR analysis, GQFFs are said to be separability inflexible.

Recently, there has been a resurgence of interest in the problem of testing separability.
Pope and Hallam (PH) suggest exploiting duality relationships and employing production
(profit) functions to test for weak separability in profit (production) functions. PH show
that by using a quadratic production (profit) function, the BPR inflexibility objections
can be circumvented when testing for separability in the profit (production) function. The
PH approach, however, requires the assumption that producers are profit maximizers.
Further, Lopez has shown that the quadratic profit function implies a quasi-homothetic
production technology.

In this article, a method is proposed for generating separability-flexible functions so
that parametric tests of separability may be undertaken. The approach is not limited to
a specific functional form and permits testing separability within the primal framework.'
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technic Institute and State University.
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No behavioral assumptions need to be made (although separability may be tested given
the maintained hypothesis of cost minimization or profit maximization).2 The suggested
functional forms are similar in appearance to widely used GQFFs but contain some third
and fourth order terms. Strictly speaking, the new forms cannot be considered Taylor
series approximations because not all third and fourth order terms are included (all first
and second order terms are included, however). Precisely which higher (than second) order
terms are included in the specification depends on the type of separability being tested.
The proposed models are all weak separability flexible by construction and, using results
from Driscoll, McGuirk, and Alwang (DMA 1992a, b), are shown to be parsimonious
(contain exactly the minimum number of parameters required for flexibility). While DMA
(1992b) elaborate criteria for assessing flexibility and parsimony once separability is im-
posed, here, forms are designed that satisfy the criteria.

As a point of departure, the derivative conditions for separability are reviewed and are
followed by a discussion of the BC restrictions developed for translog flexible forms. Using
a couple of examples, the BC restrictions are shown to render the GQFF separability
inflexible. Next, two methods for constructing parsimonious weak separability flexible
forms are proposed. Although both methods generate parsimonious separability flexible
restricted models, the corresponding unrestricted models are not parsimonious with re-
spect to general production structures (they are flexible). The unrestricted models generated
in the second approach are far more economical in their parameterizations than those
obtained from the initial approach. Finally, a small Monte Carlo experiment is performed
to assess the size and power of tests of weak separability based on the proposed forms.

Weak Separability and Some Inflexibility Results

Let I denote the set of indices of the input vector, I = { 1, 2, ... , n}. Partition I into m
subsets, where m < n, and create a new set of indices I*, so that I* = {II, I2, .. , Im}.
The partition I* defines a corresponding partition in the input vector x = (x, x2, ...
Xm), where xi is a subvector of the n-dimensional vector x. The subvectors xi each have
zi components.

The production function is said to be weakly separable in the partition I* if it may be
written

(1) F(x) = g(f,(x ,), f 2(x2), fm(Xm)),

where g is strictly increasing and quasi-concave and each f(xi) is strictly monotonic and
quasi-concave. Weak separability of the rth group also may be expressed with the following
familiar derivative condition that applies to ratios of marginal products of factors in a
separable group:

CF(x)/Oxi
(2) ld/xk dF(x)/x i, j Ir k Ir

Weak Separability Inflexible GQFFs

Consider what the separability conditions imply for the following (second order) GQFF.
A general quadratic flexible form can be written

1
(3) F(x) ao + aih(xi) + 2 O jhi(xi)hj(xj),

ijE i2 I jel

where symmetry implies oj = 3yi. Using (2), if inputs i and j are to be separable from k,
the following must hold:

ajik - aliijk + 2 (fjlPik - 3il3jk)hl(xl) = O.
lEI

Driscoll and McGuirk
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For the case where h,(xi) = ln(xl) (the translog), BC suggest the following weak separability
restrictions for (4) to hold globally [the form of the restrictions in (4) is actually independent
of the form of hi, as shown by BPR]:

(5a) ajifik - oijk = 0 and

(5b) fjloik - filjk = 0 V l E I.

BPR demonstrate that these restrictions require inputs i and j to be separable from all
other inputs, not just those k inputs for which separability conditions are derived.

To illustrate how overly restrictive the conditions in (5) can be, consider the following
two examples. First, the separability conditions developed for the technology

(6) F(x) = gf(X,, X2 , X3 ), f2 (X4 ))

are indistinguishable from those derived for

(7) F(x) = gihf(xx) , 2(X4 ))

since each of the pairs (x,, x 2), (x 2, x3), and (x,, x 3) are forced to be separable from all
other inputs, including other inputs in I,.

From the discussion so far, it may appear that the separability restricted GQFF can
provide a flexible approximation to the very simple technology

(8) F(x) = g(f(x, x 2), f 2(x3))

since there is only one input (x3) from which the pair (x ,, x 2) can be separable. A second
example demonstrates that a model imposing the BC restrictions on (8) is also inflexible.
The restrictions, from (5), necessary to impose separability on (8) are

(9) a2f 1 3 - a1023 = 0, f1 2 01 3 - 01123 = 0, and 32 2 f13 - 012023 = 0.

Solving for a 2, 312, and f22, the GQFF reduces to a quadratic in two terms (hl(xl) +
f 23h2(x 2)/l 13) and h3(x3 ). In other words, the separability restricted model from (8) is
identical to that from

(10) F(x)= g(f ( 7Yihi(x)), 2(x3)).

Clearly, the specifications in (7) and (10) are too restrictive for purposes of testing for
more general cases of weak separability.

Necessary Conditions for Flexibility of Weakly Separable Functions

Another way of identifying separability inflexible forms is to determine whether the form
contains sufficient parameters to achieve flexibility. A functional form which is restricted
to be separable but which contains fewer than the minimum number of parameters for
flexibility is not separability flexible.

A functional form provides a flexible approximation to some underlying function if it
is possible to choose its parameters in such a way that the function value, gradient, and
hessian terms of the underlying function are exactly reproduced at an arbitrary point.
Clearly this can be accomplished only if there are at least as many parameters as there
are independent function value, gradient, and hessian effects. DMA (1992b) have shown
that a weakly separable function has 1 + n + Lim zi(z i + 1)/2 + m(m - 1)/2 independent
effects, where zi is the number of arguments in xi of equation (1). By this rule, a flexible
approximation to a weakly separable function must contain at least 1 + n + -2;m zi
(zi + 1)/2 + m(m - 1)/2 parameters and therefore a separability flexible approximation
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to (8) requires at least nine parameters. Yet, for the case of (8), once the three parametric
restrictions of the BC type are imposed, only seven parameters remain-too few to achieve
flexibility.

Separability Flexible Functional Forms

Functional forms which are separability flexible can be developed easily by beginning
with an explicit functional representation of the hypothesized separable structure (the
restricted model). That is, a model is specified which is separable, flexible, and parsi-
monious by construction. A corresponding unrestricted form of the model is obtained by
relaxing the separability restrictions. The unrestricted models suggested below are flexible
for general, nonseparable structures; however, they are not parsimonious. This approach
appears to be more promising than the current approach of starting with a model which
is both flexible and parsimonious for general structures, imposing separability, and hoping
that flexibility has not been lost in the process.

The separability restricted models suggested in this article are nonlinear in parameters
(as are the BC models) but can be estimated using readily available econometric packages.
See the "example" section below.

Structures without Any Trivial Aggregates

To begin, take a general representation of a weakly separable function with s aggregates
(some of which may be trivial aggregates). Partition the n-vector x into xl, ... , x5, and
let zi denote the number of elements in xi. Partition I in the same way. For generality,
define

(11) (Y) - g(f(xl), f2(X2), ... , f(Xs)).

The aggregates fm+ through f are trivial aggregates (functions of a single argument). Let
f(xi) V i = 1, s be represented by a GQFF (without an intercept term).

(12) f.(xi) = aikhk(Xk) + iklhk(Xk)hj(x).
kEIi kEIi IEIi

Let the function i(Y) = g(x) have the following representation:

(13) KY) = ao + j;f1(xi) + 1 ; i; O i(xi)fjxj·1
i=l i=1 j=1

ioj

Note that, except for the terms fi(x,)2, g is quadratic in f,(xi). The inclusion of the f~(xi)2

terms complicates estimation, admits the possibility of a complex solution to the system
of equations described in (14) and (15) below, and is not necessary to achieve flexibility.
They are omitted.

This model nests a GQFF and contains some (but not all) third and fourth order terms.
Equation (13) represents a wide array of functional possibilities but includes some spec-
ifications that are familiar. For example, a model that resembles the translog is achieved
if ((Y) = ln(Y) in (11) and hi(xi) = ln(xi) V i in (12). The proposed functional form in
(13) is weakly separable by construction and contains 1 + n + Z=l zi(zi + 1)/2 +
m(m - 1)/2 parameters, a necessary condition for flexibility. It remains to be shown that
(13) can portray the 1 + n + = 1 zi(z i + 1)/2 + m(m - 1)/2 distinct function value,
gradient, and hessian effects of a weakly separable function at an arbitrary point (i.e.,
sufficiency).

If the flexibility of the specification in (13) is to be independent of the choices for i(*)
and hi(*), it is necessary to show first that for every independent gradient (aY/adx) and
hessian (d2Yd/x ,axj) term there is a corresponding independent gradient term of the form

Driscoll and McGuirk
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d4(Y)d/hi(xi) and hessian term of the form O2(Y)/Ohi((xi)8hj(xj). Sufficiency then can be
established by demonstrating that the parameters of (13) can be chosen to solve the system
of equations given by /(Y), f(Y)/dh(x), and ad2/(Y)/h(x)ah(x)' at any point given arbitrary
values of i(Y), d(Y)/dh(x), and d24(Y)/dh(x)dh(x)'.

By differentiating the identity in (11) with respect to xj, the following identity is obtained:

( )/hj(xj) -= g(*)/Ohj(x,) ( (d(Y)/a Y)(d Ya/xj)/(Ohj(xj)/Oxj).

Once hj(xj) and /(Y) are specified, the derivatives Ohj(xj)/dxj and d(Y)/dY are known.
This implies that there are as many independent gradient terms of form Oy/dxj as there
are independent gradient terms of the form di(Y)/lhj(xj).

Similarly, by finding the derivatives d2Y/dx 2 and d2Y/OxjOXk, a one-to-one correspon-
dence between the independent terms of d2Y/Odxx' and d2 /(Y)/dh(x)ah(x)' can be estab-
lished. Therefore, if (13) provides a flexible approximation at an arbitrary point to the
independent function value '(Y), gradients dO(Y)/dh(x), and hessian terms ad2p(Y)/

h(x)Oh(x)', it also provides a flexible approximation at an arbitrary point to the inde-
pendent Y, gradients dY/Ox, and hessian terms d2Y/Odxx'.

The system of equations given by ((Y), Oda(Y)D/h(x), and d2((Y)/ah(x)Oh(x)' is now
shown to have a solution at any arbitrary point and for any arbitrary values of O(Y),
O((Y)/Oh(x), and ad2P(Y)/dh(x)ah(x)'. The gradient terms obtained from (13) are

(14) P(Y)/Ohk(xk) = (1+ PIj(xj))(aik + ; iklhl(xl)) kEI, i = 1, s,
'j i.1 \ lcIi

and the hessian terms are

(15a) 2(Y)/dhk(Xk)Ohl(xl) -= kl(1 + 3ifj(xj)), k, Eli, i = 1, s,
j=\

and

(15b) d2p( Y)/dhk(xk)Odh(x) = f(cik + ikrhr(Xr))(il+ : ilrhr(Xr)) V kEIi, EIj

DMA (1992b) show that for every (i, j) pair where i - j, there is only one independent
hessian term of the form (15b). Whatever the values of the other parameters, fij can be
chosen to solve the single independent hessian term in each (i, j) pair. Notice that there
are m(m - 1)/2 /i parameters and m(m - 1)/2 independent hessian terms of the form
(15b). Similarly, choose fikl to solve (15a) given values for the f3ys. Equation (12) contains
zi(zi + 1)/2 fikl parameters for each partition, one for each independent hessian element
in (15a).

Continuing, the parameters aik can now be chosen to satisfy the gradients in (14) given
values of the other parameters. Again, equation (12) contains one aik for every gradient
term. Finally, a0 of equation (13) may be chosen to solve /(Y). Since the system of
equations 4/(Y), da(Y)/Oh(x), and 2V1(Y)d/h(x)Oh(x)' has a solution, the specification in
(13) is weak separability flexible.

An unrestricted model corresponding to (13) is developed by relaxing the parametric
restrictions in (13). The following model is obtained:

n I n n

(16) Oi(Y) = ao + aihi,(xi) + 2 f35,h(xi)hj(xj)
i=l 1 i=1 j=l

+ Z Z lijklqhk(Xk)hl(xl)hq(xq)
i= 1 j= 1 kEIi lEI qIlj

izj
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+ O Z 3ijqrkhq(xq)hr(xr)hk(xk)
i= 1 j= 1 qIj rEIj kEIi

i#j

+ j Z f Z iqrklhq(xq)hr(X)hhk(xk)hl(xl).
i=1 j=1 qeIj rElj kEIi lEIi

i-j

Equation (16) is flexible with regard to general production structures since it contains
a second order GQFF as well as other higher order terms. It is, however, very cumbersome;
the unrestricted model corresponding to the separable model constructed for g(f1(xl, x2),
f2 (x3 )) contains 18 parameters and for g(f(x, x 2), f2 (x3 ), f3 (x4 )) contains 34 parameters.

Structures with Trivial Aggregates

Recall that the vector x is ordered and partitioned so that aggregates fm 1(x,+1) through
f,(x,) are trivial aggregates (xm+ through x, each have a single element). Large economies
in the parameterization of the unrestricted model can be achieved by treating these trivial
aggregates in a different fashion. Specifically, alter (13) so that

s m m

(17) f(Y) = 0 + f 1 (x) + f fiJf(x))fj(x j)
i=l i=1 j=1

i#j

m s s s .

+ fiJfi(xi)hj(xj) + : fijhi(xi)hj(xj).
i=l j=m+ i=m+l j=m+1

i-j

The model in (17) is separability flexible as well as parsimonious. The proof of sufficiency
is entirely analogous to the proof given for (13). The specification in (17) has at least two
advantages over that in (13). First, the restricted model, although it contains an identical
number of parameters, contains fewer terms and fewer restrictions, and is therefore easier
to estimate. Second, the unrestricted model corresponding to (17),

n 1 n n

(18) (Y) = ao + z aih(xi) + 2 fOih,(xi)hj(xj)
i=1 i=1 j=1

m1 S
+ -1 1ijklhj(Xj)hk(xk)hl(xl)

i=1 j=m+ keli lelI

m m

+ z z f jklqhk(Xk)hl(Xl)hq(xq)
i=1 j= 1 keIi I/l qEIj

i-j

m m

+ ir khq(Xq)hr(
x r

)h
k ( k )

i=1 j=1 qEIj r<Ij kEli
iHj

m m

+ O ~ ijq rk l h q( xq) h r( xr ) h k ( xk) h l( x l)

i=1 j=1 qEIj rEIj kEIi lEIi
i-j

maintains flexibility with regard to general production structures but contains fewer pa-
rameters and fewer higher (than second) order terms than the specification in (16). When
there is only one nontrivial aggregate (a common practical case), the last three summations
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in (18) disappear and no fourth order terms appear in the unrestricted model. As a result,
the unrestricted model corresponding to g(fi(x, x2), f2(x3)) contains only 13 parameters
and the unrestricted model corresponding to g(f(xf , x2),f2(x3),f 3(x4)) contains 21 param-
eters (a second order quadratic form in four arguments contains 15 parameters).

Monte Carlo Experiment

To obtain some notion of the size and power of tests of weak separability based on the
proposed forms, the following Monte Carlo experiment is performed. First, we construct
a separability flexible form capable of testing for the following three-input structure:

(19) F(x) = g(f(xl, x2), f 2(x 3)).

Because there is one trivial aggregate, the (separability flexible) restricted model and
corresponding unrestricted model (flexible with regard to general production structures)
are constructed using equations (17) and (18), where A(Y) = ln(Y) and hi(xi) = ln(xi).
Specifically, the restricted model is

(20) ln(Y) = ao0 + alln(x1 ) + al21n(x 2) + ao21 ln(x3 ) + 1/2flllln(xl)2

+ 1/2f 1221n(x 2)2 + n,12 1n(xl)ln(x2) + 1/23211n(x 3)
2

+ 3121n(x 3)(aIIlln(x) + a1 21n(x 2) + 1/2fllln(xl) 2

+ 1/2312 21n(x2 )2 + fl 121n(x,)ln(x2 )).

If an assumption of cost minimizing producer behavior is maintained, the production
function in (20) may be supplemented by a set of first order conditions when testing for
separability. The first order conditions, p, = Xfi, imply that Mi = aln(y)/6ln(xj)/(2ijln(y)/
aln(xi)), where Mi is a cost share (see Christensen, Jorgensen, and Lau). For the case at
hand, these first order conditions are

(21) M, = KI/(K + K2 + K 3) + e, V i = 1, 2,

where

K, = (all + f 1,lln(xl) + 031121n(x2 ))(1.0 + 0 121n(x3 )),

K2 = (a12 + l112 1n(xl) + 13221n(x 2))(1.0 + l121n(x 3)), and

K3 = a21 + / 2 11n(x3 ) + f312(a 1 1ln(xl) + a 12 1n(x 2) + 1/2/ 1,lln(x,)2

-+ 1/2 1221n(x2) 2 + f 1 12 1n(xl)ln(x2)).

To determine the form of the unrestricted model, expand the last term in (20) to see what
cross-product terms are involved. The unrestricted model contains all of the terms in (20)
but there are no parametric restrictions imposed. The unrestricted model is

3 1 3 3

(22) ln(Y) = ao + ailn(xi) + l- l flln(xi)ln(xj) + y1/2Y1 31n(x 1)21n(x 3
')

i=l i= j=l1

+ 1/2Y22 31n(x 2)2 1n(x 3 ) + Y1 231n(xl)ln(x2)ln(x 3 ).

It can be verified that all terms in equation (22) are represented by the first two lines of
equation (18); that is, since there is a single nontrivial aggregate, the last three lines of
equation (18) are irrelevant.

Assuming cost minimizing behavior, the first order conditions are again

(23) M, = KI(K1 + K2 + K3) + Ej V i= 1, 2,

where the Ki are now
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K1 = a1 + /31,n(xl) + f321n(x2) + fl 31n(x 3 ) + y113 1n(xl)ln(x 3) + l'231n(x 2 )ln(x3 ),

K2 = a2 + 1 21n(x 1) + f 221n(x 2) + f 231n(x 3) + y2231n(x2)ln(x3) + y1231n(x 1)ln(x3),

and

K3 = a3 + l131n(xl) + P231n(x2 ) + 333 1n(x3 ) + 1/2y 131n(xi)2 + i/2y 2231n(X2)2

+ y1231n(xl)ln(x 2).

Both the unrestricted and restricted models are nonlinear in parameters; therefore, it
is convenient to employ the Gallant-Jorgensen chi-square statistic to test the separability
hypothesis. Briefly, the test is conducted by first estimating the unrestricted model via an
ITSUR procedure, saving the residual covariance matrix. The coefficients of the restricted
model are then estimated via a SUR procedure using the residual covariance matrix
of the unrestricted model. The test statistic is To = nS** - nS*. Define S(O) = q'(0)

(Z-1 0 I)q(0)/n. S** and S* are S(O) evaluated for the restricted and unrestricted models,
respectively; q(0) is the stacked error vector from the model evaluated at the converged
parameter values, 0; and Z is the error covariance matrix. The statistic is distributed xk,
where k is the number of restrictions.

The Monte Carlo experiment proceeds as follows. First, 50 observations of three inputs
are generated from a multivariate log-normal distribution:

-0.2391 [0.026
ln(X) - N 0.582 , 0.039 0.066 .

L0.391 0.041 0.063 0.065

Input data are fairly collinear. Next, output is calculated from a production function

having the general form of a fourth order translog,
3 3

(24) ln(y,) = ao + o ailn(xit) + O ijln(xit)ln(xj,)
i=1 i=1 j>i

3

+ Z ikln(xit)ln(xjt)ln(xkt)
i=1 j>i k>j

3

+ Y klln(xit)ln(xjt)ln(xkt)ln(xlt),
i=1 j>i k>j l>k

where xi are inputs and Yt is output. All technologies used in the experiment are generated
by selecting parameter values for equation (24) (see below and table 1 for details). A set
of price data consistent with profit maximization and cost minimization subject to an
output constraint is generated as i = pyfi, where thef are marginal products from equation
(24) and output price, py, is set to unity for all observations. Multiplicative disturbances
(2% standard deviation) are added to output; input expenditures receive an additive
disturbance (5-7% standard deviation). As is customary, output and input data are scaled

by their geometric mean.
Once the data are generated, the hypothesis that inputs 1 and 2 are weakly separable

from input 3 (12-3) is tested using two approaches. First, only the production function is
employed. That is, the unrestricted model consists only of equation (22) and the restricted
model consists only of (20). No hypotheses containing producer behavior are maintained.
Second, the 12-3 weak separability hypothesis is tested while maintaining cost minimizing
producer behavior. The unrestricted model consists of equations (22)-(23) and the re-
stricted model consists of equations (20)-(21).

One hundred replications of the experiment are performed for each of five technologies
having the general fourth order translog form in equation (24). Values of the parameters
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Table 1. Parameters of Translog Technologies 1-5

a0o aC 2 a3 1I 112 13 122 123 133

TECH 1 -. 367 .323 .366 .339 -. 145 .205 .072 -. 242 .203 -. 224
TECH 2 -.367 .323 .366 .339 -. 145 .205 .072 -. 242 .203 -. 224
TECH 3 -. 367 .323 .366 .339 -. 045 -. 101 .046 -. 057 .053 -. 224
TECH 4 -. 367 .199 .201 .540 -. 043 .048 .017 -. 033 .018 -. 051
TECH5 -.367 .199 .201 .540. -. 043 .048 .017 -. 033 .018 -. 051

of equation (24) for each of the technologies are given in table 1. Technology 1 (TECH
1) is a nonseparable second order translog, technology 2 (TECH 2) is a nonseparable
translog containing some third order terms, technology 3 (TECH 3) is a homothetically
separable second order translog (with Bemdt-Christensen restrictions imposed), tech-
nology 4 (TECH 4) is a weakly separable translog that contains some third order terms
[generated with equations (12) and (17)], and technology 5 (TECH 5) is a weakly separable
quadratic of quadratics form.3

The results of the experiment are recorded in table 2. Ideally, separability always will
be rejected for technologies 1 and 2. The system test performs fairly well, correctly rejecting
separability in 85% and 91% of replications for technologies 1 and 2, respectively. The
single equation test is found to have poor power in the experiments, failing to reject false
nulls in 93-94% of the replications for technologies 1 and 2. However, preliminary in-
vestigation reveals that the power of the single equation test improves somewhat when
output disturbances are reduced to .1%.4 At the bottom of table 2, results for the reduced
error scenario are reported. The single equation test correctly rejects separability in 21%
and 72% of replications of technologies 1 and 2, respectively. The weak power (especially
with regard to technology 1) may indicate that the separability flexible form is sufficiently
flexible for modeling somewhat more general production structures.

For technologies 3, 4, and 5, separability should be rejected in 5% of all replications;
that is, the nominal size of the test is .05. The actual size of the system test is larger than
expected and the true nulls are rejected in 16%, 15%, and 19% of replications for tech-
nologies 3, 4, and 5, respectively. When output disturbances have a 2% standard deviation,
the actual size of the single equation test is very close to the nominal size of the test.
When output disturbances are reduced to .1% standard deviation, the nominal size of the
test increases modestly to about .15 (see results for technologies 3, 4, and 5 at the bottom
of table 2).

Summary

Separability flexible forms have been developed that permit testing a weak separability
hypothesis without imposing any unwanted structure on the restricted model. The models
are closely related to the GQFFs in common use but involve some additional third and,
when there are two or more nontrivial aggregates, fourth order terms. The restricted models
are all parsimonious and their corresponding unrestricted models are flexible with regard
to general production or utility structures. Apparently, the only cost of achieving flexibility
in both the restricted and unrestricted models is that the unrestricted models are not
parsimonious. When testing for separable structures characterized by a single nontrivial
aggregate, specifications can be developed that contain far fewer parameters than a fully
parameterized third order approximation. Therefore, data requirements and computa-
tional burdens may be less excessive than previously thought.

Some preliminary Monte Carlo evidence suggests that the system tests of weak sepa-
rability have reasonable size and power. The power of the single equation test is poor
even when data are measured with great accuracy. Taken together, these results indicate
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Table 1. Continued

b1i1 6112 6113 6221 &222 2 223 6123 Y1111 Y1112 Y1122 Y2221 72222

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

.0 .0 -. 026 .0 .0 -. 011 .073 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

.0 .0 -. 004 .0 .0 -. 003 .004 .0 .0 .0 .0 .0

-. 022 -. 026 -. 004 -. 001 -. 022 -. 003 .004 -. 0005 .001 -. 0012 .0008 -. 0003

Table 2. Monte Carlo Results for Separability Tests

Output Disturbances with 2% Standard Deviations

Rejec-
tion (%) x2 Mean x2 Variance x2 Value*

Nonseparable Technologies:
TECH 1

System
Single Equation

TECH 2
System
Single Equation

Separable Technologies:
TECH 3

System
Single Equation

TECH 4
System
Single Equation

85 45.95 956.98 N/A
7 4.02 9.76 N/A

91 52.31 1111.01 N/A
6 3.93 8.46 N/A

16 13.19 206.87 35.45
7 4.04 10.44 9.75

15 11.55 132.63 29.93
5 4.30 9.35 8.98

TECH 5
System 19 15.68 477.68 37.68
Single Equation 5 3.65 8.15 8.64

Output Disturbances with .1% Standard Deviations
(Single Equation Tests Only)

Rejec-
tion (%) x2 Mean x2 Variance x2 Value*

Nonseparable Technologies:
TECH 1 21 6.45 19.13 N/A
TECH 2 72 17.57 107.47 N/A

Separable Technologies:
TECH 3 13 5.36 13.98 11.25
TECH 4 16 5.96 15.16 12.94
TECH 5 16 5.68 12.56 11.31

* Minimum x2 values for which the actual rejection rate equals the nominal
rate of 5%. The nominal critical values (a = .05) for x22 (system test) and
X4 (single equation test) are 21 and 9.47, respectively.
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that powerful parametric tests of weak separability may, after all, require some assumption
about producer behavior.

[Received December 1991; final revision received July 1992.]

Notes

I In order to justify modeling a subset of factor demands as a function only of those factor prices and
expenditures on the subset, it is separability of the primal function that must be established.

2 This is true only in production analyses. In demand analyses, one must assume that consumers maximize
utility subject to a budget constraint in order to derive a set of first order conditions. A system of equations
implied by these first order conditions can be estimated, whereas the utility function cannot be estimated.

3 Specifically, ln(Y) is quadratic in ln(zl) and ln(z2); ln(z,) is quadratic in ln(xi) and ln(x 2), while ln(z2) = ln(x3).
4 When data disturbances are so small, the ITSUR procedure often will not converge. The unrestricted models

tend to fit very well and at some iteration, A, the error covariance matrix, cannot be inverted. For the single
equation tests, a nonlinear OLS procedure and a likelihood ratio test were substituted. The experiments could
not be repeated for the system tests which must make use of the ITSUR estimator.
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