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An Analysis of Economic Efficiency in Agriculture:
A Nonparametric Approach

Jean-Paul Chavas and Michael Aliber

A nonparametric analysis of technical, allocative, scale, and scope efficiency
of agricultural production is presented based on a sample of Wisconsin farmers.
The results indicate the existence of important economies of scale on very small
farms, and of some diseconomies of scale for the larger farms. Also, it is found
that most farms exhibit substantial economies of scope, but that such economies
tend to decline sharply with the size of the enterprises. Finally, the empirical
evidence suggests significant linkages between the financial structure of the
farms and their economic efficiency.
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Introduction

Much research has focused on the economic efficiency of agricultural production. Issues
related to the structure of agriculture, the survival of the family farm, as well as the effects
of agricultural policy on smaller farmers have remained controversial. The analysis typ-
ically has centered on the technical, allocative,l and scale efficiency of farm production
(e.g., Timmer; Lau and Yotopoulos; Yotopoulos and Lau; Sidhu and Baanante; Hall and
Leveen; Kalirajan; Garcia, Sonka, and Yoo). It has been motivated in large part by an
attempt to identify the factors influencing the efficiency of resource allocation in agricul-
ture. For example, Sidhu and Baanante; Kalirajan; and Garcia, Sonka, and Yoo found
empirical evidence suggesting that small farms are as efficient as larger farms.

The analysis of efficiency has fallen into two broad categories: parametric and non-
parametric. paramarametric approach relies on a parametric specification of the production
function, cost function, or profit function (e.g., Forsund, Lovell, and Schmidt; Bauer). For
example, the profit function specification proposed by Lau and Yotopoulos, and Yoto-
poulos and Lau has been fairly popular in the investigation of farm production efficiency
(e.g., Sidhu and Baanante; Kalirajan; Garcia, Sonka, and Yoo). It provides a consistent
framework for investigating econometrically the technical, allocative, and scale efficiency
of profit-maximizinproroduction units. However, it relies on a fairly restrictive Cobb-
Douglas technology, which implies unitary Allen elasticity of substitution among inputs.
This illustrates an important weakness of the parametric approach: in general, it requires
imposing parametric restrictions on the technology and the distribution of the inefficiency
terms (Bauer).

Alternatively, production efficiency analysis can rely on nonparametric methods (e.g.,
Seiford and Thrall). Building on the work of Farrell and of Afriat, the nonparametric
approach has the advantage of imposing no a priori parametric restrictions on the un-
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derlying technology (e.g., Fare, Grosskopf, and Lovell). Also, it can easily handle disag-
gregated inputs and multiple output technologies. As the nonparametric approach develops
(e.g., Hanoch and Rothschild; Varian; Banker, Charnes, and Cooper; Fare, Grosskopf,
and Lovell; Byrnes et al.; Chavas and Cox 1988, 1990; Cox and Chavas; Deller and
Nelson), its applications to production analysis have become more refined. This provides
some new opportunities for the empirical analysis of economic efficiency.

This article focuses on various aspects of production efficiency based on a nonparametric
approach. First, we review the characterization of technical, allocative, and scale efficiency.
We also consider scope efficiency. Economies of scope relate to the benefits of integrated
multiproduct firms (compared to specialized enterprises) (see Baumol, Panzar, and Willig).
This is of special interest in agriculture since most farms produce more than one output.
Second, we propose nonparametric measures of various indexes of efficiency: technical,
allocative, scale, and scope efficiency. Our empirical measurement of scope efficiency
appears to be new in the literature. All indexes are easy to measure empirically; they
involve only the solutions of linear programming problems. Third, we illustrate the use-
fulness of the approach by applying it to a sample of Wisconsin farms. The results identify
various sources of inefficiency on Wisconsin farms. They indicate the existence of im-
portant economies of scale on very small farms and show some diseconomies of scale on
the larger farms. Also, it is found that, while most farms exhibit substantial economies
of scope, such economies tend to decline sharply with the size of the enterprises. Finally,
the empirical evidence suggests significant linkages between the financial structure of the
farms and their economic efficiency.

The Measurement of Production Efficiency

This section provides a brief literature review on production efficiency. Consider a firm
using an (M x 1) input vector x = (x1, x 2, ... , XM)' E NM+ in the production of an (N x
1) output vector y = (yO, Y2 .. , YN)' E 9 N+. Characterize the underlying technology by
the production possibility set T,, where (y, -x) E T,. We assume that T, is a non-empty,
closed, convex, and negative monotonic set2 that represents a general technology under
variable return to scale (VRTS).

We will also make use of the cone technology Tc defined as

T, = cl{(y, -x): (ky, -kx) E T V k E X+ },

where cl{ } denotes the closure of the set { }. Note that Tc exhibits constant returns to
scale (CRTS) and satisfies T, c Tc. The cone technology Tc generated by T, is the smallest
closed CRTS technology that contains T,.

Let the (M x 1) vector r = (r1, r2, ... , rM)' E EM+ denote the market prices for inputs
x. Under competition, consider the cost minimization problem

C(r, y, T) = r'x* = minx{r'x: (y, -x) E T, x E 9 M+},

where x* = argminj{r'x: (y, -x) E T, x E SM+} is the cost minimizing input demand
functions under technology T.

Technical Efficiency

The concept of technical efficiency relates to the question of whether a firm uses the best
available technology in its production process. Following the work of Debreu; Farrell;
Farrell and Fieldhouse; and Fire, Grosskopf, and Lovell, technical efficiency can be defined
as the minimal proportion by which a vector of inputs x can be rescaled while still
producing outputs y.3 For a firm choosing the output-input vectors (y, x), this corresponds
to the Farrell technical efficiency index, TE:

TE(y, x, T) = infk{k: (y, -kx) T,, kE S+ }.
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In general, 0 < TE < 1, where TE = 1 implies that the firm is producing on the
production frontier and is said to be technically efficient. Alternatively, TE '- 1 implies
that the firm is not technically efficient. In this case, (1 - TE) is the largest proportional
reduction in inputs x that can be achieved in the production of outputs y. Alternatively,
(1 - TE) can be written as [r'x - (TE)r'x]/(r'x), implying that (1 - TE) can be interpreted
as the largest percentage cost saving that can be achieved by moving the firm toward the
frontier-isoquant through a radial rescaling of all inputs x.

Allocative Efficiency

Following Farrell, and Farrell and Fieldhouse, the concept of allocative efficiency (also
called "price efficiency") is related to the ability of the firm to choose its inputs in a cost
minimizing way. It reflects whether a technically efficient firm produces at the lowest
possible cost. For a given input choice x, this generates the Farrell allocative efficiency
index AE:

(2) AE(r, y, Tv) = C(r, y, Tv)/[r'(TE)x],

where C(r, y, T,) is the cost function under technology T,, and [(TE)x] is a technically
efficient input vector from (1). In general, 0 < AE < 1, where AE = 1 corresponds to
cost minimizing behavior where the firm is said to be allocatively efficient. Alternatively,
AE < 1 implies allocative inefficiency. In this case, (1 - AE) measures the maximal
proportion of cost the technically efficient firm can save by behaving in a cost minimizing
way.

Note that the two indexes TE and AE in (1) and (2) both depend on outputs y. Thus,
they can be interpreted as being conditional on scale y (Seitz). Also, they can be combined
into an economic efficiency index given scale y, defined to be the product of the two
indexes (1) and (2):

(TE AE) = C(r, y, Tv)/r'x,

where 0 < (TE AE) c 1. Then, (TE AE) = 1 implies that the firm is both technically
and allocatively efficient. Alternatively, (TEAE) < 1 indicates that the firm is not efficient,
[1 - (TE AE)] measuring the proportional reduction in cost that the firm can achieve by
becoming both technically and allocatively efficient.

Scale Efficiency

While the indexes TE and AE in (1) and (2) are conditional on outputs y, the choice of
y involves efficiency considerations as well. Whether a firm is producing optimally at y
has been analyzed through the measurement of returns to scale. Returns to scale can be
characterized from the production technology T, as well as from the cost function C(r, y,
Tv). Following Baumol, Panzar, and Willig (p. 55), multiproduct returns to scale can be
measured from the production technology by considering the function:

S(y, x, T,) = supk{k: 3 6 > 1 such that (Xky, - ) E T,, 1 <X < 6}.

The function S(y, x, Tv) measures the maximal proportionate increase in outputs y as
all inputs x are expanded proportionally. It is the local degree of homogeneity of the
production set. Then, returns to scale at the point (y, x) are defined to be increasing,
constant, or decreasing whenever S > 1, S = 1, or S < 1, respectively.

Alternatively, returns to scale can be expressed from the cost function in terms of the
ray average cost (RAC):

RAC(k, r, y, T,) = C(r, ky, T,)/k,

where k E AR+ and y # 0. Assuming differentiability, let the elasticity of the ray average
cost function with respect to k (evaluated at k = 1) be denoted by e = dln(RAC)/Oln(k).
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Then, under competition, the function S(y, x, T,) evaluated at the cost minimizing solution
x* can be expressed as (see Baumol, Panzar, and Willig, p. 55)

S(y, x*, T) = 1/(1 + e).

Given the above definition of returns to scale in terms of S., it follows that returns to scale
at the point y are increasing, constant, or decreasing whenever the elasticity e is negative,
zero, or positive, respectively. This implies that, when returns to scale are increasing, then
the ray average cost RAC(k, r, y, Tu) is a decreasing function of k (where a proportional
increase in outputs leads to a less than proportional increase in cost). Similarly, when
returns to scale are decreasing, then the ray average cost RAC(k, r, y, T,) is an increasing
function of k (where a proportional increase in outputs leads to a more than proportional
increase in cost). And in the case where the RAC(k, *) function has a U-shape, then
constant returns to scale are attained at the minimum of the RAC with respect to k.

This suggests the following index of scale efficiency:

(3a) SE(r, y, T,) = AC(r, y, T,)/C(r, y, Tv),

where

AC(r, y, Tv) = infkC(r, ky, Tv) k > o}

denotes the minimal ray average cost function with respect to k. Clearly, 0 < SE < 1.
Values of the vector y satisfying SE(r, y, T0) = 1 identify an efficient scale of operation
corresponding to the smallest ray average cost. Alternatively, finding SE(r, y, Tv) < 1
implies that the value of the vector y is not an efficient scale of operation. In this case,
(1 - SE) can be interpreted as the maximal relative decrease in the ray average cost that
can be achieved by proportionally rescaling all outputs toward an efficient scale of op-
eration (where the output vector y exhibits locally constant return to scale). And SE(r, y,
T) rises (declines) with a proportional augmentation in y under increasing (decreasing)
return to scale.

Note that AC(r, y, T,) can be expressed alternatively as

AC(r, y, Tv) = infk,{r'x/k: (ky, -x) e T}

=infk {r'X: (ky, -kX)E Tv}

= infx{r'X: (y, -X) E Tc

C(r, y, Tc).

It follows that the scale efficiency index SE(r, y, Tv) can be alternatively written as4

(3b) SE(r, y, T) = C(r, y, TI/C(r, y, Tv).

The index of scale efficiency SE in (3) can be combined with the efficiency indexes TE
and AE in (1) and (2). In particular, we can define the overall efficiency index as the
product of the three indexes (1), (2), and (3):

(TE AE ,SE) = AC(r, y, T,)/(r'x),
= C(r, y, Tc)/(r'x),

where 0 < (TE AE SE) - 1. Then, (TE AE SE) = 1 implies that the firm is technically
and allocatively as well as scale efficient. Alternatively, (TE AE SE) < 1 indicates the
presence of inefficiency, where [1 - (TE AE SE)] measures the proportional reduction
in ray average cost RAC that a firm can achieve by becoming technically, allocatively,
and scale efficient.

Scope Efficiency

The concept of scale economies helps assess the efficiency of firm size. However, it does
not address the issue of why some firms decide to produce more than one output. The
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motivation for multiple product firms is linked with the concept of economies of scope
(Baumol, Panzar, and Willig). To define such a concept, let P = { 1, 2,..., N} denote the
set of output indexes. Partition the set P into s mutually exclusive subsets Pk, satisfying
Pk # 0, k = 1, 2,.. ., S N, {UkPk} = P, and {Pk n Pj} = 0 for k # j. Let Yk= {y: y,
> 0 for j E Pk, y = 0 for j Pk} denote the kth specialized product line, k = 1, 2, ... , s.
Then, following Baumol, Panzar, and Willig (p. 72), economies (diseconomies) of scope
are said to exist if C(r, y, Tv) < (>) 2kC(r, Yk, Tv), where y = ZkYk. Thus, economies of
scope reflect the fact that splintering the production of the output vector y = 2kYk into
the product lines (Y,, ... , Ys) would increase the cost of producing y. This suggests the
following index of scope efficiency:

S

{2 C(r, Yk, T )
(4) SC(r, y, Tv) = y'Y Yk

[C(r,y, T,) * k=l

where SC > 1 (<1) implies economies (diseconomies) of scope. More specifically, a
fragmentation of the firm producing y would increase (decrease) total production cost
whenever the scope index SC(r, y, Tv) is greater than one (less than one).5

The Nonparametric Approach

Consider a sample of n observations on firms in a given competitive industry. Let yi and
xi be the output vector and input vector, respectively, chosen by the ith firm, i = 1, 2,
.. , n. Denote the production possibility set of each firm in the industry by T, with (y',
-xi) E T, i = 1,..., n, where T is a non-empty, closed, convex, and negative monotonic
set. The question then is: how to use the production data, (yi, xi), i = 1,..., n, to provide
a representation of the set T. Following Afriat, and Fire, Grosskopf, and Lovell, consider
the following nonparametric representation of T:

{ n n n ]

(5) Tv = (y, -x): y iyi, x >- Xix' i ,= I1, Xi E +, V .
i=l i=1 i=l

The set Tv in (5) is closed, convex, and negative monotonic. Under variable returns to
scale, it is the smallest convex set that satisfies the monotonicity property and includes
all the observations (yi, xi), i = 1, ... , n. As such, it corresponds to the inner bound of
the underlying production possibility set T (Banker and Maindiratta).

Using Tv in (5) as a representation of technology, the measurement of the Farrell technical
efficiency index TE in (1) for the ith firm is obtained from the following linear programming
problem:

n n n A

(6) TE(y, x, Tv) = min k: y < Xjy, kx >- Xjxj )2 = 1,j Xj +, Vj .
k,X j j=l j= j=l

Let r be the price vector for x. Then, based on Tv in (5), the measurement of the Farrell
allocative efficiency index AE for the ith firm is obtained from (2), the cost function C(r,
y', Tv) being calculated from the following linear programming problem:

r n n n ]

(7) C(r, yi, Tv) = min r'x: yi < Xjyj, x - jxJ, Xj= X1, X +, V i
xX j=l j=1 j=1

Alternatively, under constant return to scale (CRTS), consider the following nonpara-
metric representation of T:

(8) n n

(8) Tc = (y -x): y < Xiy i, x >- Xix, Xi E St+, V i
i= 1 i= 1

Chavas and Aliber
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Comparing (5) and (8), note that T, c T,. The set Tc in (8) is closed, convex, negative
monotonic, and exhibits CRTS (Afriat; Fare, Grosskopf, and Lovell). It is the smallest
convex cone that satisfies the monotonicity property and includes all the observations (yi,
xi), i = 1, ... , n. As such, it corresponds to the CRTS inner bound of the underlying
production possibility set T. Based on Tc in (8) as a representation of the CRTS technology,
consider calculating C(r, yi, Tc) from the following linear programming problem:

f n n A

(9) C(r, yi, T,) = min r'x: yi < XjyJ x > XjJ, XjE X +, V j .
x,X [ j=l j=l

Then, the scale efficiency index SE for the ith firm can be obtained from (3b), where C(r,
yi, Tv) and C(r, yi, Tc) are given in (7) and (9).

Finally, the scope efficiency measure SC for the ith firm can be obtained from (4). The
cost of producing outputs yi, C(r, yi, Tv), is given in (7). And the cost of producing the
specialized product line Yk, C(r, Yk, Tv), is calculated from the following linear program-
ming problem:

~f ~n n n 1
(10) C(r, Yk, Tv) = min r'x: Y < jyJ x - xi, X = 1 , X +

x, [j j=1 j=1 / '

where k = 1,..., s. Note that both equations (7) and (10) rely on the same underlying
technology T, in (5). However, while equation (7) gives the smallest cost of producing all
outputs y, equation (10) gives the cost of producing only those outputs included in the
product line Yk. These results indicate that the analysis of production efficiency can be
easily conducted using standard tools. This is illustrated next by an application to Wis-
consin farming.

An Application to Wisconsin Farms

The Data

The data used in the analysis were collected in 1987 by the Farm Credit Service of St.
Paul, Minnesota, and cover a sample of more than 1,000 farms in Wisconsin. After
elimination of incomplete records and outliers, usable data consisted of observations on
545 Wisconsin farms. The analysis is conducted at the district level, Wisconsin being
divided into nine agricultural districts: 1 = northwest, 2 = north central, 3 = northeast,
4 = central west, 5 = central central, 6 = central east, 7 = southwest, 8 = south central,
and 9 = southeast. Choosing the district as the unit of analysis is motivated by the existence
of important agro-climatic differences across districts. For example, the length of the
growing season in Wisconsin is shortest in the northwest district and longest in the
southeast district. Because of such climatic differences, a crop such as soybeans cannot
be grown in the northern districts. Also, although corn grain is an important crop in the
southern districts, it may not reach maturity before the end of the growing season in the
northern districts. As a result, farmers in different districts clearly face different agro-
climatic conditions. This motivated us to conduct our analysis one district at a time, thus
implicitly assuming that the production technology is constant within a district, but
potentially different across districts.

The data for each farm in the sample involve inputs and outputs. The outputs used in
the analysis include two categories: (a) crops, and (b) livestock. 6 The inputs include seven
categories: (a) family labor; (b) hired labor; (c) miscellaneous inputs (repairs, rent, custom
hiring, supplies, insurance, gas, oil, and utilities); (d) animal inputs (purchased feed,
breeding, and veterinary services); (e) crop inputs (seeds, fertilizers, and chemicals); (f)
intermediate-run assets; and (g) long-run assets.7 Assets are classified according to their
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average useful life: between one and 10 years for intermediate-run assets, and more than
10 years for long-run assets.

The measurement of input and output quantities was problematic. Both outputs and
most categories of inputs defined above are aggregates (e.g., animal inputs, assets, etc.).
This raises the issue of obtaining quantity indexes for these aggregates. A typical approach
is to measure quantity indexes as a ratio of expenditures, holding prices fixed (e.g., see
Diewert). This requires knowledge of farm level prices. Unfortunately, farm level prices
were not collected for all commodities in our sample. As a result, we were forced to make
some restrictive assumptions about the nature of prices. We assumed that all sampled
farmers in a given district face the same prices in 1987, i.e., that the "law of one price"
holds at the district level. We then measured input and output quantity indexes by their
monetary value. This amounts to assuming that the corresponding implicit price indexes
are unity. Given the data limitations, this approach has the advantage of being empirically
tractable. Although it allows for price difference across districts, it has the disadvantage
of neglecting possible price variations across farms within any particular district. While
such price variations may be relatively small, they cannot be ruled out.8 Given this
shortcoming, the results presented below should be interpreted with caution.

All quantity measurements are annual flow variables. The values of intermediate and
long-run assets were reported as stock variables in the original data set. These asset values
were transformed into flow variables by calculating the equivalent annuities based on an
8.94% interest rate in 1987 and five years (30 years) of useful life for intermediate-run
(long-run) assets. Thus, the analysis presented below measures all inputs and outputs as
annual flows expressed in monetary values. A summary of the data for each of the nine
districts is presented in table 1.

Efficiency Results

The efficiency of each farm in the sample was investigated using either Tv in (5) or Tc in
(8) as a representation of the technology associated with the farms within a district. For
each farm, the optimal objective functions for problems (6), (7), (9), and (10) were then
calculated from the solution of the corresponding linear programming problems. 9

The analysis of efficiency was done under two scenarios: a long-run situation where all
inputs are variable, and a short-run situation where "long-run asset" is treated as a fixed
input. This implicitly assumes that "long-run assets" cannot be changed in the short run.
The long-run estimate of the Farrell technical efficiency index TE is given by equation
(6) (where all inputs are rescaled toward the frontier isoquant). Similarly, the long-run
estimate of the Farrell allocative efficiency index AE is given by equations (2) and (7)
[where all inputs are treated as variable in the definition of the cost function (7)]. In
contrast, the short-run estimates of technical and allocative efficiency involve a distinction
between variable inputs and fixed input. Let x = (x,, x2), where x, denotes the vector of
variable inputs, while x2 is the fixed input ("long-run asset" in our case). Then, the short-
run TE index is obtained from a modification of equation (7), where only the variable
inputs x, are rescaled toward the frontier isoquant. The short-run estimate of AE is
obtained from the following modifications to equation (2). First, the TE index in (2) is
the short-run TE index just discussed. Second, the cost in (2) is the short-run cost function
defined as

C(r, x 2, , y, T) = minm rXx: y i Xi I X, Xi = I, xXe E +, Vj ,
xI,X / =1 j=1 =-1

where x = (xl, x2) and r1 is the price vector for the variable input xl. This provides the
empirical basis for investigating short-run as well as long-run technical and allocative
efficiency.

The analysis of scale and scope efficiency was conducted only in the long-run situation.
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Table 1. Data Summary for Nine Wisconsin Agricultural Districts Sampled

Crop Livestock Family
Output Output Labor

District 1 Min. 0 76,771 9,366
(N= 15) Max. 20,293 224,433 32,436

Avg. 4,205 146,373 23,509
SD 6,738 44,393 6,706

District 2 Min. 0 20,046 3,442
(N= 82) Max. 88,000 271,363 33,933

Avg. 3,521 115,368 17,990
SD 13,157 50,822 6,775

District 3 Min. 0 47,062 3,668
(N= 57) Max. 75,698 481,166 43,540

Avg. 3,049 150,121 19,909
SD 10,751 79,489 8,472

District 4 Min. 0 61,170 11,029
(N= 21) Max. 39,001 445,416 77,195

Avg, 4,849 157,830 21,216
SD 9,638 88,149 13,703

District 5 Min. 0 0 1,773
(N= 57) Max. 590,611 298,307 45,968

Avg. 33,325 116,238 19,849
SD 102,539 60,213 8,743

District 6 Min. 0 0 2,086
(N= 158) Max. 290,187 475,312 81,102

Avg. 5,010 140,560 22,887
SD 24,731 85,950 11,388

District 7 Min. 0 52,620 1,526
(N= 19) Max. 22,291 332,809 44,691

Avg. 3,898 155,288 19,831
SD 7,102 83,106 10,722

District 8 Min. 0 0 3,228
(N= 114) Max. 518,569 426,396 54,335

Avg. 31,262 115,898 19,448
SD 73,979 74,148 8,915

District 9 Min.
(N = 22) Max.

Avg.
SD

0 72,181 3,011
49,276 370,370 - 82,205
8,132 168,833 22,907

13,171 85,296 18,290

Hired Miscel. Animal Crop
Labor Inputs Expend. Expend.

0 17,250 10,281 3,001
28,497 67,280 60,402 28,221

8,696 35,164 29,513 12,625
8,726 18,311 15,499 6,801

0 5,270 3,695 191
44,692 116,593 77,270 65,937

8,583 25,302 25,873 8,204
8,275 17,110 15,303 9,581

0 6,365 6,197 1,342
74,969 120,297 112,158 36,053
10,714 30,043 29,737 10,442
13,269 19,937 18,842 8,070

30 15,300 9,316 1,867
64,179 96,715 105,448 27,575
12,442 39,140 26,163 12,685
15,738 22,955 20,982 7,912

0 8,896 0 711
93,479 184,149 62,454 199,406
10,069 35,097 21,370 19,424
13,493 31,932 14,065 32,342

0 5,086 0 0
75,935 145,981 159,499 105,224

8,728 31,725 28,885 12,090
11,709 22,471 23,152 11,779

0 11,610 6,222 1,292
33,764 101,731 57,786 44,708
9,688 36,110 29,233 14,713
9,492 25,275 15,501 11,750

0 3,960 0 881
115,625 204,513 76,436 100,288

9,100 37,829 21,895 16,562
13,316 32,268 16,692 18,084

0 14,596 10,581 1,023
30,292 97,249 111,087 42,137
12,581 41,929 37,472 15,747
10,585 20,438 27,924 11,436

This seems reasonable to the extent that the concepts of scale and scope efficiency are
typically motivated in a long-run context. Thus, treating all inputs as variables, the scale
efficiency indexes were obtained from equation (3b), and the scope efficiency indexes from
(4).

A summary of the results is presented in table 2. The mean technical efficiency index
TE varies across districts from .85 to 1 in the short run, and from .92 to 1 in the long
run (see table 2). In general, farms are found to have a slightly lower technical efficiency
index in the short run (where "long-run assets" are treated as fixed) than in the long run.
Although the gains from improving technical efficiency exist, they tend to be of limited
magnitude. The percentage of technically efficient farms (with TE = 1) goes from a low
of 32% (short run, district 6) to a high of 100% in district 1.

Table 2 shows that the mean allocative efficiency index AE goes from .76 in district 6
to .95 in district 1 in the short run, and from .82 in district 8 to .96 in district 1 in the
long run. The percentage of price efficient farms (with AE = 1) ranges from 4% (short

.
.
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Table 1. (Continued)
I ~ ~ ~ . . . . .

Int.-Run
Asset

26,909
114,734
54,121
24,063

14,188
107,355
39,592
18,321

9,766
181,153
49,825
31,898

18,091
138,440
57,607
31,385

18,301
112,098
45,281
18,822

4,711
146,961
45,310
26,146

21,576
137,668
51,514
25,857

9,111
146,387
44,547
22,334

21,269
124,126
53,390
30,256

Long-Run
Asset

10,328
37,909
20,042

8,876

4,066
43,470
19,322
7,580

6,292
68,650
24,038
13,355

9,673
77,154
31,086
19,537

7,744
152,807
29,334
20,942

4,356
89,075
22,825
13,511

14,782
59,395
30,263
14,067

5,808
102,228
27,470
16,025

5,826
67,800
25,076
16,973

Int.-Run
Debt/

Int.-Run
Asset

.16

.96

.58

.21

.01
1.49

.59

.37

.04
1.89
.67
.31

.04

.92

.52

.30

.00
3.02
.68
.44

.01
2.99

.68

.43

.03
1.30
.46
.37

.00
3.76

.84

.69

.06
2.40

.83

.48

Long-Run
Debt/

Long-Run
Asset

.24
1.70

.64

.35

.02
2.64

.72

.44

.02
1.31

.69

.27

.07
1.48

.66

.35

.05
1.82

.74

.34

.00
2.48

.81

.44

.14
1.99

.68

.39

.00
1.93
.71
.39

.00
1.57

.65

.39

Nonfarm
Income/

Total
Income

.00

.19

.06

.06

-. 04
2.17
.11
.25

.00

.55
.07
.09

.00

.27

.07

.08

.00

.33

.08

.08

-.06
1.20
.11
.16

.00

.31

.07

.09

.00
1.07

.13

.20

.00

.41

.08

.10

run, district 2) to 42% in district 7. This indicates that improving allocative efficiency can
help reduce production cost on many farms. The mean economic efficiency index given
scale (TE AE) reported in table 2 varies across districts from .65 to .95 in the short run,
and from .76 to .96 in the long run.

The scale efficiency index SE ranges from .87 in district 7 to .94 in districts 3, 5, and
6 (see table 2). This suggests that the gains from attaining an efficient scale appear to be
moderate in our sample. However, the percentage of scale efficient farms tends to be low:
from 3% in district 6 to a high of 18% in district 9. The inverse of the scale efficiency
index (1/SE) is plotted against outputs in figure 1 for selected districts. 10 Note that, given
the discussion presented earlier, this inverse can be interpreted in a way similar to an
average cost function: (1/SE) is a declining function of outputs under increasing returns
to scale, and an increasing function under decreasing returns to scale. Figure 1 indicates
the existence of substantial economies of scale for very small farms. Also, it provides
some evidence of diseconomies of scale for larger farms. Such diseconomies of scale

;
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Table 2. Short-Run and Long-Run Efficiency Indexes for Nine Wisconsin Agricultural Districts
Sampled

Long Run
Short Run TEAE

TE AE (TE AE) TE AE (TE AE) SE SE) Scopea

District 1 Mean
(N= 15) SD

% l's
Cond. Meanb

District 2 Mean
(N = 82) SD

% l's
Cond. Mean

District 3 Mean
(N= 57) SD

% l's
Cond. Mean

District 4 Mean
(N= 21) SD

% l's
Cond. Mean

District 5 Mean
(N= 57) SD

% l's
Cond. Mean

District 6 Mean
(N= 158) SD

% l's
Cond. Mean

District 7 Mean
(N= 19) SD

% l's
Cond. Mean

District 8 Mean
(N= 114) SD

% l's
Cond. Mean

District 9 Mean
(N = 22) SD

% l's
Cond. Mean

1.00 .95 .95
.00 .05 .05

100% 40% 40%
- .92 .92

.95 .83 .79

.07 .10 .12
55% 10% 10%

.88 .81 .77

.95 .88 .84

.07 .09 .11
56% 16% 16%
.89 .86 .81

.99 .88 .87

.04 .12 .13
90% 33% 33%
.87 .82 .81

.96 .89 .85

.08 .08 .11
63% 14% 14%

.88 .87 .83

.85 .76 .65

.14 .12 .15
32% 4% 4%

.79 .75 .64

.98 .93 .92

.05 .07 .09
89% 42% 42%

.85 .89 .86

.94 .81 .76
.09 .11 .13

58% 8% 8%
.85 .80 .74

.99 .89 .88

.04 .10 .12
86% 32% 32%

.92 .85 .83

1.00 .96 .96 .93 .89 1.74
.00 .06 .06 .09 .11 .18

100% 40% 40% 13% 13%
- .93 .93 .91 .87

.96 .83 .79 .86 .68 1.55

.07 .10 .12 .12 .13 .17
62% 9% 9% 4% 4%

.89 .81 .78 .85 .66

.96 .85 .82 .94 .77 1.56

.06 .10 .11 .07 .10 .20
61% 12% 12% 4% 4%

.91 .83 .80 .94 .76

.99 .86 .85 .91 .77 1.67

.04 .14 .15 .07 .13 .25
90% 24% 24% 10% 10%

.87 .81 .80 .90 .74

.98 .89 .87 .94 .82 1.51

.06 .09 .11 .07 .12 .21
79% 16% 16% 5% 5%

.89 .86 .84 .94 .81

.92 .83 .76 .94 .71 1.49

.10 .09 .12 .10 .11 .23
44% 6% 6% 3% 1%

.85 .82 .75 .93 .71

.99 .94 .93 .87 .80 1.67

.04 .08 .10 .12 .14 .22
89% 42% 42% 11% 11%

.86 .89 .87 .86 .78

.96 .82 .79 .89 .70 1.36

.07 .11 .12 .12 .14 .15
68% 8% 8% 3% 2%

.89 .80 .77 .88 .69

.99 .93 .92 .93 .85 1.55

.03 .08 .09 .07 .09 .23
86% 41% 41% 18% 14%

.92 .88 .86 .92 .83

a Scope Index = [C(livestock) + C(crops)]/C(livestock, crops).
b The conditional mean is the mean efficiency among the farms that exhibit an efficiency index less than 1.

appear to be fairly small. This helps explain the high scale efficiency indexes reported in
table 2.

Note that the diseconomies of scale vary with the output mix. Within the range of the
data, diseconomies of scale are found to be virtually nonexistent with respect to crops,
although they can be important with respect to livestock (see districts 4, 7, and 9 in fig.
1). This implies that the average cost function for crops has a general L-shape, as typically
found in previous research (e.g., Hall and Leveen). However, the average cost of producing
livestock follows a different pattern (see fig. 1). It exhibits strong economies of scale for
small operations. This is consistent with the results obtained, for example, by Matulich.
But it also exhibits some diseconomies of scale for a livestock enterprise with a gross
income beyond $100,000 to $200,000.
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Figure 1. Economies of scale for selected districts

In the long-run scenario, the mean overall efficiency index (TE AE SE) varies across
districts from .68 to .89 (see table 2). This implies that, although each of the measured
inefficiencies (i.e., technical, price, or scale) is not very large on the average, their combined
effects on average cost appear important. Also, the percentage of farms that are technically,
allocatively, and scale efficient is found to be quite small, varying from 1% in district 6
to 13% in district 1. This suggests that most farms can find ways of improving their
production practices.

The indexes of scope efficiency reported in table 2 measure the relative cost of producing
livestock and crops separately, compared to producing them jointly. They indicate the
existence of fairly large economies of scope. This is interpreted as evidence that the
underlying technology is characterized by a joint production process (Leathers). The mean
scope index SC varies from 1.36 in district 8 to 1.74 in district 1. This implies that there
are strong benefits associated with the joint production of both crops and livestock on
the same farm. It shows that crops and livestock can be produced at a much lower cost
in an integrated farm enterprise as compared to specialized enterprises. This evidence of
strong economies of scope is consistent with the fact that most Wisconsin farms are
multiproduct enterprises, integrating crop and dairy activities in their production practices.
Additional information on the nature of economies of scope is presented in figure 2, where
the scope efficiency index SC is plotted against outputs for selected districts.1 ' Figure 2
shows that economies of scope tend to be very large for small farms, implying that small
operations tend to generate important benefits from crop-livestock integration. It also
shows that, although economies of scope seem to exist for a wide variety of sizes, they

1/SE FOR LIVESTOCK AND CROPS, DISTRICT 1 1/SE FOR LIVESTOCK AND CROPS, DISTRICT 7

1/SE FOR LIVESTOCK AND CROPS, DISTRICT 9

.

..
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Figure 2. Economies of scope for selected districts

tend to decrease significantly with larger operations. Thus, the cost reductions generated
by crop-livestock integration appear to decline with farm size. In other words, incentives
for specialization in agricultural production are found to increase with farm size.

Additional Interpretation

Although measuring production inefficiencies is of interest by itself, it would be helpful
to identify the sources of such inefficiencies. In an attempt to do so, we propose estimating
an econometric model regressing the efficiency indexes on a set of explanatory variables.
With the largest possible values of the efficiency indexes TE, AE, or SE being 1, this
generates the following Tobit model:

(11) Ei = Xi,+ + e, if Xi + e, < 1,
= 1 otherwise,

where El, is one of the efficiency indexes (TE, AE, or SE) calculated above for farm i, Xi
is a vector of explanatory variables, d is a parameter to be estimated, and e, is an error
term distributed -N(O, a2).

The data set used in the analysis of Wisconsin farmers provided some detailed infor-
mation on the financial structure of each farm. This gives an opportunity to investigate
possible linkages between financial structure and production efficiency. 12 Thus, the ex-
planatory variables used in model (11) are: (a) short-run debt-to-asset ratio, (b) inter-
mediate-run debt-to-asset ratio, (c) long-run debt-to-asset ratio,'3 and (d) the ratio of
nonfarm income to total income.

SCOPE INDEX FOR LIVESTOCK AND CROPS, DISTRICT 1 SCOPE INDEX FOR LIVESTOCK AND CROPS, DISTRICT 7

SCOPE INDEX FOR LIVESTOCK AND CROPS, DISTRICT 4 SCOPE INDEX FOR LIVESTOCK AND CROPS, DISTRICT 9

...
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Table 3. Tobit Estimates

Dependent Variable

Long Run
Short Run

Explanatory SE SE
Variable TE AE TE AE (IRTS) (DRTS)

Intercept-District 1 1.860 .958 1.860 .956 .933 .973
(.043) (.036) (.036) (.031) (.040) (.028)

Intercept-District 2 .976 .802 .975 .793 .840 .940
(.029) (.019) (.026) (.016) (.022) (.017)

Intercept-District 3 .986 .856 .983 .819 .876 .960
(.034) (.021) (.028) (.018) (.051) (.012)

Intercept-District 4 1.159 .873 1.120 .833 .892 .944
(.056) (.030) (.044) (.026) (.044) (.018)

Intercept-District 5 .998 .863 1.038 .853 .940 .972
(.035) (.021) (.033) (.019) (.024) (.024)

Intercept-District 6 .824 .727 .882 .792 .913 .957
(.027) (.017) (.022) (.015) (.025) (.011)

Intercept-District 7 1.151 .940 1.116 .934 .851 .956
(.056) (.032) (.035) (.028) (.036) (.024)

Intercept-District 8 .956 .726 .980 .780 .885 .940
(.030) (.019) (.022) (.016) (.022) (.017)

Intercept-District 9 1.122 .881 1.088 .916 1.060 .940
(.060) (.031) (.021) (.027) (.058) (.017)

Short-Run Debt/ -. 016 .007 -. 013 .002 -. 006 .010
Asset (.013) (.009) (.012) (.008) (.010) (.006)

Int.-Run Debt/Asset .060 .022 .059 .016 -. 034 .0001
(.020) (.012) (.017) (.010) (.014) (.009)

Long-Run Debt/ .035 .026 .059 .040 .043 -. 014
Asset (.022) (.014) (.020) (.012) (.018) (.010)

Nonfarm Income/ -3 x 10-4 8 x 10-5 -8 x 10-5 -5 x 10-5 6 x 10- 6 9 x 10-5
Total Income (3 x 10-

4
) (2 x 10-

4
) (3 x 10-

4
) (2 x 10-

4
) (8 x 10-

4
) (1 X 10

4
)

72 .029 .015 .024 .011 .015 .003
(.003) (.001) (.002) (8 x 10- 4

) (.001) (3 x 10-4)

N 544 544 544 544 325 244
Log-Likelihood

Function -84.25 253.69 -83.00 313.90 179.09 290.19

Note: Figures in parentheses below the parameter estimates are asymptotic standard errors.

Allowing for a different intercept in each district, equation (11) generated several models
according to the choice of the dependent variable: the technical efficiency index TE in
the short run (where "long-run assets" are fixed) as well as in the long run, the allocative
efficiency index AE in the short run and in the long run, the scale efficiency index SE for
farms exhibiting increasing returns to scale (IRTS), and the scale efficiency index SE for
farms exhibiting decreasing returns to scale (DRTS). Estimating two models for SE allows
the explanatory variables to have a different effect on scale efficiency under IRTS compared
to DRTS. The models were estimated by the maximum likelihood method. The results
are presented in table 3.

Two variables are found to have no significant effect on any of the efficiency indexes:
the short-run debt-to-asset ratio, and the ratio of nonfarm income to total income (see
table 3). Thus, there is no statistical evidence that either short-term debt or nonfarm
income affects production efficiency. This suggests that part-time farmers are as efficient
in their use of resources as full-time farmers.

Both intermediate and long-run debt-to-asset ratios are found to have positive and
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significant effects on technical efficiency (TE) and allocative efficiency (AE) (see table 3).
The effects of the intermediate-run debt-to-asset ratio are fairly similar between the short-
run scenario (where "long-run assets" are fixed) and the long-run scenario. However, the
long-run debt-to-asset ratio tends to have a stronger and more significant effect on TE
and AE in the long-run scenario (compared to the short-run scenario). These results may
reflect the existence of embodied technical change in agriculture. If technical progress is
embodied in intermediate and long-run assets, then improving productivity will be as-
sociated with the acquisition of such assets, the purchase of which is typically financed
(at least partially) through debt. This would help explain the positive relationship found
between indebtedness and technical efficiency. The positive relationship between debt
and price efficiency could be interpreted as follows. If the early adopters of a new technology
tend to have a superior managerial ability, then good management would likely be as-
sociated with debt financing of the assets embodying the new technology. Alternatively,
the late adopters may exhibit below-average managerial ability, but also fewer recently-
purchased assets embodying the new technology, and thus less debt.

The effects of intermediate and long-run debt-to-asset ratios on scale efficiency appear
to be more complex (see table 3). First, such ratios are found to have no significant
relationship with scale efficiency under decreasing returns to scale (DRTS). Thus, there
is no statistical evidence that the financial structure of the larger farms affects their scale
efficiency. Second, the intermediate-run (long-run) debt-to-asset ratio is found to have a
significant negative (positive) relationship with scale efficiency under increasing returns
to scale (IRTS). This indicates that the financial structure of small farms affects their
ability to attain an efficient scale. For example, our results show that among the small
farms, those operating at a more efficient scale (and thus larger) tend to have a higher
long-run debt-to-asset ratio. This may reflect imperfections in the credit market as well
as the relatively high cost of entry in agriculture (where entry typically involves the
purchase and debt financing of long-term assets). These results call for additional research
on the exact nature of the relationships between debt financing and economic efficiency.

Conclusion

This article has presented a nonparametric approach to the measurement of technical,
allocative, scale, and scope efficiencies. The proposed methodology is flexible in the sense
that it does not require imposing functional restrictions on technology, as typically done
using a parametric approach. Also, it is easy to implement empirically since it involves
only the solutions of appropriately formulated linear programming models. Finally, it
provides firm-specific information on the source and magnitude of production efficiency.
The main drawback of the methodology is probably the lack of statistical inference as-
sociated with the estimates of the efficiency indexes.

The analysis is applied to a sample of Wisconsin farms. The results generate farm-
specific indexes for technical, allocative, scale, and scope efficiencies. While technical
inefficiencies are of limited magnitude, it is found that economic losses are commonly
generated by allocative inefficiencies and scale inefficiencies. A majority of farms exhibit
at least one form of inefficiency. This suggests that most farms can find ways of improving
on their production practices. The analysis shows strong economies of scale for very small
farms, and some diseconomies of scale for large livestock operations (but not large crop
operations). It also presents evidence of important economies of scope in Wisconsin
agriculture. However, economies of scope are found to decline sharply with farm size,
indicating that the incentives to specialize, while nonexistent on small farms, become
stronger on larger farms. Finally, an econometric analysis of the efficiency indexes suggests
that the financial structure of farms can have some significant influence on their ability
to attain economic efficiency.

The investigation reported here illustrates the usefulness of the nonparametric approach
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to production efficiency analysis. It is hoped that it will help stimulate additional research
on this important topic.

[Received July 1992; final revision received January 1993.]

Notes

Allocative efficiency has also been called "price efficiency" in the literature.
2 A set Tis said to be negative monotonic if t€ E Tand t2

< tt implies that t2 E T. This has been termed "strong
disposability" in the literature (see Zieschang; Fare, Grosskopf, and Lovell).

3 Alternative measures of technical efficiency have been proposed in the literature. For example, an index of
technical efficiency can be measured by radially rescaling outputs instead of inputs (see Fare, Grosskopf, and
Lovell, chapter 4). Although output-based and input-based indexes of technical efficiency are identical under
CRTS, they differ under general VRTS (Fare, Grosskopf, and Lovell, p. 132). More specifically, the input-based
index of technical efficiency is lower (higher) than the corresponding output-based index under decreasing
(increasing) return to scale (Fare, Grosskopf, and Lovell, p. 133). Also, Zieschang, and Fare, Grosskopf, and
Lovell have proposed analyzing technical efficiency without the "negative monotonicity" assumption (where
our "strong disposability" assumption is replaced by a "weak disposability" assumption). Finally, non-radial
measures of technical efficiency have also been proposed (e.g., Fare, Grosskopf, and Lovell, chapter 7).

4 Fare and Grosskopf have shown that measuring scale efficiency from the production technology versus the
cost function can generate different results. More specifically, the two scale efficiency indexes are different if
AE(r, y, T,) # AE(r, y, Tc), i.e., if the allocative efficiency index (2) differs using T, versus using the associated
cone technology Tc (see Fare and Grosskopf, p. 603).

5 Fare proposed measuring scope efficiency directly from the production technology. However, in contrast
with the scope index SC in (4), Fare's proposed approach requires measurements of the inputs used by each
plant producing the product line Yk, k = 1, ... , s. This information may not be readily available in many
production data sets (such as the Wisconsin data set used in the empirical analysis presented below).

6 Our analysis implicitly neglects possible production uncertainty (e.g., due to weather effects). This amounts
to assuming that farmers face similar production uncertainty. This may be appropriate given that our analysis
is conducted for a given year (1987) and one district at a time.

7 This choice of input and output aggregates appears reasonable for our purpose. However, it should be kept
in mind that different commodity aggregations could influence the results presented below. The investigation
of aggregation issues in efficiency analysis appears to be a good topic for further research.

8 Price differences across farms could exist for two reasons. First, the "law of one price" may not hold, implying
that different farmers face different prices due to transaction costs and/or market imperfections. Second, the
commodities may not be of homogeneous quality. In this case, different farmers may face different prices because
they purchase inputs or sell outputs of different quality. Although the investigation of these issues is clearly of
interest, it is beyond the scope of this research.

9 These linear programming problems are fairly standard. They were solved numerically by the Simplex
method, using GAMS software.

10 Figure 1 was obtained from (3b), where C(r, y, T,) and C(r, y, T,) were derived by solving (7) and (9)
parametrically for different values of outputs y. Note that outputs are increasing towards the front of the graph,
small farms being situated towards the rear.

Figure 2 was obtained from (4), where C(r, y, T,) and C(r, Yk, T,) were derived by solving (7) and (10)
parametrically for different values of the outputs y. Note that outputs are increasing towards the front of the
graph, small farms being situated towards the rear.

12 Other variables (such as education or experience of the decision makers) may also be hypothesized to
influence production efficiency. Unfortunately, such variables were not part of the data set and could not be
incorporated into the analysis. The results presented below should be interpreted cautiously in light of these
data limitations.

13 Debts and assets are classified according to their duration or expected life: less than a year for the short
run, between one and 10 years for the intermediate run, and more than 10 years for the long run.
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