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Nonlinear Fiber Capacity
Erik Agrell

Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden.
B agrell@chalmers.se

Abstract In this semi-tutorial presentation, we review fundamental information theory for links with and
without memory, in the linear and nonlinear regimes. A comparison between channel models with long (but
finite) memory and infinite memory yields an unexpected result.

Introduction

Shannon, the father of information theory, proved
that for a given channel, it is possible to achieve
an arbitrarily small error probability, if the transmis-
sion rate in bits per symbol is small enough. A rate
for which virtually error-free transmission is possi-
ble is called an achievable rate and the supremum
over all achievable rates for a given channel, rep-
resented as a statistical relation between its input
X and output Y , is defined as the channel capacity
[1], [2, p. 195]. A capacity-approaching transmission
scheme operates in general by grouping the data to
be transmitted into blocks, encoding each block into
a sequence of information symbols, transmitting this
sequence over the channel, and decoding it in the
receiver. A long block length is essential to obtain
an arbitrarily small error probability, even for memo-
ryless channels, and for channels with memory, the
block length should typically be much larger than the
channel memory.

The GN model and its capacity

For coherent long-haul fiber-optical links without dis-
persion compensation, the most popular discrete-
time channel models represents the nonlinear inter-
ference (NLI) as Gaussian noise (GN), whose statis-
tics depend on the transmitted signal power [3–6].
Thus, the complex single-channel output Yn is mod-
eled as

Yn = Xn + Zn, (1)

where Xn is the complex channel input and Zn is a
complex, white, Gaussian random sequence, inde-
pendent of Xn. Although Zn is independent of the
actual transmitted process Xn, the distribution of Zn

depends on the distribution of Xn. Splett et al. [3],
Poggiolini et al. [5], and Beygi et al. [6] have all
derived models where Zn is a zero-mean, circularly
symmetric sequence, whose power PZ = E[|Zn|2]
depends on the transmit power PX = E[|Xn|2] as

PZ = c0 + c3P3
X , (2)

where c0 and c3 quantify the amplified spontaneous
emission noise of the optical amplifiers and the
NLI, resp. The cubic relation (2) holds for both
lumped and distributed amplification schemes, and
it extends to multiple-wavelength [3, 5] and dual-
polarization [5, 6] systems. For uncoded trans-
mission with traditional modulation formats, the GN
model has been shown to be very accurate in exper-
iments and simulations.

Since Zn in (1) is additive and statistically inde-
pendent of Xn, the channel capacity of the GN model
(1)–(2) can be calculated exactly as [3, 7]

C = log2

(
1 +

PX

PZ

)
(3)

using Shannon’s well-known capacity expression [1,
Sec. 24], [2, Ch. 9]. Considered as a function of the
transmitted signal power PX , the capacity has the
peculiar behavior of reaching a peak and eventually
decreasing to zero at high enough power, since the
denominator of (3) increases faster than the numer-
ator. The phenomenon, sometimes called the “non-
linear Shannon limit” in the optical communications
community, seems to convey the message that reli-
able communication over nonlinear optical channels
becomes impossible at high powers. In the last part
of this paper, we question this pessimistic conclu-
sion.

Capacity and mutual information
By Shannon’s channel coding theorem, the channel
capacity of a discrete-time memoryless channel, in
bit/symbol, can be calculated as [1], [2, Ch. 7]

C = sup
fX

I(X ; Y ),

where I(X ; Y ) is the mutual information

I(X ; Y ) =
∫∫

fX ,Y (x , y ) log2
fX ,Y (x , y )
fX (x)fY (y )

dxdy , (4)

fX ,Y is the joint distribution of X and Y , and fX and fY
are its respective marginal distributions. The capac-
ity is often studied as a function of the transmitted
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signal power, PX = E[|X |2]. The corresponding ex-
pression for channels with memory is, under certain
assumptions on information stability [8],

C = lim
n→∞

sup
fXn

1

1
n

I(X n
1; Y n

1), (5)

where X j
i = (Xi , Xi+1, ... , Xj ) and I(X j

i ; Y j
i ) is defined

as a multidimensional integral analogous with (4).
In this work, we are interested in channels with

finite memory. Such channels have the property that
the channel output Yn depends on a finite number N
of past input symbols, but not on the entire history,
i.e.,

fYn|X n
1
(yn | xn

1) = fYn|X n
n−N

(yn | xn
n−N ), (6)

where N is the channel memory. By expanding the
right-hand side of (5) using the chain rule for mutual
information [2, p. 24], it can be shown that for chan-
nels that satisfy (6) and any stochastic process Xn,

C ≥ I(Xn; Yn | X n−1
n−N ), (7)

where I(Xn; Yn | X n−1
n−N ) is the conditional mutual in-

formation [2, p. 23].

A finite-memory GN model
Even highly dispersive optical fibers have a finite
memory. The output does not depend what was
transmitted into the fiber yesterday, or even a second
ago. To account for this important feature, we pro-
pose a finite-memory GN model. The input–output
relation is still given by (1), but the statistical transmit
power PX in (2) is replaced with an empirical trans-
mit power, which is a function of the actual transmit-
ted sequence Xn during a finite window of N past
input samples. Assuming a constant weight for all
samples in this window, (2) is replaced by

PZ = c0 + c3P3
n , (8)

Pn =
1
N

n−1∑
i=n−N

|Xi |2. (9)

In the limit N → ∞, the empirical power in (9)
converges to the statistical power PX = E[Xn], for
any stationary, ergodic input sequence Xn. Hence,
for large enough N, assuming uncoded transmis-
sion or coded schemes with short or moderate block
lengths, the finite-memory GN model is equivalent to
the regular GN model in the previous section, which
can be regarded as an infinite-memory model.

For a suitable (large but finite) choice of N, the
finite-memory model is more physically relevant than

the traditional GN model, but much harder to ana-
lyze, since every output depends on a vector of in-
puts. A reasonable choice of N is in the order of
Nsys = 2π|β2|LR2

s , where β2 is the group velocity
dispersion parameter, L is the fiber length, and Rs

is the symbol rate [9]. The finite-memory model is
not accurate for small values of N, since the GN as-
sumption relies on the central limit theorem [5, 6].

Channel capacity results
An exact expression for the channel capacity of the
finite-memory GN model (1), (8)–(9) is unfortunately
not available. Shannon’s formula (3) does not apply,
because the sequences Xn and Zn are dependent.
Furthermore, capacity estimation via (5) is numeri-
cally infeasible, since it would involve maximization
over a high-dimensional space. We therefore resort
to the lower bound (7), and furthermore constrain
the input distribution to a ring constellation [4], with
two discrete amplitudes r1, r2 and uniform phase. In
this case, the right-hand side of (7) is

I(Xn; Yn | X n−1
n−N )

=
∑
s∈S

Pr{PZ = s}2
s

∫ ∞
0

ρb(g(ρ, s))dρ− log2 e,

(10)

where b(u) = −u log2 u, S is the set of N +1 possible
values that PZ in (8)–(9) can take on when |Xi | ∈
{r1, r2},

g(ρ, s) =
∑

r∈{r1,r2}

Pr{|Xn| = r}

· exp
(
−ρ

2 + r2

s

)
I0

(
2ρr
s

)
,

and Ik (u) is the modified Bessel function of the first
kind. The proof of (10) is omitted due to space con-
straints.

The radii and probabilities of the two rings are var-
ied to maximize I(Xn; Yn | X n−1

n−N ) in (10), for given
channel parameters c0, c3, and N and a given trans-
mit power PX . In our numerical example, we use
c0 = 3.27 µW and c3 = 1.83 mW−2. The same val-
ues were used by Bosco et al. [7, 10], representing a
standard single-mode fiber with length L = 8000 km,
parameters α = 0.22 dB/km, β2 = −21.7 ps2/km,
and γ = 1.27 (W km)−1, ideal distributed amplifica-
tion with KT = 1, WDM transmission with center fre-
quency ν = 190 THz and bandwidth BWDM = 4 THz,
and symbol rate Rs = 32 Gbaud.

The lower bound (10) is shown in Fig. 1 as a func-
tion of transmit power and channel memory N. We
can see that as N increases, the curves approach
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Fig. 1: Lower bounds (10) on the channel capacity C
vs. transmit power PX of the finite-memory GN model for
varying channel memory N (solid) and the exact capacity
(3) of the regular (infinite-memory) GN model (dashed).

an asymptotic bound, marked N →∞. This asymp-
totic bound is plotted for N = 5 and 10 (the two
curves overlap), and it would look the same for, say,
N = Nsys ≈ 1100 or even higher. It has a peak
at 3.96 bit/symbol, after which it decreases to 3.24
bit/symbol.

The rudimentary lower bounds in Fig. 1 represent
two-ring constellations only and can be improved
by using other input distributions. For example, us-
ing so-called satellite constellations, a higher lower
bound can be obtained that flattens out without de-
creasing [11, 12].

The exact channel capacity (3) of the infinite-
memory GN model (1)–(2) is included in Fig. 1 for
reference. This is the 8000-km curve shown in
[10, Fig. 1(a)], rescaled by a factor of two to rep-
resent a single polarization. It is striking, and at
first glance counterintuitive, that the channel ca-
pacity of the infinite-memory model is so different
from the asymptotic capacity of the finite-memory
model in the nonlinear regime. A mathematical ex-
planation is that in general, limN→∞ supf CN (f ) 6=
supf limN→∞ CN (f ). For a more intuitive explana-
tion, we recall that a capacity-approaching transmis-
sion scheme should involve coding over a long block
length, typically much longer than the channel mem-
ory N. Designing such long codes is possible, at
least theoretically, for channel models with any finite
memory, but not for infinite-memory models. There-
fore, the two types of models have different chan-
nel capacities, not only for the example studied here

but also for other nonlinear fiber channels, includ-
ing dual polarization, wavelength multiplexing, multi-
mode fibers, etc.

Conclusions
We extended the popular GN model for nonlinear
fiber channels with a parameter to account for the
channel memory. The new channel model is given
by (1) and (8)–(9). For any finite memory, its chan-
nel capacity is quite different from that of the regular
(infinite-memory) GN model in the nonlinear regime.
Hence, infinite-memory channel models, although
accurate for uncoded transmission, should not be
used in capacity analysis. Their capacities do not
bound the achievable rates of the underlying physi-
cal links.

We intentionally avoid using the concept “nonlin-
ear Shannon limit.” It is an artifact of the use of
infinite-memory channel models and has no known
analogy for finite-memory models, which are more
physically meaningful. The real fiber link does not
suffer from the same vanishing capacity at high
transmit powers as the regular GN model and other
infinite-memory models do. The true capacity for
nonlinear, dispersive channels remains an open
problem.
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