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Patents, R&D, and Market
Structure in the U.S.

Food Processing Industry

Munisamy Gopinath and Utpal Vasavada

This study investigates the effects of market structure and research and develop-
ment (R&D) on the innovative activities of firms. Fixed and random effects count
data models are estimated with firm-level data for the U.S. food processing industry.
Results show a positive association between patents and R&D, and patents and
market structure, suggesting that firms which exhibit noncompetitive behavior are
likely to develop new products and processes. Significant intra-industry spillovers
of knowledge are identified using industry R&D. For this industry, deadweight losses
from imperfect competition may be offset by greater product variety and quality of
food products for consumers.
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Introduction

The purpose of this study is to analyze the effects of market structure and research and
development (R&D) on innovations in the U.S. food processing industry. A number of
studies have found that market structure in this industry is oligopolistic in nature,
thereby causing welfare (deadweight) losses to society.1 The focus on welfare losses has
masked the possibility that at least a portion of the revenue (extra profits) earned by
marking up prices over and above marginal costs may be reinvested to create new
products and processes (Helpman and Krugman). When firms invest a portion of their
extra profits toward development of new products and processes, the potential welfare
losses due to noncompetitive behavior likely will be overstated because consumers
eventually enjoy a payback in the form of greater product variety and better product
quality.

The relationship between market structure and innovation is not completely under-
stood because a problem arises with regard to the nature of the knowledge generated
(i.e., new products and processes) (Baldwin and Scott). While knowledge is a nonrival
good, a firm's incentive to generate new knowledge crucially depends on its (partial)
excludability (Grossman and Helpman). If the new products and processes can be easily
imitated by rival firms, then markets fail in the sense that innovators have difficulty
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obtaining the "full" returns to their innovations.2 While market structure provides the

resources, the magnitude of knowledge spillovers may be a crucial determinant of

innovative activities.
The U.S. food processing industry indeed provides an interesting case study. This

industry not only supplies a growing array of food of increasing variety and quality, but

also is fraught with product imitations.3 As mentioned earlier, the previous literature

on this specific industry has not linked the three concepts of innovative activity, R&D

investment, and market power in a single coherent framework. Toward this end, our

analysis applies event count data models to evaluate the impact of both R&D and

market structure on innovation counts in the U.S. food processing industry. Firm-level

data, which have been used previously to identify the link between R&D and innova-

tions (Pakes and Griliches; Hall), are utilized in our empirical analysis.

The contribution of this study is twofold, apart from identifying the link between

R&D and innovations.4 First, a firm's market share is used as a proxy for market power

in the model describing innovative activities. Baldwin and Scott (rephrasing Schump-

eter) argue that large-scale innovation may not be attractive unless some sort of

insurance is available to the potential entrepreneur. Oftentimes, an insurance against

the failure of an innovation is the ability to engage in a price strategy, and thus

monopolistic power in existing products markets may be a precondition for innovation.

While the endogenous growth/innovation literature has acknowledged the conceptual

importance of market power in explaining a firm's innovative activity, very little

empirical evidence has been offered to substantiate this assertion (an exception being

Blundell, Griffith, and Van Reenen).
Second, our model identifies the contribution of the industry's stock of knowledge to

the innovative activities of individual firms, i.e., knowledge spillovers. Spillovers are

important because they point to the possibility that there is a market failure in the

sense that firms are not able to realize all the benefits of their innovative efforts.

Finally, an added feature of this model is its ability to distinguish the effects of overall

industrial concentration from that of market share on patenting activity. While a higher

market share for an individual firm may affect its innovative efforts, the resulting

overall increase in industrial concentration may not necessarily be beneficial to society

(Blundell, Griffith, and Van Reenen).

The remainder of the article proceeds as follows. In the next section, we offer a brief

overview of the methodological underpinnings of the empirical model estimated later in

the article. Next, we describe the data used in the analysis. The empirical findings of

different versions of the model explaining innovative activity are then discussed and

contrasted in the section on results. In the concluding section, we provide a discussion

of policy implications and limitations of this research.

2The nonrival and partially nonexcludable nature of knowledge often results in technological externalities. Market failure
is thus the failure to internalize these externalities (Grossman and Helpman).

3 New Product News reports that the U.S. food processing industry introduces about 20,000 new products per year. The
preponderance of fat-free, cholesterol-free processes and flavors in almost all types of food suggests the prevalence of product
imitation practices.

4 A survey by Griliches (1995) identifies three styles of research on the contribution of R&D to productivity: case studies,
event count (patent) analysis, and econometric studies. The literature relating R&D and productivity growth in agriculture
mostly falls under the last category, with few insights into private R&D and its motivation. There are a few exceptions
(Moschini and Lapan, and others), but their focus is on the benefits of private agricultural R&D rather than its sources and
motivation.
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A Count Data Model of Patents, R&D,
and Market Structure

In order to analyze the effects of R&D capital and market structure on innovations, we
adopt a knowledge-production function framework similar to the methods employed by
Hausman, Hall, and Griliches; Cameron and Trivedi; Cincera; and others. These authors
consider patents as a function of both current and lagged R&D expenditures. Following
Crepon and Duguet, our initial specification of the knowledge-production function is as
follows:

(1) ln(Cit) = ao + Pln(kit),

where it is the mean patent count, and ki is R&D capital owned by firm i at time t. Data
on patents constitute a nonnegative integer valued random variable. The failure of
classical linear models for this type of data has been well established in the literature.
Several authors have discussed alternative count data models (Hausman, Hall, and
Griliches; Cameron and Trivedi), where event counts are the primary variables of
interest. Examples other than patent counts include the number of visits to health
practitioners, and takeover bids received by targeted firms. In our analysis, we consider
two models within the linear exponential family, the Poisson and the negative binomial,
for analyzing patent counts. In what follows, we digress briefly on the description of the
Poisson and negative binomial models before presenting the estimated model.

The Poisson Model

Typically, the Poisson parameter, Xit, is represented as ln(Xit) = XiP, where Xi* is a set of
regressors [e.g., ln(kit) in equation (1)] which describe the characteristics of a cross-
sectional unit in a given time period. If nit is the observed event (patent) count for the
ith unit during time period t, then

(2) E(nit Xit) = Xit = ext.

Note that it is deterministic, while the randomness comes from the Poisson specification
for nit. The basic probability density function for the Poisson model is given by:

e _it k
n i te it

(3) pr(ni) = f(n) = it
itnit,

The Negative Binomial Model

The Poisson specification imposes the restriction that the mean of nit is equal to its
variance, which is a testable hypothesis. The negative binomial model, which is more
flexible, does not impose this restriction. Here, Xit is assumed to follow a gamma distri-
bution with parameters (y, 6), where y = exitp, and 8 is common both across firms and
across time. Then, the gamma distribution for Xit is integrated by parts to obtain:
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(4) pr(nit) = i -e tit)d

= e ,v i ~ t ai t (1) dnit

o n it!

r (Yit + nit) I ¥it + )-nit
r(Yit)r(nit + 1) + 1

which is the negative binomial distribution with the parameters (yit, 6). Previous empir-

ical studies (Hausman, Hall, and Griliches; Blundell, Griffith, and Van Reenen; Cincera)

using both of these models reject the absence of serial correlation in the residuals due
to unobserved heterogeneity of the individual units. The fixed and random effects

versions of the Poisson and negative binomial models developed by Hausman, Hall, and

Griliches have attempted to correct for firm-specific heterogeneity that is either

observable or unobservable. In the Poisson model, the specification of the parameter

changes to Xit = Xit ai, where ai is either a random firm-specific effect or is conditioned to
provide fixed effects. Similarly, the parameter 6 in equation (4) is allowed to vary across
firms to develop fixed and random effects versions of the negative binomial models. (For

specific details on extension and application of these models to the case of fixed and

random effects, see Hausman, Hall, and Griliches.)
In our empirical specification of the parameter it, two additional determinants of

technology are included. These variables are the market share of a firm and total
industry R&D capital:

(5) 'it = exp(Xit)

=exp(Po + Plln(Mit_) + P21n(Kit,) + i + t ),

where Mit1 is a set of market structure variables (industry- and firm-level variables), 5

Kit1 is a set of firm's and industry's knowledge capital variables (R&D stock), i, is a
firm-specific effect, and u, is a time- (t) specific effect.6

The role of a firm's R&D capital in explaining its innovation process has been well
established in the literature (see Griliches 1990, for a survey). In addition, the research

activity by other firms in the same industry also can generate potential benefits for a
particular firm (Griliches 1992). This is captured by the inclusion of total industry R&D

in our knowledge-production function.
The market share of the ith firm (wit -) indicates the extent of market power exercised

by a particular firm.7 As it reflects a firm's ability to mark up prices over the marginal
cost of producing output, we hypothesize that the effect of market power on innovations
is positive. Moreover, this variable can provide, to an extent, a feedback from past

experiences in the market.
The question of fixed versus random effects has been addressed extensively in the

literature on panel models. For instance, Greene (1993) states that "it might be approp-
riate to view individual specific constant terms as randomly distributed across cross-

sectional units. This would be appropriate if we believed that the cross-sectional units

6 The NEIO studies of market power estimate the conjectural variation elasticity, which is often equal to the market share
of a firm under certain conditions (Appelbaum).

6 We also report the results from simple Poisson and negative binomial specifications.
7 The market share is the ratio of firm sales to industry sales, PiYi/i PiYi.
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were drawn from a large population" (p. 469). Mundlak argues that we should always
treat the individual effects as random, because the fixed effects model is simply
analyzed conditionally on the effects present in the observed sample. In addition, the
fixed effects model is costly in terms of degrees of freedom lost. Conversely, there is no
justification for treating the individual effects as uncorrelated with other regressors, as
is assumed in the random effects model. Hence, in our empirical analysis, we use a
Hausman test to identify any misspecification resulting from the use of the trandom
effects models.

Description of Data

Data for the analysis were obtained from three sources: the U.S. productivity panel,
1960-90 (Hall); "patpan85" patents data at the individual firm level (Hall et al.); and the
National Bureau of Economic Research (NBER) manufacturing productivity database
(Bartelsman and Gray).

The large U.S. productivity panel is unbalanced and contains firm-level data, identi-
fied by Compustat id and the four-digit Standard Industrial Classification (SIC) codes,
for sales, employment, R&D expenditures, and R&D stock.8 This database was searched
for four-digit SIC codes between 2000 and 2099 for all firms in the food processing
sector. Based on this search, there were 1,358 observations, with over 110 firms under
the SIC 2000-2099 code span. These data formed an unbalanced panel for 1965-81,
but most of the firms have data only for 1970-81. The "patpan85" database contains
firm-level data on patents applied for and granted in each year-again identified by
Compustat id. Data on total patent applications and total grants for the firms are avail-
able for the periods 1965-79 and 1965-81, respectively.

The above two databases were merged using the Compustat id, with only the data for
food processing firms retained (SIC codes 2000-2099). Of the 538 observations for 50
firms, only 32 firms had both R&D and patents greater than zero (summed over the
respective sample periods). In this analysis, firms that had neither R&D expenditures
nor patents over the entire sample period are considered noninnovating firms; hence,
the relationship between market structure and patents does not apply. Therefore, the
final sample contained 311 observations for 32 firms (see Hausman, Hall, and Griliches
for a similar characterization of data). The next step is to identify industry-level
variables for each of these firms. Aggregate sales are available for each of the four-digit
SIC industries from the NBER manufacturing productivity database. This information
is merged with the firm-level data for the key variable-the market share of a firm (firm
sales/industry sales).

Table 1 provides descriptive statistics on the 32 firms used in the analysis. The
average for firm sales is $1,151.42 million, and average R&D expenditures is $3.14

8 Unlike agriculture, innovations are more rapid in the manufacturing industries including the food processing industries,
and so the R&D stocks derived by Hall et al. are utilized. Using the data on real R&D expenditures, the initial period stock
of R&D capital is set to the R&D expenditures in the first year divided by the sum of the depreciation rate (15%) and an
assumed presample growth rate of new R&D at 5% per year. Thus the initial stock is approximately five times the level of
R&D expenditures. The stocks for subsequent periods are computed using the standard perpetual inventory equation,
Kt = (1 - 6)Kt1_ + R,, where K, is the end of the period stock of R&D capital, Rt is the real R&D expenditures, and 6 is the rate
of depreciation. The major difference between the above computations and those of agricultural R&D, of course, is the long
lag introduced in the latter (Huffman and Evenson).
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Table 1. Descriptive Statistics for Firms Included in Analysis (N = 32)

Standard
Variables Mean Deviation

Number of Patents: Applied for 2.22 3.67
Granted 2.81 4.41

Firm-Level R&D ($ mil.): Expenditures 3.14 4.62
Stock 18.83 23.37

Industry-Level R&D ($ mil.) 427.31 149.81

Average Sales ($ mil.): Firm 1,151.42 1,381.24
Industry 15,996.89 8,571.59

Market Share 0.09 0.12

No. of Establishments 2,931 1,027

million. Each firm has, on average, 2.22 patents applied for over the sample period,
while the market share averages 9%. The standard deviations reported in table 1

suggest considerable variability in the data series.

Results

Most of the count data models described in Hausman, Hall, and Griliches can be fit

using GRBL: A Package of GAUSS Programs (Hellerstein) and LIMDEP version 7.0

(Greene 1995). 9 Since the data formed an unbalanced panel, we created a PDS variable

(which is equal to the number of observations for each firm) to identify the groups in the
panel. The fixed and random effects options of the Poisson and negative binomial models

are used to obtain all combinations of results. The results reported here are for patents

applied for in a year that are eventually approved. Similar results are obtained for

patents granted, and so they are not reported separately.
In the first two subsections below, we briefly address the results from the basic

Poisson and negative binomial models, and examine the relationships between patents
and R&D, and between patents and market structure-including a test on the validity
of fixed versus random effects versions of the count data models. In the two remaining
subsections, we offer discussions on intra-industry knowledge spillovers and the effects
of overall industrial concentration.

9 Negative binomial random effects models are estimated using LIMDEP. Convergence is not achieved for the Poisson
random effects and negative binomial fixed effects models with LIMDEP. Therefore, these models are estimated using GRBL.
The GRBL Gauss programs package offers more choices to compute the Hessian (Newton-Raphson, steepest descent, random
search, and quasi-Newton). However, it does not have the option to estimate negative binomial random effects models
(Hellerstein).
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Table 2. A Comparison of Poisson and Negative Binomial Patent Models

Poisson Models Negative Binomial Models

R&D R&D R&D R&D
Variables Expenditures Stock Expenditures Stock

Current R&D 0.46* 0.73 0.76* 0.89
(0.08) (0.45) (0.13) (0.91)

Lag 1 -0.03 0.01
(0.04) (0.05)

Lag 2 -0.10* -0.04
(0.04) (0.27)

Lag 3 0.55* 0.42
(0.06) (0.28)

Sum of R&D Coefficients 0.88 0.73 1.19 0.89

Time Trend -0.10* -0.33* -0.06 -0.28
(0.03) (0.12) (0.05) (0.15)

Interaction (Time Trend -0.07* 0.04* -0.12* 0.03
and Current R&D) (0.01) (0.02) (0.02) (0.04)

Log-likelihood -394.88 -359.23 -325.58 -311.05

Notes: An asterisk (*) denotes significance at the 5% level. Numbers in parentheses are standard errors
of the coefficients.

Choice of Models and Variables

There are two choices for expressing the relationship between patents and the R&D
efforts of firms. Table 2 presents the results from fitting Poisson and negative binomial
models with both R&D expenditures and R&D stock. While the choice of a flow variable
over stock has been widely emphasized in economics literature, the R&D expenditures
may not necessarily represent a flow due to lack of data on the composition of current
R&D expenditures. Moreover, the use of a stock variable may mitigate the need for the
long lag structures that are generally used with the R&D expenditures.

A comparison of the fit of R&D expenditures and stock variables in a Poisson model
(columns 1 and 2 of table 2) shows that the standard errors of the coefficients from the
R&D expenditures model are smaller.10 However, the magnitude of the R&D coefficient
in the stock model is close to those reported by Hausman, Hall, and Griliches, and the
log-likelihood value is slightly larger. The negative trend is more pronounced in the
Poisson stock model relative to the expenditures model. The improvement in the log-
likelihood value of the negative binomial models (columns 3 and 4, table 2) suggests
overdispersion, i.e., the variance exceeds the mean. Note that both R&D expenditures

10 Unless the data are Poisson distributed, the estimated standard errors are inconsistent. Inappropriate imposition of the
Poisson restriction may produce spuriously small estimated standard errors (Cameron and Trivedi).
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models share the common feature of a "U"-shaped lag structure. In the Poisson model

the mean equals variance, while the variance grows with the mean in the negative
binomial models. However, both models fall short because of the failure to account for
firm-specific heterogeneity that is either observable or unobservable (Hausman, Hall,
and Griliches; Blundell, Griffith, and Van Reenen).

We report the results of Poisson random effects and negative binomial fixed and
random effects models in table 3. As the mean of the patents is not equal to its variance
in our sample, the Poisson fixed effects model is not considered here. The R&D stock

variable is used in all of the models as opposed to R&D expenditures for reasons noted

earlier. The market share variable wi (the ratio of firm sales to industry sales) takes on
values between zero and one. Its lag (wit -) is introduced into the model because we

cannot account for the feedback mechanism between market power and innovation-a

successful innovation is likely to lead to an increase in a firm's market share.11

In order to analyze the existence of intra-industry knowledge spillovers, the R&D
stocks of all 32 firms in the sample are summed up for each time period (industry R&D)

and introduced into the model. Since four firm concentration ratios are not available on

a time-series basis at the four-digit SIC level, we use the number of establishments in

the industry (SIC 20) to represent industrial concentration.1 2 These data are available
from census surveys and are interpolated using the linear techniques as suggested in
Maddala.

Effects of R&D and Market Structure
on Patent Counts

In the models of patent counts, if the association between patents and a particular

variable is positive, then an increase in this variable has the tendency to increase the

mean of the patent counts (table 3).
The association between R&D stock and patent count is positive in all three models

(the Poisson random effects, and the negative binomial fixed effects and random effects)
and highly significant in the two random effects models. The parameter estimate from

the negative binomial random effects model (column 3 of table 3) is similar to the 0.45
estimate reported by Hausman, Hall, and Griliches for their broader sample (121 U.S.
companies) but using an R&D expenditures variable. While the Poisson random effects
model suggests a stronger relationship between R&D stock and patent counts (0.73), the
negative binomial fixed effects model suggests a weaker relationship (0.22). The log-
likelihood value of -289.8 for negative binomial fixed effects, however, is larger than

that for the other two models. While these results reinforce earlier findings, they also
suggest that the patent-R&D relationship in the U.S. food processing industry is similar
to other industries. The use of the R&D stock variable reflects the need for incorporating
a longer lag structure in the R&D expenditures variable.

1' Blundell, Griffith, and Van Reenen used a large presample history of innovations activity, which is not available in our
data series, to provide such dynamic feedback.

12 The new SIC classification is based on establishments rather than firms. However, when there is net exit, as is the case
with the food processing industry, there is some confidence in the use of these data. In other words, holding the number of
establishments per firm constant, net exit implies increasing concentration.
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Table 3. Effects of R&D and Market Structure on Patent Counts

~Poisson Negative Binomial
Poissonm E s F E R

Variable Random Effects Fixed Effects Random Effects

R&D Stock

Lagged Market Share

Industry R&D

No. of Establishments

Time Trend

Interaction (Time Trend
and R&D Stock)

0.73*
(0.41)

0.79*
(0.30)

1.22*
(0.40)

- 1.94*
(0.82)

-0.42*
(0.08)

0.10*
(0.04)

1.05*
(0.32)

0.22
(0.71)

0.88
(0.67)

0.84*
(0.40)

-0.05
(0.39)

-0.21*
(0.05)

0.01
(0.02)

Y

Log-likelihood

Correlation between observed
and predicted

-400.2

0.67

-289.8

0.66

0.37*
(0.17)

0.36*
(0.09)

0.49*
(0.20)

-0.63
(0.50)

-0.36*
(0.12)

0.03
(0.02)

7.36
(4.94)

1.45*
(0.73)

-394.7

0.51

Notes: An asterisk (*) denotes significance at the 5% level. Numbers in parentheses are standard errors
of the coefficients.

The association between patent count and one-period lagged market share is also very
robust. All of our models yield a positive coefficient, although the size of the parameter
estimate ranges from 0.36 to 0.88, with the coefficients from the two random effects
models being highly significant (table 3). This suggests that the relationship between
the market power of a firm and its innovative effort is positive, i.e., a rise in the market
share of a firm increases its innovation counts. This finding also confirms our earlier
claim that food processors may charge a higher price for their output, but a portion
of the markup may be necessary to pay for the development of new products and
processes. 13

The negative time trend is significant in all three models (table 3) and suggests that
there is a general tendency for the patent counts to fall among the food processing firms
considered in this study. The coefficient on the interaction term between time trend and

13 Note that our logarithmic specification for market share suggests that as a firm becomes a monopoly, its effect on
innovation becomes zero; that is, if wi - 1, then ln(wi) - 0 (Tirole).
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R&D stock is positive, but insignificant in the negative binomial models. Nevertheless,
the result from the Poisson random effects model contradicts earlier results that the
effectiveness of R&D is declining over time (Hausman, Hall, and Griliches), at least in
the food processing industry.

Of the three models considered for analyzing patent counts, the case for the random
effects models is strongest. Blundell, Griffith, and Van Reenen claim that the difference
between the majority of firms who make few innovations and the small group involved
in high levels of innovative activity is unlikely to be solely attributable to observable
differences across companies. Thus, unobservable permanent heterogeneity is an
important feature of any empirical model of innovative activity. Although the
qualitative results of the fixed and random effects models in our investigation are very
similar, we tested for possible misspecification in the random effects models. The
random effects models may be misspecified due to a correlation between panel-specific
component of error and the explanatory variables-a problem not incurred by fixed
effects models.

This can be verified by a Hausman test. The test statistic is given by qTV(q)-1q,
where q is a vector of differences in coefficients between the fixed and random effects
models, and V(q)-1 is the inverse of the differences between the covariance matrices
of the fixed and random effects models (Hausman). The test statistic follows a %2 distri-
bution with k (the number of exogenous variables in the model) degrees of freedom.
Using this test, we failed to reject the null hypothesis of "no misspecification" in the
random effects model, as the calculated X2 value (2.42) is less than the critical value at
the 1% level of significance (six degrees of freedom). 14 An additional statistic validating
the empirical results is the correlation between observed and predicted values. As
reported in table 3, these correlations are in the range of 51% to 67% for our three
models. Although caution is emphasized in the use of these types of statistics, in count-
data panel models such as ours, computing measures similar to R2 can be complex and
sometimes misleading.

Intra-Industry R&D Spillovers

The introduction of industry R&D in the count data models is to test the hypothesis that
knowledge, as embodied in the R&D stock variable, is likely to exhibit some of the public
good properties (nonrivalness, partial nonexcludability) which result in technological
externalities (Romer). Existence of spillovers will suggest that firms in the food
processing industry are subject to a market failure problem in the sense that they are
not able to realize the "full" benefits of their innovative efforts. The most often cited
consequence of market failure is underinvestment in R&D by innovating firms.

The results showing the effects of industry R&D on patenting are provided in table
3. Overall, the findings suggest the existence of spillovers because the coefficients on
industry R&D are positive and significant in all three models. Although the magnitude
of the coefficients varies from 0.49 to 1.22, the case for knowledge spillovers is strong.
While previous studies have focused on inter-industry spillovers (Mansfield; Bernstein
and Nadiri), the results here point to significant intra-industry spillovers of knowledge

14 A similar test for Poisson fixed effects (not reported) versus random effects provided inconclusive results.
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as embodied in the industry R&D stock.15 The presence of both intra- and inter-industry
knowledge spillovers suggests that knowledge generated by firms in the U.S. food
processing industry has public good properties, and so there may be a market failure
problem.

Effects of Overall Industrial Concentration

The market share variable adequately represents the incentives for a firm to innovate.
However, as the market share of a firm increases, it is likely that the overall industry's
concentration increases, because gains to one firm are losses to another firm or group
of firms. Moreover, at both ends [i.e., competitive markets (market share - 0) and
monopoly (market share - 1)], the incentives for an individual firm to innovate are
smaller than in the case of oligopoly (Tirole). Table 3 also presents the results relative
to the effects of industrial concentration on innovative activities in the U.S. food pro-
cessing industry for all three models. The coefficient on the number of establishments
is negative as expected in all three cases, but not significant in the case of the negative
binomial models. Although a firm's share of its market is shown to have positive effects
on patenting, the overall increase in concentration in an industry appears to dampen
innovative activity in the food processing industry (see Blundell, Griffith, and Van
Reenen for a similar result).

In sum, this study found that the innovative activities of U.S. food processing firms
(as represented by patents) is positively associated with internal characteristics such
as the market share of a firm and its R&D investment. Innovation is also related to
broader industry-level variables, cumulative R&D investment by all firms (positive), and
the overall industrial concentration (negative).

Summary and Conclusions

In this analysis we have explored two research themes within a single economic model
of firm behavior. Results obtained reinforce the finding reported in the literature of a
positive association between R&D and patents in the U.S. food processing industry. A
second conclusion, which is of greater interest, is that market share is positively
associated with patents. This latter finding has interesting implications. The traditional
focus of the literature on imperfect competition has been on measurement of welfare
losses due to departures from perfect competition. Results obtained here suggest that
those losses may be partially offset by the positive impact of a higher market share on
innovative activity. Firms that are likely to exhibit noncompetitive behavior are also
likely to produce new products and processes, leading to a greater variety and better
quality of food products for consumers. However, results also suggest that there are
significant intra-industry spillovers of knowledge, as embodied in the R&D stock, which
likely may cause underinvestment in R&D in the food processing industry.

15 This is consistent with the observed product imitation practices (preponderance of fat-free, cholesterol-free processes and
flavors in almost all types of foods).
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A limitation of this study is the claim by some authors (Acs and Audretsch) that
patents may not necessarily represent the innovative efforts of firms. Use of trade
secrets and the differences in the values of patents to firms provide support for this
claim. However, as Griliches (1992) notes, patents continue to represent a credible
measure of the innovative activities of firms, until better alternatives are found.

Further research may focus on the net gains/losses from price markups and the

counteracting benefits from innovative activities, possibly in a general equilibrium
framework. This is important from the perspective of federal regulatory policies that
do not discriminate between innovating and noninnovating firms. Such policies likely
may lower the incentives to innovate, and thus hinder economic growth. Additionally,
the divergence between private and social benefits to R&D in the food processing
industry may be investigated further to ascertain a role for public policy to mitigate
market failure.

[Received April 1998; final revision received November 1998.]
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