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Value of
Increasing Kernel Uniformity

Byung-Sam Yoon, B. Wade Brorsen,
and Conrad P. Lyford

Kernel uniformity is an important quality attribute that can now be measured at low
cost. This study analyzes the profitability of sorting to increase wheat kernel uni-
formity. Nonlinear programming is used to sort grain loads to maximize flour yield
by increasing uniformity of kernel size and kernel hardness. Results of this analysis
suggest increases in flour yield due to higher kernel uniformity are not enough to
outweigh the costs of sorting.
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Introduction

While consumers demand diverse food products with higher quality, food processors
require uniform raw materials with specific quality attributes. In virtually all areas of
food processing, processors desire uniform raw materials to improve the efficiency of
production and consistency of product quality. Recent advances in testing and process-
ing technology enable processors to impose rigorous product requirements.

The grain industry, in search of uniform quality measures, has established grades
and grade requirements, but the appropriate grading factors and factor limits for
designating numerical grades have been a persistent issue in grain markets (Hill 1990).
Moreover, Hill (1988) argues that grain grades lack economic rationale and fail to accur-
ately measure the factors which determine value.

Current U.S. standards for wheat determine grades based on test weight, total defects,
and other material [U.S. Department of Agriculture (USDA)]. Recently, however, pro-
cessors have become more interested in such characteristics as greater kernel size and
kernel size uniformity (U.S. Wheat Associates).

For flour millers, kernel size uniformity is a potentially important physical quality
attribute for processing efficiency, quality control, and milling yield. In the flour milling
process, tempered wheat is first ground on a series of rollermills to separate the endo-
sperm (starch and protein) from the outer bran skins. When there is a wide variation
in kernel size, small kernels pass through the rollermills unground or are only partially
broken in the initial breaking process, and consequently require additional processing.
This additional processing requires more milling time and energy costs. Furthermore,
additional processing may decrease quality of the flour (Li).
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With uniform wheat, the wheat kernels are ground more evenly in the milling process,
leading to higher extraction of flour. Since wheat kernels must pass through five or more
of the breaking rollermills before the bran is completely removed, more uniform kernel
size may increase milling efficiency, flour quality, and flour yield. This study determines
the potential benefits from increased flour yield due to an increase in kernel size and
hardness uniformity, achieved by sorting.

It is not an easy task to achieve benefits from increased kernel uniformity in the cur-
rent grain marketing system. Because uniformity of kernel size is not one of the grading
standards for wheat,1 and an increased kernel size uniformity is not rewarded, grain
elevators and millers are not strongly motivated to develop and implement various
strategies to increase kernel size uniformity.

Kernel size uniformity may be increased by sorting rather than blending various

truckloads of wheat with different kernel sizes. Previous studies on grain sorting and

blending (e.g., Johnson and Wilson; Adam, Kenkel, and Anderson; Hennessy and Wahl)

have been largely prompted by concerns about declining U.S. export market share and

complaints by foreign buyers of poor quality grain. These studies analyze the costs and

benefits of cleaning wheat to reduce dockage levels. Wilson and Dahl note within-lot
variability as one type of quality uniformity of particular concern to export buyers. Van-

deburg, Fulton, and Dooley estimate the costs of handling value-added grains, and thus
include estimates for the cost of segregation. However, none of these studies compare
costs and benefits that accrue to processors from sorting to achieve kernel uniformity.

The remainder of the article proceeds as follows. In the section below, we provide a

description of the two distinct data sets used in the analysis. Procedures are then devel-
oped to determine optimal grain sorting strategies based on kernel size uniformity. Next,
the size of potential benefits from sorting is determined and compared to the cost of
sorting. Specifically, a percent flour yield equation is estimated to relate flour yield to
wheat quality attributes and to measure the benefits of sorting. An equation approxi-
mating milling income is used to assess the monetary value of increasing kernel uni-

formity, and our results are compared to costs from segregation derived by Vandeburg,
Fulton, and Dooley. Concluding remarks are offered in the final section.

Data

Data for this study were collected from two sources. The first data set was used to esti-
mate a percent flour yield equation as well as to perform an optimization-by-sorting
procedure. These data cover a four-year time period and span all major U.S. production
areas of hard red winter wheat. From 1995 through 1998, samples of hard red winter
wheat were collected from elevator bins during the Hard Red Winter Wheat (HRWW)
Crop Survey (Deyoe et al.).

HRWW samples were provided from elevators in 22 survey districts. Texas and Okla-
homa were covered by four districts, Kansas was represented by nine districts, eastern
Colorado by two districts, Nebraska by five districts, and South Dakota and Montana
each were treated as separate districts. From each district, seven samples on average
were randomly collected over four years, resulting in a total of 609 wheat samples.

1 Shrunken and broken kernels are among the grade determining factors. The kernel size uniformity referred to here is
the uniformity of kernels after shrunken and broken kernels are moved.

482 December 2002



Value of Increasing Kernel Uniformity 483

Table 1. Summary Statistics for Wheat Quality Characteristics and Percent
Flour Yield, U.S. Data Set, 1995-1998

Single-Kernel Characteristics

Year/Statistic KW KWS KD KDS KH KHS KM KMS TW PFY

1995 (n = 148):
Mean 27.87 7.74 2.29 0.42 67.56 17.34 10.70 0.64 59.41 71.75
Std. Dev. 2.59 0.81 0.12 0.04 4.28 1.35 0.80 0.19 2.09 1.48
Minimum 22.75 5.89 2.03 0.33 56.98 13.66 8.33 0.37 54.00 67.10
Maximum 35.53 10.79 2.66 0.55 78.95 21.60 12.57 1.72 63.00 75.07

1996 (n = 156):
Mean 28.21 8.00 2.23 0.46 70.81 17.18 13.00 0.51 59.40 70.74
Std. Dev. 2.91 0.79 0.14 0.04 6.11 1.37 0.86 0.08 1.38 1.50
Minimum 22.19 6.31 1.89 0.38 57.67 13.24 9.46 0.32 55.65 66.01
Maximum 34.99 10.24 2.59 0.57 85.09 21.85 14.96 0.78 63.18 73.77

1997 (n = 136):
Mean 30.23 8.53 2.31 0.47 69.36 17.47 12.58 0.48 60.71 71.29
Std. Dev. 2.82 0.90 0.14 0.04 5.84 1.98 1.05 0.12 1.37 0.93
Minimum 22.37 6.77 1.95 0.38 49.24 13.19 9.82 0.33 56.07 67.77
Maximum 37.35 11.61 2.65 0.58 81.43 27.00 15.16 1.31 63.42 73.07

1998 (n = 169):
Mean 30.16 7.67 2.31 0.42 72.78 15.86 12.12 0.47 61.56 71.80
Std. Dev. 1.94 0.47 0.10 0.03 6.70 1.89 0.89 0.09 1.21 1.29
Minimum 23.44 6.50 1.93 0.35 50.67 12.21 9.87 0.32 58.30 67.65
Maximum 36.99 9.24 2.64 0.48 82.92 27.23 14.09 0.86 63.78 74.65

Notes: n = number of observations in each of the four years; KW is the average single-kernel weight (mg), KWS is the
standard deviation of single-kernel weight, KD is the average single-kernel diameter (mm), KDS is the standard deviation
of single-kernel diameter, KH is the average single-kernel hardness (hardness index), KHS is the standard deviation of
single-kernel hardness, KM is the average single-kernel moisture (%), KMS is the standard deviation of single-kernel
moisture, TW is the test weight (pounds/bushel), and PFY is the percent flour yield (%).

Because the data are from several regions, the data can be used to analyze the profita-
bility of a regional miller sorting to create uniformity.

Each HRWW sample collected was tested using the Single Kernel Characterization
System (the machine used was the Perten SKCS 4100) in the Grain Science and Indus-
try Department at Kansas State University. The Single Kernel Characterization System
(SKCS) measures a variety of physical characteristics of wheat kernels by individually
selecting and analyzing 300 kernels per sample. A test can be completed in about three
minutes, and calculates mean and standard deviation for single-kernel weight, single-
kernel diameter (size), single-kernel hardness, and single-kernel moisture. In addition
to the single-kernel characteristics, test weight was also included.

After initial SKCS tests on the individual survey samples, each sample was tempered
to 16% moisture for 18 hours. The tempered samples were milled using fixed roll settings
from the Buhler laboratory mill (model MLU-202). Milling performance, reported as
percent flour yield (PFY), was calculated as the percentage of flour out of total product
recovered from the Buhler laboratory mill. The samples were milled to meet typical com-
mercial ash specifications.

The second data set consists of truckload samples of wheat taken from several Okla-
homa Agricultural Statistics Districts during 1998 and 1999 (Kenkel). Samples were
obtained using the truck sampling procedures recommended by the USDA's Federal
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Grain Inspection Service. Two main regions were sampled: (a) Central, consisting of the
Central and North Central Agricultural Statistics Districts, and (b) West, consisting of
the Northwest, West Central, and Southwest Districts. This data set may be used to
depict a local elevator receiving grain only from the region. Thus, with the combination
of the two data sets, the profitability of sorting can be analyzed from the perspective of
both the regional miller and the local elevator.

Table 1 presents summary statistics for wheat quality characteristics and average
percent flour yields for the first data set. The data have some limitations. The percent
flour yields used here are from fixed roll settings, and thus may underestimate the value
of kernel uniformity. In practice, flour millers may be able to increase the milling yield
by optimally adjusting the space of rollermills to different kernel sizes. The summary
statistics for wheat quality characteristics for the Oklahoma data set are reported in
table 2. The Oklahoma data set generally has larger standard deviations for kernel
hardness, which means there is greater variation among truckloads than there is across
regions.

Model of Flour Yield

An equation relating the percent flour yield (extraction) to wheat quality characteristics
is estimated. Milling income is a linear function of percent flour yield, and thus maxi-
mizing one is equivalent to maximizing the other. Sorting strategies are evaluated by
how much these strategies increase the percent flour yield or milling income relative to
no sorting.

The data on wheat quality characteristics and percent flour yield used for the percent
flour yield equation consist of 609 observations on the 22 cross-sections of districts over
a four-year time period. To estimate a percent flour yield equation, the time-series and
cross-sectional data are pooled 2 using the following error-components model:3

(1) PFkit Po + PlKDit + P2Skit + P4Pit + P4 Ski t + P5kt it + eit,

where i represents the districts (i = 1, 2, ..., 22), t represents the years (t = 1995, 1996,
1997, and 1998), and k denotes the sample number from the ith district in the tth year.
Variable definitions are given in table 3. The P's are the fixed-effects coefficients; it de-
notes the random-effects parameters assumed to be independent and normally distributed
with E[pit] = 0 and E[p 2] = o; and £kit represents independent and normally distributed
random variables with E[ekit] = 0, nonconstant variance E[ki] = ok and these it are
uncorrelated with the pit (i.e., E[Pitekit] = 0).

2 A likelihood-ratio test that the slope parameters in equation (1) were constant across years yielded a test statistic value
of 24.5, which is less than the X 25] critical value of 25.0 at the 5% significance level. Therefore, the null hypothesis of constant
slope parameters across years cannot be rejected.

3The single-kernel diameter (KD) and single-kernel weight (KW) may be considered as alternative measures of kernel size
(their correlation in the data set was 0.93). To avoid the multicollinearity problem arising from including two measures of
the same thing, the following model was estimated separately:

PF1^ = po + PlKW, + P2KWSi, + 3KHt + P4KHSt, + aTV, + P, + ei
where KWi, is the average single-kernel weight (mg), and KWSi, is the standard deviation of single-kernel weight. However,
the results of t-tests showed that the estimated coefficients P, and 3, were not statistically significant at the 5% level.
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Table 2. Summary Statistics for Wheat Quality Characteristics in Oklahoma
Regions, 1998-1999

Single-Kernel Characteristics

Year/Region/Statistic KW KWS KD KDS KH KHS KM KMS TW

1998, Central (n = 38):
Mean 29.52 7.57 2.22 0.44 81.21 16.50 10.31 0.35 62.66
Std. Dev. 2.11 1.10 0.09 0.06 5.21 1.62 1.18 0.05 0.79
Minimum 25.04 5.37 2.00 0.32 71.80 13.03 9.24 0.26 59.90
Maximum 34.80 9.51 2.41 0.54 89.81 19.41 14.49 0.46 63.90

1998, Western (n = 76 or 78):
Mean 29.89 7.92 2.18 0.45 78.51 16.28 13.17 0.33 60.36
Std. Dev. 4.15 1.06 0.20 0.05 6.08 2.06 1.55 0.06 2.12
Minimum 18.70 5.78 1.58 0.31 63.64 12.75 9.63 0.23 54.90
Maximum 38.54 11.14 2.57 0.59 93.08 24.22 17.02 0.58 64.40

1999, Central (n = 54):
Mean 31.45 8.36 2.28 0.46 71.77 17.85 13.57 0.30 60.04
Std. Dev. 3.12 0.87 0.15 0.05 7.23 1.76 0.39 0.05 2.24
Minimum 24.16 6.35 1.93 0.33 58.96 14.30 12.80 0.23 51.50
Maximum 36.50 9.98 2.52 0.58 85.72 22.34 14.43 0.41 63.10

1999, Western (n = 34):
Mean 29.76 8.05 2.23 0.45 74.89 17.96 13.94 0.32 59.74
Std. Dev. 3.98 0.93 0.19 0.05 8.14 1.82 0.33 0.04 1.63
Minimum 20.04 5.94 1.71 0.30 56.05 14.14 13.30 0.26 57.30
Maximum 37.76 10.15 2.53 0.56 89.02 21.27 14.75 0.39 65.00

Notes: n = number of observations in each of the two regions for 1998 and 1999; KW is the average single-kernel weight
(mg), KWS is the standard deviation of single-kernel weight, KD is the average single-kernel diameter (mm), KDS is the
standard deviation of single-kernel diameter, KH is the average single-kernel hardness (hardness index), KHS is the
standard deviation of single-kernel hardness, KM is the average single-kernel moisture (%), KMS is the standard deviation
of single-kernel moisture, and TW is the test weight (pounds/bushel).

Expected signs of the fixed-effect coefficients, shown in table 3, were ascertained from
past research. Test weight (TW) has long been used in wheat marketing and can be
expected to increase milling yield. Increased test weight generally means more dense
kernels, and as such there is more material in a unit of wheat to be made into flour.
Many researchers have noted increases in flour extraction with increases in test weight
(e.g., Swanson; Kremer).

Kernel diameter (KD) measures a physical property of the wheat. Larger diameters
would be expected to have a positive relationship with milling yield because larger objects
have more volume relative to surface area. The endosperm that yields the flour is inside
the kernel, while the bran coat which is a large part of millfeeds is on the outside.

Williams described increases in milling yield when wheat becomes softer (i.e., when
KH declines) in hard to very hard wheat (the opposite is true in soft wheat). In the present
study, only hard red winter wheat was analyzed, and a linear term was used with an
expected negative sign on the KH coefficient.

Variability in either kernel diameter or kernel hardness is expected to reduce flour
yield. The physical operation of a flour mill is expected to be more efficient in extracting
flour when kernels are similar.

The model was fit using PROC NLMIXED in SAS version 8.0, as both random effects
and heteroskedasticity are present. The data are assumed normally distributed and the
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Table 3. Variable Definitions and Expected Sign of the Relationship with
Percent Flour Yield

Independent Expected
Variable Definition Sign

KDit Average single-kernel diameter (mm) +

KDSit Standard deviation of single-kernel diameter

KHit Average single-kernel hardness (hardness index)

KHSt Standard deviation of single-kernel hardness

TWit Test weight (pounds/bushel) +

mean (expected value) of the data is a linear function of explanatory variables and the

random-effects parameters, i.e.,

(2) E[PFYkit] = o + PlKDkit + KDSit + P3KHit + P4KHSkit + PTWkit + it

The random-effects parameters At enter the model linearly. This study also considered

average single-kernel moisture (KM) and standard deviation of single-kernel moisture

(KMS), but these variables were dropped because they were not statistically significant.

The standard deviation of single-kernel moisture (KMS) should not matter because each

sample was tempered to 16% moisture.
Pretests indicated the only relevant variable in the variance equation was kernel mois-

ture. The variance of the error terms kit is an exponential function of the explanatory
variable:

(3) _a =exp[(,KMkit ]

where ac is a coefficient to be estimated.
Finally, the estimated percent flour yield (PFY) equation is specified as:

(4) PFY = 48.24 + 1.32KD - 2.25KDS - 0.07KH - 0.04KHS + 0.44TW,
(29.58) (3.19) (-2.30) (-7.95) (-1.84) (13.14)

where the variables are the same as defined in equation (1), and the t-statistics of the

coefficients are presented in parentheses. The estimate of a, was -0.065 with a t-value

of -12.52, indicating the prediction equation is not as accurate for low-moisture grain.

The estimate of o2 was 0.494, and the likelihood-ratio test statistic of no random effect

was 234, which is immensely greater than the Xll] critical value.

The percent flour yield equation is linear with respect to all explanatory variables.

Hennessy, and Hennessy and Wahl show that the elevator's decisions on blending and

sorting depend upon the curvature attributes of the yield-quality schedule. Generally,

if yield is a concave function of quality, blending all grain together is best. In contrast,

sorting is desirable when yield is a convex function of quality. The negative coefficients

on the standard deviation terms (KDS, KHS) in equation (4) are quadratic terms in KD

and KS. Thus, their negative coefficients yield a function convex in KD and KS, so sort-

ing is optimal in this case.
To estimate the monetary benefits of increased kernel uniformity due to increased

flour yield, we need an estimate of milling income. Milling income (MI), in dollars per

bushel, is approximated as:
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(5) MI = (1 - PFY)MFP + (PFY)FP

= 1.68(1 - PFY) + 5.52PFY

= 1.68 + 3.84PFY,

where MFP and FP are millfeed price and flour price, respectively. Prices are taken from

Lyford and converted to dollars per bushel. Lyford reports the price of millfeeds as

$56/ton, and the price of flour as $9.2/cwt. Thus, milling income is approximated as the

sum of incomes4 generated by flour yield and mill feed.

Sorting Strategy

Elevators and millers often rearrange grain by blending and sorting to take advantage

of profit opportunities. To simplify the analysis, the elevator or miller is assumed to know
the distribution of wheat quality characteristics before the loads of wheat are delivered
to the elevator. In practice, an elevator would need to start with an initial estimate of

wheat quality and then adjust the estimates as samples were taken from initial loads.
The elevators or millers may allocate truckloads of wheat with different quality attri-

butes into a number of storage bins such that total flour yield from all wheat stored in

the bins is maximized. This optimization problem is solved using mathematical program-

ming.
For the mathematical programming model, truckloads are indexed by i (i = 1, 2, ..., N),

each containing wheat with different levels of quality attributes. Storage bins are indexed

byj, and total quantity of wheat in binj is denoted by QTYj. Because Oklahoma eleva-

tors use about three bins5 to store grain, three bins are assumed in our model. The objec-
tive is to maximize the total milling income. But because milling income and flour yield

are linearly and positively related, we can equivalently maximize total flour yield from
all wheat contained in the bins. The objective function, using equation (4), is defined as:

(6) Max E PFY(KDj, KDSj, KH., KHSj, TW)QTY =
QTY j __

Max E (48.24 + 1.32KDj - 2.25KDSj - 0.07KHj - O.04KHSj + 0.44TWj)QTYj,
QTY j

where KDj is the average single-kernel diameter for wheat in binj, KDSj is the standard

deviation of single-kernel diameter in binj, KHj is the average single-kernel hardness
for wheat in binj, KHSj is the standard deviation of single-kernel hardness in binj, and

TWj is the test weight for wheat in binj.
The maximization problem is subject to a number of constraints concerning wheat allo-

cation and quality attributes. Let Xij denote the quantity of wheat allocated from load

i to binj. Then the total quantity of wheat available in binj is:

(7) QTY =EXij, j=1,2,3.

4 The sensitivity of the conclusions with respect to changes in prices can be calculated directly from (5). If mill feed price

increased 10% with no change in flour price, the value of uniformity would decrease 4.375% [(0.1 - 1.68)/3.84].

5 Using five bins for the Oklahoma Western region in 1999 increased marginal revenue by 0.16¢/bushel. The time required

to solve the model increases exponentially with the number of bins. As little difference in revenue was achieved, five bins were

not considered for the other data sets.
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For simplicity, each truckload is treated as one unit. Consequently, the sum of wheat
quantities allocated from truckload i over all bins should be one. That is, 2jXj = 1. The
model allows a load to be partially allocated into different bins to avoid the extra
complexity of integer programming. Only a small number of loads (usually two) are not
allocated to a single bin at convergence.

One of the useful properties of grains of different quality is that they can be readily
mixed, and for many quality characteristics the effects of mixing can be easily computed.
These quality attributes include kernel diameter, kernel hardness, and test weight. This
ability to compute the physical quality characteristics of mixed grain arises from the
linear homogeneity attributes of mixing. Denote the proportion of load i allocated into
bin] by pi>, and let the average single-kernel diameter for wheat in load i be KDj. Then
the average single-kernel diameter for wheat in binj is given by:

(8) KDj = PijKDi
i

where

Xip

P- EX
i

Similarly, the average single-kernel hardness for wheat in bin j is given by:

(9) KDj = EPijKHi,
i

and finally, the average test weight for wheat in binj is written as:

(10) TW = pijTWi.
i

When grain from truckloads differing in kernel size is combined in the bin, the varia-
tion of kernel size in binj results from two sources: within-load variation and between-
load variation. Within-load variation is the variation of kernel size within a load, i.e.,
the difference between each kernel size and its load mean; between-load variation is the
variation of kernel size across loads, i.e., the difference between the mean kernel size
of each load and the overall mean kernel size of the bin. Thus, the total variation of
kernel size in the bin is calculated as the sum of the variation within each load and the
variation between loads.

The within-load variation is inherent to each load in the sense that rearranging the
loads cannot alter it, and so it does not alter the optimal solution. However, combining
the loads of similar kernel size when truckloads are allocated into the bins can reduce
the between-load variation. A smaller between-load variation, in turn, indicates a smaller
total variation of kernel size in the bin.

Calculating the standard deviation of kernel size of each bin directly led to so many
nonlinearities that convergence could not be obtained. Instead, the mean absolute devi-
ation was calculated and then converted to a standard deviation.6 This approach is anal-
ogous to using MOTAD to approximate a quadratic programming problem.

6 The authors thank Paul Preckel for suggesting this approach.
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Under normality, the expected value of an absolute deviation is equal to 1/1.25 times
the expected value of the standard deviation (Taylor, pp. 98-99). Taylor's formula was

verified using Monte Carlo integration.
Let the deviation of the average single-kernel diameter for wheat in load i from the

average single kernel diameter for wheat in binj, or KDi - KDj, be denoted by u+ if it is
positive, and by u- if it is negative. Then, Ei (ui + ui) measures the sum of the absolute
deviations for average single-kernel diameter. The mean absolute deviation times 1.25
is used to approximate the between-load standard deviation of kernel diameter.

Combining the within-load mean absolute deviation (MAD) and the between-load
MAD, the MAD of kernel diameter for wheat in binj (KDMADj) is calculated as:

(11) KDMADj = Pij 1 + pi + U1 ) 2

The first term in parentheses is the within-load MAD, and the second term is the between-
load MAD. Multiplying (11) by 1.25 converts the MAD into a standard deviation and

yields:

KDS, = pi [KDS, + 1.25(u + uj )]

Similarly, the average standard deviation of kernel hardness for wheat in binj is esti-

mated by:

(12) KHSj = EpijKHSi + 1.25(v + +vi)]

The elevator's or miller's maximization problem is solved using the MINOS5 solver
in GAMS, a general nonlinear optimizer. Nonlinearities occur in several constraints

and, as with many problems related to nonlinear constraints, there are multiple local

optima.
To address the problem of multiple local optima, the method of random restarts is

used. With random restarts, the non-convex model is solved with numerous different

starting values for a selected variable (Brooke et al., p. 154). Specifically, the starting

values for Xi,, the amount of load i allocated to bin j, were varied by random numbers
generated from a uniform distribution and scaled to impose the following condition:

E31Xij = 1. The model was solved 1,000 times, and the solution giving the largest objec-
tive value was selected as the optimum. This method guarantees reaching the global
optimum as the number of random restarts approaches infinity.

Figure 1 shows the distribution of optima achieved using random starts with 1,000
repetitions using the 1999 Western Oklahoma data. Most values tend to concentrate
close to the apparent global maximum, forming a left-tailed distributional shape.

Distributions for the other data sets also showed this negative skewness. The shape of

this distribution suggests a sufficient number of random starts were used to identify the

global optimum. Because of the greater number of observations with the U.S. data set,

it likely has more local optima, and thus there is a greater risk of not being close to the
global optimum with the U.S. data set. The median local optimum in figure 1 is 2,395,

which translates into a percent flour yield of 70.441. Using the median of local optima

would miss 60% of the advantage of sorting [(70.773 - 70.441)/(70.773 - 70.218)].
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Figure 1. Histogram of optima using random starting values:
Western Oklahoma wheat region, 1999

Results

The estimated wheat quality characteristics and percent flour yield assuming all loads
are blended for each year for the first data set (several U.S. regions) are presented in
table 4. The standard deviation of single-kernel diameter (KDS) and standard deviation
of single-kernel hardness (KHS) are generally larger than the average values reported
in table 1. This is because the standard deviation of the two variables in table 4 reflects
the between-load standard deviation as well as the within-load standard deviation. The
percent flour yield (PFY) predicted by equation (4) is lowest in 1996 at 70.52, and highest
in 1998 at 71.66. The predicted average percent flour yields are generally lower than the
actual average percent flour yields presented in table 1, because they are based on the
increased standard deviation of single-kernel diameter and single-kernel hardness.

Tables 5 and 6 show the results of the global optimization for the first and second
data sets, respectively. A few loads were partially allocated into the bins, and thus the
total quantities of loads allocated into each bin are not round numbers. For the U.S.
data set, average percent flour yields are slightly higher than those for the whole sample
without sorting. For the Oklahoma data set, a similar pattern is observed, although the
increase in flour yield due to segregation is larger. The higher gain to segregation can
be partly explained by the larger standard deviations for kernel diameter and kernel
hardness in the Oklahoma data set. The 1998 Oklahoma Central data, however, do not

Aln
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Table 4. Average Wheat Quality Attributes and Predicted Percent Flour
Yield from U.S. Data Without Sorting, 1995-1998

No. of Single-Kernel Characteristics

Year Observations KD KDS KH KHS TW PFY

1995 148 2.29 0.43 67.56 17.22 59.41 71.01

1996 156 2.23 0.48 70.81 18.80 59.40 70.52

1997 136 2.31 0.48 69.36 18.56 60.71 71.32

1998 169 2.31 0.41 72.78 17.89 61.56 71.66

Notes: KD is the average single-kernel diameter (mm), KDS is the standard deviation of single-kernel diameter, KH is
the average single-kernel hardness (hardness index), KHS is the standard deviation of single-kernel hardness, TWis the
test weight (pounds/bushel), and PFYis the predicted percent flour yield (%). KDS and KHS are calculated by combining
the within-load standard deviation and the between-load standard deviation. The PFYis calculated using equation (4).

Table 5. Optimal Wheat Quality Characteristics with Three Bins for Several
U.S. Regions, 1995-1998

Bin Number

Year Variable 1 2 3

1995 QTY

KD

KDS

KH

KHS
TW

70.92

2.28

0.20

69.71

16.71

59.79

Average PFY

1996 QTY

KD

KDS

KH

KHS

TW

Average PFY

1997 QTY

KD

KDS
KH

KHS

TW

1998

69.02

2.23

0.41

67.26

17.87

59.30

58.54

2.41

0.44
66.54

17.47

61.18

35.85

2.31

0.39

62.51

17.98

60.44

Average PFY

QTY

KD

KDS

KH

KHS

TW

Average PFY

32.34

2.45

0.42

66.84

16.86

61.07

71.33

45.00

2.39

0.46

72.38

17.06

60.38

70.89

33.89
2.13

0.45

68.82

18.95
59.33

71.67

52.46

2.23

0.20

75.48

15.69

61.28

71.91

44.74

2.17

0.37

64.67

16.56

57.62

41.98

2.04

0.39

74.98

18.25

58.50

43.57

2.33

0.30
73.53

16.86
61.16

80.69

2.37

0.38

75.57

15.09
62.25

Notes: QTYis the total number of truckloads allocated into the bin, KD is the average single-kernel diameter (mm), KDS
is the standard deviation of single-kernel diameter, KH is the average single-kernel hardness (hardness index), KHS is
the standard deviation of single-kernel hardness, TW is the test weight (pounds/bushel), and PFY is the percent flour
yield (%).
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Table 6. Optimal Wheat Quality Characteristics for Oklahoma Regions with
Three Bins, 1998-1999

Bin Number

Year/Region Variable 1 2 3

1998, Central QTY 11.321 2.747 23.932
KD 2.220 2.339 2.215
KDS 0.359 0.357 0.200
KH 75.524 76.947 84.379
KHS 14.983 13.542 16.016
TW 62.854 62.771 62.558
Average PFY 71.861
PFYw/o sorting 71.405

1998, Western QTY 53.875 13.177 10.948
KD 2.193 1.901 2.474
KDS 0.200 0.470 0.417
KH 77.561 74.810 71.753
KHS 20.033 17.843 15.450
TW 60.601 57.985 62.004
Average PFY 70.957
PFY w/o sorting 70.398

1999, Central QTY 13.634 11.953 28.413
KD 2.392 2.293 2.234
KDS 0.416 0.460 0.200
KH 66.863 79.691 70.772
KHS 19.146 16.831 19.857
TW 60.858 61.278 59.279
Average PFY 71.226
PFY w/o sorting 70.734

1999, Western QTY 6.746 9.022 18.232
KD 2.388 1.996 2.270
KDS 0.398 0.448 0.200
KH 64.300 79.389 75.951
KHS 18.658 20.045 19.164
TW 59.922 58.470 60.271
Average PFY 70.773
PFY w/o sorting 70.218

Notes: QTYis the total number of truckloads allocated into the bin, KD is the average single-kernel diameter (mm), KDS
is the standard deviation of single-kernel diameter, KH is the average single-kernel hardness (hardness index), KHS is
the standard deviation of single-kernel hardness, TW is the test weight (pounds/bushel), and PFY is the percent flour
yield (%).

have a larger standard deviation, but do have a larger gain in flour yield. This unex-
pected relationship could be due to the Oklahoma data set having clusters of wheat with
similar characteristics.

The fact that flour yield varies little when going from no segregation to segregation
immediately suggests there are limited gains from sorting to increase flour yield. Table
7 reports the marginal revenue from segregating by kernel diameter and kernel hard-
ness. Segregation increases flour yield in all cases, slightly more for the local elevator
than for the regional miller. Estimating the cost of segregation in handling value-added
grains, Vandeburg, Fulton, and Dooley considered several scenarios and never found a
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Table 7. Increase in Percent Flour Yield, and Benefits from Sorting

Marginal
PFY PFY Revenue
with Optimal PFY from Sorting

Sample Year Blendinga Sorting Increase (0/bushel)

Several U.S. Regions: 1995 71.01 71.33 0.32 1.23

1996 70.52 70.89 0.37 1.42

1997 71.32 71.67 0.35 1.34

1998 71.66 71.91 0.25 0.96

Oklahoma: * Central 1998 71.40 71.86 0.46 1.77

Western 1998 70.40 70.96 0.56 2.15

Central 1999 70.73 71.73 0.50 1.92

Western 1999 70.22 70.77 0.55 2.11

Notes: PFY represents the percent flour yield. Increases in PFY are calculated relative to the PFY from blending all
samples. Three bins are used for the optimal sorting.
a The PFY with blending is calculated by taking the average for each characteristic and plugging the averages into
equation (4).

cost of segregation below 4¢/bushel. Thus, all the marginal revenues reported in table 7

are below marginal cost. Sivaraman, Lyford, and Brorsen estimated revenues from using

three bins to sort by protein at 3.3¢/bushel. Most local elevators do not sort by protein,

which offers further support for Vandeburg, Fulton, and Dooley's estimates for small

firms. However, some large elevators do sort by protein. Thus, there may be instances

when sorting to create uniformity would be profitable.

Conclusions

Kernel uniformity is an important physical attribute that can now be measured at low

cost. The potential benefits from sorting grain to increase kernel uniformity were

estimated. Nonlinear programming was used to sort loads to increase kernel size uni-
formity.

Data came from two sources. One set was comprised of elevator samples from several
U.S. wheat regions, and was used to depict the situation of a miller receiving grain from

several regions. The second data set was used to analyze the situation from a local

elevator's perspective because it contained truckload samples from two Oklahoma wheat

regions.
Sorting wheat by truckload at the local elevator provides more benefits than sorting

wheat by region, partly because wheat size and hardness vary more by truckload than
by location. In no scenario were benefits enough to offset the costs, but benefits were close

to breakeven levels. Thus, increases in flour yield alone are not enough to justify sorting

to increase kernel uniformity. There are other potential benefits derived from kernel

uniformity, such as dough quality, and sorting for both uniformity and other factors, such

as protein, is a possibility. These possibilities should be considered in future research

before abandoning the idea of sorting to increase kernel uniformity.

[Received February 2001; final revision received June 2002.]
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