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Tobias Gebäck1,∗ and Alexei Heintz1

1 Department of Mathematical Sciences, Chalmers University of Technology,
SE-412 96 Gothenburg, Sweden.

Received 16 November 2012; Accepted (in revised version) 23 July 2013

Communicated by Kazuo Aoki

Available online 27 September 2013

Abstract. In this paper, we study a lattice Boltzmann method for the advection-
diffusion equation with Neumann boundary conditions on general boundaries. A
novel mass conservative scheme is introduced for implementing such boundary con-
ditions, and is analyzed both theoretically and numerically.

Second order convergence is predicted by the theoretical analysis, and numerical
investigations show that the convergence is at or close to the predicted rate. The nu-
merical investigations include time-dependent problems and a steady-state diffusion
problem for computation of effective diffusion coefficients.
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1 Introduction

The lattice Boltzmann method (LBM) has received much attention for flow simulation
since its introduction in the 1990’s [2,4,9]. Although much less discussed, it is well known
that the LBM can be applied to diffusion and advection-diffusion equations as well, see
e.g. [7, 13, 14, 16]. Applications include solute transport in porous media [13], dissolution
phenomena [17], dispersion [18, 19] and comparisons to NMR experiments [10].

To be precise, the problem we study in this paper is the advection-diffusion equation
with isotropic diffusion

∂ρ

∂t
+∇·(ρU)=D∆ρ in Ω×[0,T], (1.1a)
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ρ|t=0=ρ0 in Ω, (1.1b)

∂nρ=0 on ∂Ω×[0,T], (1.1c)

where ρ is the density, U is a given flow velocity and D is a scalar diffusion coefficient.
All the analysis will be valid for this equation, although for the numerical results, we will
set U=0, which yields the isotropic diffusion equation with Neumann (zero normal flux)
boundary conditions.

When applying the lattice Boltzmann method, macroscopic variables such as ρ in (1.1)
are obtained as moments in velocity space of a distribution function f . The evolution of
f is described by the lattice Boltzmann equation (LBE)

fi(t+∆t,x+ci∆t)− fi(t,x)= Ji( f , f (eq)), i=0,··· ,q−1, (1.2)

where q is the number of discrete velocities used, {ci}
q−1
i=0 is the set of velocities, and

Ji( f , f (eq)), i=0,··· ,q−1 are collision operators describing the relaxation of f towards an
equilibrium distribution f (eq). The LBM is applied using a time-splitting approach, first
applying a collision step to compute the right hand side of (1.2) and then a streaming step
to move the distribution according the velocities ci, as prescribed by the left hand side of
(1.2).

The way boundary conditions in the lattice Boltzmann method are applied is slightly
different compared to other numerical methods. Since the LBM simulates the time evolu-
tion of a velocity distribution, and macroscopic quantities like density are only obtained
as moments of this distribution, boundary conditions have to determine the whole par-
ticle distribution, and not only the density or flux that is determined by the macroscopic
boundary condition (such as a Dirichlet or Neumann boundary condition). This has to be
done in a consistent way in order not to reduce accuracy and/or stability for the solution
to the macroscopic equation.

Neumann and other flux boundary conditions for the diffusion equation have not
been much studied in the LBM framework, despite the fact that they present certain chal-
lenges, as will be seen below. In some cases [11], the bounce-back boundary condition
has been applied, which is erroneous as it prescribes not only zero normal flux, but also
zero tangential flux. In other cases [13, 17], the Neumann boundary condition has been
correctly applied, but only for grid-aligned boundaries, where it is rather easily imple-
mented through specular reflection of the velocity distribution, see [7].

For general boundaries, we have found only two attempts at a proper implementation
of flux boundary conditions. Yoshida et al. [18] introduced corrections to the bounce-back
rule in order to get a correct total flux through a surface, when the (non-zero) flux was
prescribed at the boundary. However, they noted that the tangential flux was incorrect
near the surface, as is to be expected when the bounce-back rule is used. The issue of the
tangential flux was addressed by Ginzburg [7], and it was noted that it is essential for
the flux boundary conditions that there are no restrictions put on the tangential flux, at
least to leading orders. The method presented in [7] is appealing, as it consists of only
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local modifications of the bounce-back rule. However, because of this, it is unclear what
the result will be for curved boundaries, especially regarding the exact position of the
surface.

We have chosen a different implementation, relying on a layer of ghost points imme-
diately outside the boundary, where the distribution function is specified through macro-
scopic variables interpolated inside the domain and copied or mirrored to the outside.
Although this is a more complicated procedure, involving interpolation, it is in our opin-
ion more flexible with respect to the surface geometry. Another important aspect is the
exact conservation of mass, which is implemented through the specification of the second
order moment tensor in the ghost nodes.

In this paper, we first present an asymptotic analysis of the lattice Boltzmann advection-
diffusion equation in Section 2. In Section 3, we present our implementation of the Neu-
mann boundary condition and prove that it indeed satisfies the Neumann boundary con-
dition to second order. Numerical results can be found in Section 4, and a discussion of
the results in Section 5.

2 Asymptotic analysis of the lattice Boltzmann method for the

advection-diffusion equation

In this section, we perform an asymptotic analysis in line with the analysis of the solution
to the Navier-Stokes equations presented by Junk et al. [12]. It is based on the diffusive
scaling ∆t∼ (∆x)2, as this seems to be the appropriate scaling for the diffusion equation
(although the Chapman-Enskog analysis presented elsewhere, see e.g. [6, 10], also yields
correct results). See [12] for a discussion of the differences between the two approaches.

In analogy with [12], if V = {c0,··· ,cq−1} ⊂ R
d is the set of d-dimensional discrete

velocities, we introduce the space F of real valued functions f :V→R. The scalar product
on F is defined by

〈 f ,g〉=
q−1

∑
i=0

f (ci)g(ci), f ,g∈F .

We also introduce the velocity multiplication operators Vα :F→F , defined by (Vα f )(v)=
vα f (v), α = 1,··· ,d, the vector operator V = (V1,··· ,Vd)

T and the matrix operator V⊗V

defined by (V⊗V)αβ = VαVβ, α,β = 1,··· ,d. Finally, we define the contraction product
between two matrices as

A : B=
d

∑
α,β=1

AαβBαβ.

With this coordinate-free notation, we can describe the moments of the velocity distribu-
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tion f as

ρ= 〈1, f 〉, (2.1a)

j= 〈1,V f 〉, (2.1b)

Π= 〈1,V⊗V f 〉. (2.1c)

Finally, we introduce the weights for a given velocity model through the function f ∗∈F ,
which satisfies

〈1, f ∗〉=1, (2.2a)

〈1,V f ∗〉=0, (2.2b)

〈1,V⊗V f ∗〉= c2
s I, (2.2c)

where c2
s is the speed of sound associated with the velocity model, and I is the identity

matrix.
The lattice Boltzmann equation (LBE) with a relaxation type collision operator is now

f (n+1, j+c,c)− f (n, j,c)=A
[

f (eq)( f )− f
]

(n, j,c), (2.3)

where A :F→F is a linear mapping, and f (eq)( f ) :F→F is the equilibrium distribution.
The analysis of the LBE (2.3) for advection-diffusion is similar to the Navier-Stokes

case, with the main difference being that the equilibrium distribution now consists of
only a linear part, namely

f (eq)( f )= f L(eq)(ρ,ρU), (2.4a)

f L(eq)(ρ,j)=(ρ+c−2
s c·j) f ∗ , (2.4b)

where ρ= 〈1, f 〉 and U is the given advection velocity. The absence of a quadratic part
simplifies the analysis, but also requires a modification of some of the assumptions on
the operator A compared to the Navier-Stokes case.

The assumptions on the collision operator A are:

(i) 〈A f ,g〉= 〈 f ,Ag〉, ∀ f ,g∈F ;

(ii) A is positive semi-definite;

(iii) The even and odd functions form invariant subspaces of A;

(iv) KerA=span({1});

(v) A[(c·a) f ∗ ]= c2
s

D∗ (c·a) f ∗ ,∀a∈R
d.

Here, D∗ is a diffusion coefficient, which is related to the diffusion coefficient D in (1.1)
(see below). Note that choosing A= 1

τ P, where P is the orthogonal projection onto the
complement of the kernel of A, and τ=D∗/c2

s , gives the BGK collision operator.
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In order to analyze the LBE (2.3), we expand the left hand side of Eq. (2.3) in the
small parameter (grid spacing) ǫ, observing the diffusive scaling ∆t=ǫ2=(∆x)2. We also
expand f as f =∑

∞
m=0ǫm f (m) and obtain

f (m)(tn+ǫ2,xj+ǫc)− f (m)(tn,xj)=
∞

∑
r=0

ǫr Dr(∂t,c·∇) f (m)(tn,xj), (2.5)

where

Dr(θ,σ)= ∑
2a+b=r

θaσb

a!b!
, r≥1,

D0(θ,σ)=0, D1(θ,σ)=σ, D2(θ,σ)= θ+σ2/2.

Furthermore, we set ρ(k)=
〈

1, f (k)
〉

and j(k)=
〈

1,V f (k)
〉

for k=0,1,··· .
Since the operator on the right-hand side of (2.3) is linear and acts locally in time and

space, we may directly insert the expansion for f and collect terms of equal order of ǫ. In
agreement with the low Mach-number assumption, we assume that

U=ǫU(1).

We then get for order ǫk+2, k≥−2:

∑
m+r=k+2

Dr(∂t,c·∇) f (m)=A
[

f L(eq)(ρ(k+2),ρ(k+1)U(1))− f (k+2)
]

. (2.6)

Setting

L(k+2)=− ∑
m+r=k+2

m<k

Dr(∂t,c·∇) f (m),

we get

∑
m+r=k+2

Dr(∂t,c·∇) f (m)=∂t f (k)+(c·∇) f (k+1)+
1

2
(c·∇)2 f (k)−L(k+2).

Note that L(0)= L(1)= L(2)= 0 and that L(s) is an odd function if s is odd, and an even
function if s is even.

Since the kernel of A is generated by constants, we require for the solvability of (2.6)
with respect to f (k+2) that the left hand side of (2.6) is orthogonal to constants, which
gives us the solvability condition

∂tρ
(k)+∇·j(k+1)+

1

2
∇⊗∇ : Π(k)= 〈1,L(k+2)〉, (2.7)

and by applying the inverse A† defined on the image of A to (2.6), we obtain

f (k+2)= f L(eq)(ρ(k+2),ρ(k+1)U(1))

−A†

[

∂t f (k)+(c·∇) f (k+1)+
1

2
(c·∇)2 f (k)

]

+A†L(k+2). (2.8)
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We now wish to show that the 0-order moment ρ(0) = 〈1, f (0)〉 satisfies the advection-
diffusion equation. First, setting k=−2 in (2.8) yields f (0) = ρ(0) f ∗, which implies that
j(0)=

〈

1,c f (0)
〉

=0. Then, setting k=−1, we get

f (1)=(ρ(1)+c−2
s (c·U(1))ρ(0)) f ∗−A†(c·∇) f (0) . (2.9)

Taking first moments here and using property (v) for the collision operator A, we get

j(1)=ρ(0)U(1)−D∗∇ρ(0). (2.10)

With k=0 in (2.8), we get

f (2)=(ρ(2)+c−2
s (c·U(1))ρ(1)) f ∗−A†

(

∂t f (0)+(c·∇) f (1)+
1

2
(c·∇)2 f (0)

)

,

and thus
j(2)=ρ(1)U(1)−D∗∇ρ(1). (2.11)

Noting that Π(k)= c2
s ρ(k) I, k=0,1, the solvability condition (2.7) gives

k=−1 : ∇·j(0)=0;

k=0 : ∂tρ
(0)+∇·j(1)+

c2
s

2
∆ρ(0)=0;

k=1 : ∂tρ
(1)+∇·j(2)+

c2
s

2
∆ρ(1)= 〈1,L(3)〉=0.

Combining this (for k=0) with (2.10), we get the advection-diffusion equation for ρ(0),

∂tρ
(0)+∇·(ρ(0)U(1))−

(

D∗−
c2

s

2

)

∆ρ(0)=0. (2.12)

Comparing with the advection-diffusion equation (1.1), we see that we get the diffusion
coefficient D=(D∗−c2

s /2).
For ρ(1), using (2.11), the resulting equation is identical,

∂tρ
(1)+∇·(ρ(1)U(1))−

(

D∗−
c2

s

2

)

∆ρ(1)=0. (2.13)

However, the initial conditions differ in that ρ(0)|t=0 = ρ0 and ρ(1)|t=0 = 0, provided that
the initial conditions for f are properly set. Thus, if the boundary conditions we set for
f imply appropriate boundary conditions for ρ(1) (e.g. zero Neumann or zero Dirichlet
boundary conditions) it can be ensured that the unique solution to (2.13) is ρ(1)≡0, and
thus that

ρ=ρ(0)+ǫ2ρ(2)+O(ǫ3), (2.14a)

j=ǫj(1)+ǫ3j(3)+O(ǫ4). (2.14b)

Therefore, in the next section, we will perform an asymptotic analysis of the boundary
conditions in order to show that this is the case.
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3 Neumann boundary conditions

3.1 Description of the scheme

To apply boundary conditions, we set the distribution function on ghost points, which are
lattice points outside the domain, but with one or more velocity vectors ci intersecting
the boundary and thus ending up inside the domain after the streaming step. The distri-
bution function on a ghost point is determined by using data from a mirror point inside
the domain at the same distance from the boundary in the normal direction as the ghost
point, see Fig. 1. The values of macroscopic variables are determined at the mirror point
by interpolation, and these values are used to set the correct distribution function on the
ghost point in order to get the desired boundary condition. Collisions are performed at
the ghost points just as if they were inside the domain. Note, however, that it is only
strictly necessary to assign values to the distribution function in the velocity directions
intersecting the boundary since all moments are known from the interpolation procedure
and the post-collision distribution can be computed directly.

x̃k

xk

−2ǫqknkpk

jj∗

Figure 1: A schematic picture near the boundary of the domain. Ghost points are marked with solid circles (•)
and domain lattice points by empty circles (◦). Some discrete velocity vectors intersecting the boundary are
shown, as well as the vector −2ǫqknk and the intersection pk (marked by a small circle (◦)). The mirror point
is marked by ×, and lattice points used for interpolation are connected by dashed lines. The bold arrows show
the mirroring of the flux vector j to j∗.

We denote the location of the ghost point by xk and the mirror point by x̃k. The
intersection with the boundary occurs at pk = xk−ǫqknk, where nk is the outward unit
normal at pk and ǫqk is the distance in the normal direction. Then, the mirror point
is defined through x̃k = xk−2ǫqknk. We assume that the grid spacing ǫ is small enough
compared to the radius of curvature of the boundary so that there is only one intersection
point pk for each ghost point.
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The basic idea of the boundary condition is to compute the solution at the mirror
point x̃k and assign its mirror reflection to the ghost point xk. We separate two cases: a)
a simpler scheme without mass conservation and b) a scheme with an additional term
which makes the boundary conditions mass conserving.

3.1.1 Non-mass conserving scheme

In the non-mass conserving scheme, we specify the moments of order 0 (the density ρ∗)
and 1 (the flux j∗) and assign the distribution function

f (tn,xk)= f L(eq)(ρ∗,j∗)=ρ∗(tn,x̃k) f ∗+c−2
s (c·j∗(tn,x̃k)) f ∗. (3.1)

To achieve the correct mirroring across the boundary, we choose

ρ∗=ρ, (3.2a)

j∗= j−2(j·nk)nk, (3.2b)

where ρ∗ and j∗ are regarded as functions of t and x.

3.1.2 Mass conserving scheme

In order to obtain a mass conserving scheme, we add a second moment contribution to
(3.1) to compensate for the difference between outgoing and incoming populations in the
next streaming step. To this end, we assign the distribution function

f (tn,xk)= f L(eq)(ρ∗,j∗)+
1

2c4
s

(

|c|2−dc2
s

)

π∗(tn,xk) f ∗, (3.3)

where d is the number of space dimensions and π∗ is a scalar function to be determined.
Note that with the additional term, the second order moment tensor of f is Π∗= c2

s ρ∗ I+
π∗ I, while the zeroth and first order moments are unaffected by the additional term and
are equal to ρ∗ and j∗, respectively.

In order to conserve mass, we choose

π∗(tn,xk)=2c4
s

∑i∈O( f̃i(tn+1,xk−ci)− f̃
L(eq)
ı̄ (ρ∗,j∗))

(1+λ)∑i∈O f ∗ı̄ (|cı̄|2−dc2
s )

, (3.4)

where O is the set of outgoing directions, which intersect the boundary and end up on
the ghost point xk, ı̄ is such that cı̄ =−ci and f̃ is the post-collision distribution func-
tion. Finally, λ is the eigenvalue for the collision operator corresponding to the vector
(

|c|2−dc2
s

)

f ∗. For the BGK operator, λ=−1/τ, for the two-relaxation-time (TRT) opera-
tor, λ is the even eigenvalue λe, while for the multiple-relaxation-time (MRT) operator, a
slightly different expression would be required, which is not difficult to derive.

The choice of π∗ ensures exact conservation of mass on the individual ghost point
level, after the collision step, while not affecting the moments of order 0 and 1 which
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enter in the asymptotic expansions in the next section. The expression (3.4) is derived
through equating the sum of all outgoing post-collision components (the first term in the
nominator) to the sum of all incoming post-collision components determined from (3.3).
Note that this is only possible if λ 6=−1.

3.2 Asymptotic analysis of boundary conditions

Now, we can express the values of the distribution function f (tn+1,xk) in two ways by
using Taylor expansions at the boundary point pk at time tn. First, a simple expansion
yields (with D0(θ,σ)=1)

f (tn+1,xk)=
∞

∑
m=0

ǫm
m

∑
l=0

Dm−l(∂t,qknk ·∇) f (l)(tn,pk). (3.5)

On the other hand, we set the distribution function at xk according to (3.3) with (3.2a)-
(3.2b) and (3.4) (note that π∗=0 gives the non-conserving scheme). Thus,

f (tn+1,xk)= f ∗
∞

∑
m=0

ǫmDm(∂t,−qknk ·∇)
(

ρ∗(tn,pk)+c−2
s j∗(tn,pk)·c

)

+
1

2c4
s

(

|c|2−dc2
s

)

π∗(tn,xk) f ∗. (3.6)

Equating (3.5) and (3.6), and inserting the expressions for ρ∗ and j∗ from (3.2a)-(3.2b), we
can study the accuracy of the boundary condition.

If we also take into account that we interpolate the values of ρ and j at x̃k to compute
ρ∗ and j∗, we need to replace them by

ρ∗=
∞

∑
k=0

ǫk
(

ρ∗(k)+
∞

∑
l=pρ

ǫlE
(k,l)
ρ

)

,

j∗=
∞

∑
k=0

ǫk
(

j∗(k)+
∞

∑
l=pj

ǫlE
(k,l)
j

)

,

where E
(k,l)
ρ is the interpolation error term of order l for ρ(k), and pρ and pj give the order

of the interpolations (e.g. p=2 for linear interpolation). We will assume below that pρ≥2
and pj≥1.

Now, setting (3.5) and (3.6) equal and equating terms of the same order of ǫ, m = 0
yields

f (0)=
(

ρ(0)+
1

2c4
s

(

|c|2−dc2
s

)

π∗(0)
)

f ∗,

which, taking moments of order 0 and 1, implies just ρ(0)=ρ(0) and j(0)=0. For m=1, we



496 T. Gebäck and A. Heintz / Commun. Comput. Phys., 15 (2014), pp. 487-505

get

qk(nk ·∇) f (0)+ f (1)= f ∗
(

ρ(1)−qk(nk ·∇)ρ(0)
)

+c−2
s f ∗

(

j(1)−2(j(1) ·nk)nk

)

·c

+
1

2c4
s

(

|c|2−dc2
s

)

(

π∗(0)−qk(nk ·∇)π∗(1)
)

f ∗.

Computing the moments of orders 0 and 1, we now obtain

2qk(nk ·∇)ρ(0)=0, (3.7a)

2(j(1) ·nk)nk =0. (3.7b)

Given that the advection velocity U(1) ·nk =0 at the boundary, these two equations both
give us back the Neumann boundary condition j·n= 0 in the lowest order, since j(1)=
−D∇ρ(0). Note that there is no condition imposed on the flux in the tangential directions
at the boundary.

In order to determine the accuracy of the boundary condition, we now need to pro-
ceed to higher orders. For m=2, the first two moments yield

2qk(nk ·∇)ρ(1)=E
(0,2)
ρ , (3.8a)

2qk(nk ·∇)
(

j(1)−(j(1) ·nk)nk

)

−2(j(2) ·nk)nk =−E
(1,1)
j . (3.8b)

If E
(0,2)
ρ = 0, the first of these equations shows that ρ(1) satisfies a Neumann boundary

condition. From (2.13) in Section 2, we know that ρ(1) satisfies an advection-diffusion
equation with ρ(1)

∣

∣

t=0
= 0. Since the unique solution to this problem with a Neumann

boundary condition is identically zero, we obtain ρ(1)≡0. However, if E
(0,2)
ρ 6=0 (i.e. we

use linear interpolation), this need not be the case, and we may have ρ(1) 6= 0 and thus
only a first order accurate solution.

If E
(1,1)
j =0, taking the scalar product of (3.8b) with nk yields j(2) ·nk =0, which again

gives a Neumann boundary condition for ρ(1) (since U(2)=0), indicating that the choice
of flux in (3.2b) is correct. Thus, at least linear interpolation of the flux is necessary.

We conclude that if interpolation errors are of order ǫ3 for ρ, and of order ǫ2 for j, then
the zeroth moment of the distribution function is

ρ=ρ(0)+ǫ2ρ(2)+O(ǫ3), (3.9)

where ρ(0) satisfies the advection-diffusion equation (1.1) with a Neumann boundary
condition.

3.3 Interpolation

In order to achieve interpolation errors of order ǫ3 for the density and ǫ2 for the flux, as
was shown to be required in the previous section, we make use of the fact that in the
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Lattice Boltzmann method the gradient ∇ρ is available through the flux j computed as
the first moment of the distribution function f , cf. (2.10) and (2.11). This enables us to
compute a quadratic interpolating polynomial for approximation of ρ using only 4 grid
points in 3D (and 3 in 2D). As an illustration, the grid points used for interpolation in the
example in Fig. 1 are connected by the dashed lines.

This method of interpolation is referred to as compact interpolation and the 2D-case for
the Navier-Stokes equations is analyzed under the term bubble functions in [5]. However,
as the resulting formulas are quite different in the case of the diffusion equation, and in
3D, we present the interpolation procedure here.

Given a mirror point x̃k to which we want to interpolate the density and flux from
the nearby grid point (see Fig. 1), we choose the closest grid point x0∈Ω. In addition, we
choose d adjacent grid points, xiα =x0+iαeαǫ, α=1,··· ,d, where iα∈{1,−1}, α=1,··· ,d are
chosen so that all xiα∈Ω, and so that the distance |x̃k−xiα | is minimized. This ensures that
we avoid extrapolation whenever we can, although extrapolation can in general not be
avoided, depending on the location of the boundary. Also, depending on the geometry,
there is no guarantee that such xiα exist, and we will discuss this below.

In order to interpolate the density, we introduce the local polynomial

ρ̃(ξ)= a0+
d

∑
α=1

aαξα+
d

∑
α,β=1

aαβξαξβ (3.10)

with ξ=ǫ−1(x−x0). Introducing the notation

ρ0=ρ(x0), ρ0
α =

∂ρ

∂xα
(x0), ρiβ =ρ(xiβ

), ρ
iβ
α =

∂ρ

∂xα
ρ(xiβ

),

for α,β= 1,··· ,d, and equating density values and derivatives at the chosen grid points,
we get the following (d+1)2 equations:

ρ0= a0, (3.11a)

ρ0
α = aα, (3.11b)

ρiβ = a0+aβiβ+aββ, (3.11c)

ρ
iβ
α = aα+iβ(aαβ+aβα) (3.11d)

for α,β= 1,··· ,d. Since the number of unknown coefficients in (3.10) is only 1+d+d2 =
(d+1)2−d, we need to choose which equations to use. The simplest choice is to use
(3.11a) and (3.11b) to compute a0 and aα, then use (3.11c) to compute aαα, and finally use
(3.11d) to compute aαβ, α 6= β, where we choose aαβ = aβα =

1
2(aαβ+aβα). Thus, we do not

make use of Eq. (3.11d) with α=β and do not need the value ρiα
α , α=1,··· ,d.

Now, with the coefficients of the polynomial (3.10) determined as above, it may be
evaluated at the mirror point ξ̃=ǫ−1(x̃k−x0) to yield an approximate value of the density
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ρ(x̃k). Writing this explicitly, we get

ρ̃(ξ̃)=ρ0+
d

∑
α=1

ρ0
αξ̃α+

d

∑
α=1

(ρiα −ρ0−ρ0
αiα)ξ̃

2
α+

1

2

d

∑
α,β=1
α 6=β

iβ(ρ
iβ
α −ρ0

α)ξ̃α ξ̃β. (3.12)

This explicit expression has the advantage that we can directly compute the contribution
of each of the values at the grid points to the total value of ρ̃(x̃k). This is of importance
to reduce the amount of communication in parallel computations where the grid points
may reside on different computer nodes.

For the flux, standard linear interpolation between the same grid points will be suf-
ficient to achieve the O(ǫ2)-error required by the analysis. The rate of convergence is
guaranteed in the following proposition.

Proposition 3.1. The interpolation procedure described above yields interpolation errors
of orders O(ǫ3) for ρ and O(ǫ2) for j.

Proof. Expanding ρ̃ in a Taylor series at ξ = 0, we see that the polynomial coefficients
coincide up to and including order ǫ2, giving an O(ǫ3)-error. The result for the flux is
standard and is proved similarly.

Finally, we consider the situation when we can not find interpolation points xiα inside
the domain, because different parts of the boundary are located too closely. One solution
in this case is to increase the grid resolution, but when this is impossible it may in many
situations be acceptable to use the bounce-back rule as fall-back. This is true especially
when the geometry has uncertainties as in the case when it is generated from experimen-
tal data. Using the bounce-back rule will introduce errors since the tangential flux will be
zero, but the effect on the global solution will be limited as long as the bounce-back grid
points are few and isolated.

4 Numerical results

In this section, we study three numerical examples in 3D. In the first two, the exact so-
lution is an eigenfunction of the Laplacian inside a sphere, the first being spherically
symmetric and the second having an angular dependence which introduces a tangential
flux at the boundary. The third example is computing the effective diffusion constant for
a periodic array of spheres.

The computations were performed using the BGK collision model [2, 3], using the
relaxation parameter τ = 1.1 unless otherwise noted. In all cases, the sphere geometry
was implemented by an exact sphere, and the intersection points pk were chosen as the
closest point on the spherical surface for each ghost point xk. The distribution function
was initialized as

f (0,xk)= f L(eq)(ρ0(xk),j0(xk)),
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where ρ0 = ψ0 and j0 =−D∗∇ψ0 in accordance with (2.10) without advection velocity.
Here, ψ0 is the given initial condition. See [1] for a discussion on initial conditions. Re-
sults are presented for the D3Q7 velocity model with 7 discrete velocities and the D3Q19-
model with 19 discrete velocities.

Results using a bounce-back boundary scheme are included for comparison. The
bounce-back scheme used is a “bounce-back on the link” scheme, where outgoing veloc-
ities are returned to the domain grid point in the same time-step. This scheme was used
because it has exact mass conservation.

4.1 Symmetric solution inside a sphere

Let BR denote the ball of radius R in R
3. We study the PDE















∂tψ=D∆ψ in BR,

ψ|t=0=
√

2
πµ ·

1
r sinµr in BR,

∂nψ=0 on ∂BR.

(4.1)

If µ solves the equation tan(µR)=µR, then the analytical solution to (4.1) is (in spherical
coordinates)

ψ(t,r)=exp
(

−Dµ2t
)

√

2

πµ

1

r
sinµr. (4.2)

Here, we choose µ to be the smallest positive solution to tan(µR) = µR, that is µ ≈
4.49341/R. Note that the tangential flux is zero in this example because of the spheri-
cal symmetry. For the numerical solution, we choose R=0.4 and immerse the sphere in
a cubical grid with side-length 1 and lattice spacing ǫ.

Fig. 2 shows the dependence of the errors on the grid size ǫ−1 for the solution at time
t=0.15. The slopes of lines fitted to the log-log data are shown in Table 1. The data con-
firms O(ǫ2)-convergence for the density and O(ǫ3)-convergence for the flux as predicted
in Section 3.2 for the mass conserving scheme and for the bounce-back scheme. The non-
mass conserving scheme has lower convergence rate because mass is lost at the boundary

Table 1: Slopes of lines fitted to the log-log data in Fig. 2, indicating the rate of convergence.

Model Density Flux

D3Q7, with mass conservation -2.29 -2.95

D3Q19, with mass conservation -2.27 -3.71

D3Q7, no mass conservation -1.47 -2.73

D3Q19, no mass conservation -0.93 -2.67

D3Q7, bounce-back -2.28 -3.09

D3Q19, bounce-back -2.27 -3.09



500 T. Gebäck and A. Heintz / Commun. Comput. Phys., 15 (2014), pp. 487-505

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

grid size

L2 −
er

ro
r

 

 

D3Q19, bounce−back  
D3Q7, bounce−back  
D3Q19, no mass−conservation  
D3Q7, no mass−conservation  
D3Q19, with mass−conservation  
D3Q7, with mass−conservation  

Figure 2: L2-errors for density (solid lines) and flux (dashed lines) for the diffusion problem (4.1), for the D3Q7
model (grey) and the D3Q19 model (black) with bounce-back (◦), mass conserving Neumann (�) and non-mass
conserving Neumann (∗) boundary conditions. Note that the mass conserving scheme and the bounce-back
scheme give almost identical results for the density. The dash-dotted lines indicate slope −2 (top) and slope
−3 (bottom).

at each time-step. The bounce-back scheme performs well because the tangential flux for
the exact solution is zero, which is what the bounce-back scheme produces.

4.2 Non-symmetric solution inside a sphere

Let again BR denote the ball of radius R in R
3. To investigate a non-symmetric problem,

we now study the PDE














∂tψ=D∆ψ in BR×[0,T],

ψ|t=0=ψ0(r,θ,φ) in BR,

∂nψ=0 on ∂BR×[0,T],

(4.3)

with

ψ0(r,θ,φ)=

√

2

πµ
·

(

1

µr
sinµr−cosµr

)

·
sinθcosφ

r
, (4.4)

in spherical coordinates (r,θ,φ).
If µ solves the equation tan(µR)=−2µR/((µR)2−2), then the analytical solution to

(4.3) is
ψ(t,x,r)=exp

(

−Dµ2t
)

ψ0(r,θ,φ). (4.5)

Here, we choose µ to be the smallest positive solution to the equation tan(µR) =
−2µR/((µR)2−2), that is µ≈ 2.08158/R. Again, for the numerical solution, we choose
R=0.4 and immerse the sphere in a cubical grid with side-length 1.
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Figure 3: L2-errors for density (solid lines) and flux (dashed lines) for the diffusion problem (4.3), for the D3Q7
model (grey) and the D3Q19 model (black) with bounce-back (◦), mass conserving Neumann (�) and non-mass
conserving Neumann (∗) boundary conditions. The dash-dotted lines indicate slope −2 (top) and slope −3
(bottom).

The numerical results at time t=0.15 compared to the analytical solution are shown
in Fig. 3, and the slopes of lines fitted to the log-log data are given in Table 2. The conver-
gence is here approximately O(ǫ2.5) for the flux and O(ǫ1.5) for the density, i.e. almost
but not quite what is predicted by the analysis in Section 3.2. The non-mass conservative
scheme has smaller errors, because tangential fluxes near the boundary are most correct
with this scheme, while mass conservation is not as important in this example.

Table 2: Slopes of lines fitted to the log-log data in Fig. 3, indicating the rate of convergence.

Model Density Flux

D3Q7, with mass conservation -1.66 -2.11

D3Q19, with mass conservation -1.53 -2.42

D3Q7, no mass conservation -1.50 -2.67

D3Q19, no mass conservation -1.53 -2.40

D3Q7, bounce-back -1.52 -2.04

D3Q19, bounce-back -1.53 -2.03

4.3 Effective diffusion coefficient for a periodic array of spheres

Our final numerical example is the computation of effective diffusion coefficient for a
periodic array of spheres. This problem has a semi-analytical solution, which can be
found in [15].
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Figure 4: Computed values of k∗ for diffusion in a periodic array of spheres for the D3Q7 model (grey) and
the D3Q19 model (black) with bounce-back (◦), mass-conserving (�) and non-mass conserving (∗) boundary
conditions for different grid sizes N compared to the analytical value. At the top is a log-log plot for the absolute
errors in k∗. The slopes of lines fitted to the data are −1.0 for the bounce-back boundary condition, −1.54 for
the D3Q19 model with mass conservation (excluding the value for N=25), and about −2.3 for the others. The
slopes of the dashed lines are −1 and −2. The somewhat irregular convergence behavior is partly explained by
the plot at the bottom, which shows the values of k∗, where the computed values for some models oscillate
around the analytical value (the dashed line).

In our setup, we apply Dirichlet boundary conditions for the density in the x-
direction, ρ|x=0=ρ1 and ρ|x=Lx−1=ρ2. After solving for a steady-state solution, we com-
pute the average flux in the x-direction, denoted j̄, over a plane perpendicular to that
direction. The effective diffusion constant Deff is then computed from Fick’s law

j̄x =−Deff
ρ2−ρ1

Lx
, (4.6)

where Lx is the size of the domain in the x-direction. Finally the geometry factor k∗ is
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Figure 5: The computed values of k∗=Deff/D for diffusion in a periodic array of spheres using different values
of the relaxation parameter τ (right). Results for the D3Q7 model (red) and the D3Q19 model (blue) with
mass conserving (�) and non-mass conserving (∗) Neumann boundary conditions are compared to the analytical
result (dashed black line).

computed as
k∗=Deff/D, (4.7)

where D is the free diffusion constant appearing in (1.1). From (4.6), we see that if j is
accurate to O(ǫ3), the convergence of k∗ should be O(ǫ2) (since Lx ∝ ǫ−1).

Since the analytical result is for an array of spheres that is periodic in all directions, we
compute the solution in a domain containing 5 identical spheres after each other to mimic
periodicity in the x-direction, and compute j̄x near the central sphere in order to minimize
boundary effects. Numerical tests with more spheres in line indicate that the errors due
to this approximation are small enough not to influence the results appreciably. Periodic
boundary conditions are applied in the y- and z-directions.

In Fig. 4, we show the dependence of the error in k∗ on the lattice spacing ǫ. For our
boundary conditions, the convergence is around the predicted O(ǫ2), while the bounce-
back boundary condition performs poorly and has linear convergence.

In Fig. 5, the dependence of the computed value of k∗ on the relaxation parameter τ in
the BGK collision model is presented. The value of k∗ depends strongly on τ for both the
D3Q7 and the D3Q19 model with mass conserving boundary condition, but less strongly
for non-mass conserving boundary conditions.

5 Conclusions

We have presented a novel boundary condition for the lattice Boltzmann diffusion equa-
tion, which implements the Neumann boundary condition for the advection-diffusion
equation. An important property of our boundary condition is the possibility of exact
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mass conservation. The analysis shows that second order accuracy should be obtained
for the density, and third order accuracy for the flux. In the numerical examples, this
rate of convergence is obtained in case the tangential flux on the boundary is zero (see
Section 4.1). Otherwise the convergence rates reduce to approximately O(ǫ2.5) for the
flux and O(ǫ1.5) for the density (see Section 4.2). As expected, the bounce-back boundary
conditions do not reproduce the correct tangential flux and thus do not implement the
Neumann boundary conditions correctly when the tangential flux is non-zero.

For computation of effective diffusion coefficients, our scheme shows a clear advan-
tage over the bounce-back scheme, as is to be expected since the bounce-back scheme
does not implement the correct Neumann boundary condition. For a more complicated
geometry, the effect is expected to be even larger. The D3Q19 model produces slightly
worse results with mass conserving boundary conditions, which may be due to that the
assignment of a second moment at ghost points introduces a perturbation of the equa-
tions. Possibly, assigning a higher-order moment would remedy this situation.

The different velocity models give very similar results. Our results indicate that there
is no reason to use models with a larger number of velocities than 7, as this increases the
computational time but does not increase the accuracy in our tests. The only limitation
of the D3Q7 model is if the diffusion coefficient tensor has non-zero off-diagonal entries.
In that case it is shown in [6] that more discrete velocities are needed. We note that our
boundary conditions could be applied to the case of general diffusion tensors with only
minor modifications.

It should also be noted that in a domain with pure Neumann boundary conditions,
where the total mass is supposed to be conserved (as in Section 4.1) the exact conservation
of mass is essential for the accuracy of the scheme. If the mass is not exactly conserved,
the numerical solution will gradually lose mass and deviate substantially from the exact
solution. When conservation of mass is not as essential, as in Sections 4.2 and 4.3, the
non-mass conserving scheme is more accurate due to more accurate tangential fluxes at
the boundary.

It would be interesting to compare our results to results for the same problems us-
ing the boundary condition suggested by Ginzburg [7]. This will be the subject of future
work. Further lines of future work are the use of two relaxation time collision models [6,8]
to eliminate the dependence on the relaxation parameter in Fig. 5, as well as investiga-
tions on how triangulated surface geometries influence the accuracy of the solution. Fi-
nally, an attempt at modifying the mass-conserving scheme by assigning higher-order
moments in ghost nodes will be made.
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