
1

Filtering driving cycles for assessment of electrified
vehicles

Nikolce Murgovski, Xiaosong Hu, Lars Johannesson and Bo Egardt

Abstract—We present a method for pre-filtering driving cycles
that are to be used for assessment of electrified vehicles. The
method ensures that the vehicle may exactly follow the filtered
velocity demanded by the driving cycle. Employing convex
optimization, the method also allows optimal velocity shaping
that minimizes the amount of wasted energy. We illustrate the
method by an example of performance assessment of a hybrid
electric bus in a series powertrain topology.

Index Terms—driving cycle filtering, hybrid electric vehicle,
power management, convex optimization, optimal control

I. INTRODUCTION

Electrified vehicles are being of major interest in academia
and industry due to their potential for improved powertrain
efficiency and zero or low level of emissions, compared to
conventional vehicles. The improved powertrain efficiency is
mainly a result of an additional energy source, e.g. electric bat-
tery or supercapacitor, and an electric machine (EM) that may
propel the vehicle alongside the internal combustion engine
(ICE) (or completely replace the ICE, as in electric vehicles).
The cost-effectiveness of the vehicle then strongly depends on
the choice and size of powertrain components (electric buffer,
ICE, EM), and the control strategy that decides the magnitude
of power and energy delivered by these components.

Due to many competing powertrain solutions, the cost-
effectiveness of the electrified vehicle is typically investigated
before the manufacturing phase. Then, the potential of the
vehicle is determined by simulating a vehicle model on
certified driving cycles, or a set of driving cycles that mimic
the typical daily usage of the vehicle (described by e.g. speed
and road gradient as a function of time). The theoretically
optimal performance is sought considering perfect knowledge
of the driving cycle. This generally involves some type of
optimization, which is typically not a trivial task. In terms of
computational effort, especially challenging is the performance
assessment of hybrid electric vehicles (HEVs), which possess
both ICE and EM. To lower the computational burden, most
of the fast vehicle dynamics are neglected and a backwards
simulation model is used. In backwards simulation it is as-
sumed that the vehicle exactly follows the demanded velocity,
thus removing the velocity state from the problem. This leaves
only one state in the problem, the state of energy (SOE) of
the electric buffer, allowing the optimal solution to be pursued
by dynamic programming, [6, 8, 14], Pontryagin’s maximum
principle, [3, 5], or convex optimization, [9–11, 15].
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The backwards simulation model, however, introduces also
some difficulties. One limitation of this model is that it
prohibits the usage of some driving cycles (with e.g. high
acceleration demands), as these cycles may render the opti-
mization problem infeasible. An example are artificial cycles
constructed by speed limits changing in a staircase manner.
To mitigate this problem, the driving cycles are pre-filtered
before using them in optimization. This can be achieved by
first measuring the actual speed of another vehicle following a
reference velocity, and then optimizing the studied electrified
vehicle over the filtered velocity profile. The other vehicle is
typically an existing conventional vehicle, or a model of it,
for which it is straight forward to obtain the optimal control
strategy, by e.g. static optimization. This, however, does not
guarantee feasibility, as the electrified vehicle may include
downsized powertrain components, thus not being able to
deliver the same performance as the conventional vehicle.
Moreover, even if the problem is feasible, it may not be
optimal to drive the electrified vehicle in the same way as the
conventional vehicle. For example, an electrified vehicle may
recuperate more braking energy with lower deceleration, and it
is therefore beneficial to start braking sooner before reaching
the stop. Obviously, the optimal solution can be obtained
only when both the velocity shaping and control strategy are
optimized simultaneously.

The contribution of this paper is a method for potential
assessment of electrified vehicles using convex optimization
[1]. The method is based on a forward simulation model
involving two states, the vehicle velocity and SOE of the
electric buffer. We present the method through an example of
optimal control of a hybrid electric bus in a series powertrain
topology, [5], but the final goal is to extend the method to
other types of electrified vehicles and powertrain topologies.

The paper is organized as follows: the vehicle model and
problem formulation are described in Section II and III; in
Section IV the problem is rewritten from sampling in time
to sampling in distance; convex remodeling is described in
Section V; an example of optimally controlling a city bus is
given in Section VI; and the paper is ended with discussions
and conclusions in Section VII.

II. VEHICLE MODEL

The studied vehicle is an HEV in a series topology [5], as
illustrated in Fig. 1. This powertrain does not have a direct
mechanical link between the ICE and the wheels, but instead,
the wheels are driven by an EM that receives energy from a
battery or an engine-generator unit (EGU).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70602912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

EGU 

EM 

GEN ICE Fuel tank 

Buffer 

Fig. 1. Series PHEV powertrain model.

While following the driving mission, the vehicle meets two
dissipative forces, aerodynamic drag and rolling resistance

Fa(t) =
ρacdAf

2
v2(t), Fr(t) = mgcrr cosα(t) (1)

where v(t) is longitudinal vehicle velocity, α(t) is road gradi-
ent, m is total vehicle mass, ρa ia air density, g is gravitational
acceleration, cd and cr are aerodynamic and rolling coeffi-
cients and Af is frontal area. Including the vehicle dynamics
and road altitude, the traction force the vehicle delivers is

Ft(t) =

(
m+

I

r2

)
dv(t)

dt
+mg sinα(t) + Fa(t) + Fr(t)

(2)

where r is wheels radius and Iv is rotational inertia (as seen
at the wheels) of the wheels, differential, EM and all axels
connecting them. Because the equation above covers the main
contributors to vehicle inertia, we have neglected the rotational
inertia of other components, as for example the EGU.

The traction force (2) is delivered entirely by the EM. The
EM torque is bounded between speed-dependent limits, as
depicted in Fig. 2. Mathematically, this constraint is described
by

TM (t) ∈
[
max

{
b1,

b2
ω(t)

}
,min

{
b3,

b4
ω(t)

}]
(3)

and includes a constant torque limit, at low speeds, and
a constant power limit, at higher speeds where EM’s field
weakening is active. Here ω(t) is the EM speed which is
directly related to the vehicle speed,

ω(t) =
γ

r
v(t) (4)

through the wheels radius and the differential gear ratio γ. We
assume constant EM efficiencies, ηc for charging, and ηd for
discharging. The efficiency of the inverter and differential gear
are considered within the EM efficiencies.

The EGU fuel power is modeled as a quadratic function of
generated power

Pf = a0 + a1PG(t) + a2P
2
G(t) (5)

leading to the efficiency model depicted in Fig. 2. For the
validity of this model, interested readers are referred to [11,
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Fig. 2. EGU efficiency, left plot, and EM torque limits, right plot.

13]. In the studied application, the EGU is turned off only
when the vehicle is not moving.

The battery is modeled by a constant open circuit voltage
Voc in a series connection to a resistor R. Then, the dissipative
battery power is quadratic in battery current, which in terms
of the internal battery power PB(t) can be described by

PBd(t) = R
P 2
B(t)

V 2
oc

. (6)

The battery energy is given as

EB(t) = −
∫ t

0

PB(τ)dτ. (7)

III. PROBLEM FORMULATION

The optimization objective is to find the optimal control
signals P ∗

G(t), P
∗
B(t) and T ∗

M (t) that minimize the amount of
fuel,

Qf

∫ tf

0

Pf (τ)e(τ)dτ (8)

the vehicle will need in order to finish the driving mission.
Here, Qf is energy density of the fuel, and e(t) is a binary
signal that determines the engine on/off state and is given as

e(t) =

{
1, v(t) > 0

0, v(t) = 0.
(9)

During the entire driving mission, both longitudinal velocity
and battery energy have to be kept within given limits

v(t) ∈ [vmin(t), vmax(t)] ≥ 0 (10)
EB(t) ∈ [EBmin, EBmax] ≥ 0 (11)

and energy has to be conserved, i.e.

v(0) = v(tf ) = 0 (12)
EB(0) = EB(tf ). (13)

The total driving time must not exceed a given threshold

tf ≤ Tmax. (14)

The model shall also satisfy the mechanical torque balance
and electrical power balance equations

TM (t) =
r

γ
Ft(t) + Tbrk(t) (15)

PG(t)e(t) + PB(t) = ω(t)max

{
TM (t)ηc,

TM (t)

ηd

}
+ PBd(t)

(16)
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TABLE I
OPTIMIZATION PROBLEM.

minimize

Qf
γ
r

∫ sf
0

a0+a1PG(s)+a2P
2
G(s)

ω(s)
e(s)ds

subject to
TM (s) = A1ω2(s) + 2A2

dω(s)
ds

ω(s) +A3(s) + Tbrk(s)

PG(s)e(s) + PB(s) = ω(s) max
{
TM (s)ηc,

TM (s)
ηd

}
+R

P2
B(s)

V 2
oc

dEB(s)
ds

= − γ
r

PB(s)
ω(s)

γ
r

∫ sf
0

ds
ω(s)

≤ Tmax
ω(s) ∈ γ

r
[vmin(s), vmax(s)]

ω(0) = ω(sf ) = 0

EB(s) ∈ [EBmin, EBmax]

EB(0) = EB(sf )

TM (s) ∈
[
max

{
b1,

b2
ω(s)

}
,min

{
b3,

b4
ω(s)

}]
PG(s) ∈ [0, PGmax]

PB(s) ∈ [PBmin, PBmax]

Tbrk(s) ≥ 0

∀s ∈ [0, sf ]

In the optimization problem the states are considered as optimization
variables bound with equality constraints. Optimization variables, marked
in bold for visibility, are: Tbrk(s),TM (s),PG(s),PB(s),Eb(s),ω(s).

where we have neglected the power used by auxiliary devices.
The torque Tbrk(t) ≥ 0 is delivered by the friction brakes.

IV. SAMPLING IN DISTANCE

The entire optimization problem is summarized here, but
instead of sampling in time, the problem is rewritten with
sampling in space. Note that this introduces a product or
division with velocity where time derivative or integration is
performed. For example, when sampling in space, the vehicle
acceleration can be written as

dv(t)

dt
=
dv(s)

ds
v(s). (17)

Furthermore, instead of using the longitudinal vehicle ve-
locity v(s), the problem is rewritten in terms of ω(s). Finally,
by introducing the EGU power limit PGmax and battery
power limits PBmin, PBmax, the optimization problem can be
summarized as in Table I. In order to represent the problem in
a more compact form, we have grouped coefficients as follows

A1 =
ρacdAfr

3

2γ3
, A2 =

I +mr2

2γ3
r (18)

A3(s) =
mgr

γ
(cr cosα(s) + sinα(s)). (19)

Due to the divisions PG(s)/ω(s), PB(s)/ω(s), and the
products dω(s)/ds ω(s), TM (s)ω(s), the problem is not con-
vex in its present form, [1]. This problem is possible to solve
with dynamic programming, but in order of obtaining a time
efficient solution, we will show in the following section several
steps to convexify the problem.

TABLE II
CONVEX OPTIMIZATION PROBLEM.

minimize

Qf
γ
r

∫ sf
0

(
a0√
E(s)

+ a1TG(s) +
a2γvr(s)

r
T 2
G(s)

)
e(s)ds

subject to
TM (s) = A1E(s) +A2

dE(s)
ds

+A3(s) + Tbrk(s)

TG(s)e(s) + TB(s) ≥ max
{
TM (s)ηc,

TM (s)
ηd

}
+
Rγvr(s)

V 2
ocr

T 2
B(s)

dEB(s)
ds

= − γ
r
TB(s)

γ
r

∫ sf
0

ds√
E(s)

≤ Tmax

E(s) ∈ γ2

r2
[v2min(s), v2max(s)]

E(0) = E(sf ) = 0

EB(s) ∈ [EBmin, EBmax]

EB(0) = EB(sf )

TM (s) ∈ [b1, b3]

TM (s) 2γ
r
v3r(s) ∈ [b2, b4]

(
3v2r(s)− r2

γ2
E(s)

)
TG(s) 2γ

r
v3r(s) ∈ [0, PGmax]

(
3v2r(s)− r2

γ2
E(s)

)
TB(s) 2γ

r
v3r(s) ∈ [PBmin, PBmax]

(
3v2r(s)− r2

γ2
E(s)

)
Tbrk(s) ≥ 0

∀s ∈ [0, sf ]

Optimization variables, marked in bold for visibility, are:
Tbrk(s),TM (s),TG(s),TB(s),Eb(s),E(s).

V. CONVEX MODELING

To eliminate the obviously non-convex elements, several
variable changes are proposed

TG(s) =
PG(s)

ω(s)
, TB(s) =

PB(s)

ω(s)
, E(s) = ω2(s). (20)

These changes, however, will introduce non-convexity at the
power limits of some components. Take for example the EGU
constraint

TG(s) ≤
PGmax√
E(s)

. (21)

The function at the right side of the inequality is convex
in E(s), while for the optimization problem to be convex,
this function has to be concave. To remedy the problem, we
will linearize the function about a reference velocity trajectory
vr(s). Hence,

PGmax√
E(s)

≈ PGmax
r

2γvr(s)

(
3− r2

γ2v2r(s)
E(s)

)
. (22)

Note that this approximation will always underestimate the
function, which will make the limit of the approximated model
lower than the limit of the original model. Hence, after the
problem is solved and the actual power limits are applied,
feasibility is guaranteed even when the optimal velocity is far
from the reference. (However, the problem has to be solved
in the first place, and the approximation may prevent finding
a solution. Further discussed in Section VII.)

The importance of choosing a reference velocity that is
closer to the optimal, is more relevant for the following
approximation. The term involving the dissipative battery
power

PBd(s)

ω(s)
= R

T 2
B(s)

V 2
oc

√
E(s) (23)
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TABLE III
VEHICLE PARAMETERS.

Parameter Value Parameter Value
m 15 t ηc = ηd 85 %
Af 7.54 m2 PBmin -66 kW
cd 0.7 PBmax 79.2 kW
cr 0.007 EBmin 0.2 kWh
r 0.509 m EBmax 1.2 kWh
I 135.22 kgm2 R 0.5 Ω

γ 4.7 Voc 330 V

is neither convex nor concave in TB(s) and E(s). We will
approximate the losses by

PBd(s)

ω(s)
≈ RT

2
B(s)

V 2
oc

vr(s)γ

r
. (24)

Then, the idea is to iteratively repeat the optimization by using
the recently obtained optimal velocity as a reference in the
succeeding iteration. The procedure can be summarized as
follows:

1) Choose a reference velocity vr(s).
2) Solve the convex problem in Table II and obtain the

optimal velocity v∗(s).
3) Assign a new reference velocity vr(s) = v∗(s).
4) Repeat steps 2) and 3) until the deference between op-

timal and reference velocity is under a given threshold,
or maximum number of iterations has been reached.

In the convex problem in Table II, the electric power balance
constraint (16) has been relaxed with inequality. It can be
reasoned that this constraint will hold with equality at the
optimum, as there is no need for the EGU and battery to deliver
more power than what is needed by the EM. Further discussion
on this topic can be found in [11]. The EM torque limit (3)
has been broken into several constraints, two with constant
torque limits and two with approximated power limits. Finally,
the problem is written in discrete form using first order Euler
discretization. We applied CVX [2, 4] to translate the problem
into a form required by the solver, SeDuMi [7].

VI. OPTIMIZATION EXAMPLE

In this example we seek the optimal control of a city bus
in a series HEV topology. The bus is equipped with a 180 kW
diesel EGU and a 200 kW EM as depicted in Fig. 2. The
remaining vehicle parameters are given in Table III. The bus
operates on a bus line with 28 stops, as illustrated in Fig.
3. A time schedule is enforced that limits the driving time
between each two consecutive stops. Hence, constraints similar
to (14) have been applied for the 27 driving intervals between
consecutive stops. The minimum allowed vehicle speed is
zero, while for the maximum allowed speed we have taken the
absolute maximum recorded speed of 20 measurements of a
conventional diesel bus that has been operated on this line. As
an initial reference velocity, we have used the average speed
of the 20 measurements.

The convex problem (Table II) has been solved according to
the procedure described in Section V. The algorithm converged

0

20

40

60

Lo
ng

itu
di

na
l v

el
oc

ity
 [k

m
/h

]

 

 Maximum
Mean
Optimal

0 2 4 6 8 10 12 14 16
0

20

40

60

Distance [km]

A
lti

tu
de

 [m
]

Fig. 3. Velocity profiles. The shaded region shows the maximum allowed
velocity, the dash-dotted line is average velocity of performed measurements,
and the solid line is the optimal vehicle velocity.

TABLE IV
OPTIMIZATION RESULTS.

Initial reference value Optimal value
Braking energy [kWh] 1.2 0.2
Aerodynamic drag [Wh] 28.6 27.7
Maximum speed [km/h] 66 48
Mean speed [km/h] 33 32

in four iterations when the speed difference between the
optimal and reference velocity∑

s |vr(s)− v∗(s)|
sf

≤ ε. (25)

has dropped below ε = 0.001. The optimal velocity trajectory
is given in Fig. 3, where it can be observed that the velocity is
smoothen out such that wasted energy is minimized. Indeed,
it is shown in Table IV that the maximum value of the
optimal speed is much lower compared to the maximum value
of the initial reference velocity. A significant difference is
visible in total braking energy that has been greatly reduces
in the optimal solution (computed as the integral of the term
including A1 in Table I, for negative accelerations).

The optimal fuel consumption is 32.5 l/100km, while the
total driving time is 42.8min. If we further include 8 s stand-
still interval per bus stop, the total time needed to finish the
route would be 46.6min.

VII. DISCUSSIONS AND CONCLUSIONS

We presented a strategy for optimally controlling electrified
vehicles, where both longitudinal velocity and battery energy
are considered states in the system. The method can be also
used to pre-filter an initial reference velocity which may not
be possible to drive using a backwards-simulation model.

We assumed in the studied example that the EGU is turned
off only when the vehicle is standing still. The reason for
this choice is not accidental, but intentionally made to avoid
problems that convex optimization cannot bear. The optimal
engine on/off control, which is a binary variable, cannot be
decided by convex optimization. Instead, this strategy can
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be used only when all integer decisions are decided outside
the convex optimization. Since in our example the distances
where the vehicle is standing still are determined by a known
signal (e.g. the maximum allowed velocity is zero at these
distances), the on/off signal is safely found before starting the
optimization. Improved, or near optimal, ICE on/off control in
the frame of convex optimization is still an ongoing research,
although some articles have been recently published on this
topic [12].

Further studies are needed to carefully investigate the ap-
proximations performed to convexify the problem. For ex-
ample, a badly chosen reference velocity may prevent the
algorithm find a feasible solution, even though such solution
might exist. Recall that the approximation (22) underestimates
the actual power limit, so if the reference velocity is too far
from the maximum feasible velocity, the approximation may
render the problem infeasible. Future studies are also needed
to extend this method to HEVs in parallel topology, either with
fixed-geared, or continuously variable transmission.
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Dimensioning and control of a thermally constrained double
buffer plug-in HEV powertrain. In 51st IEEE Conference on
Decision and Control, Maui, Hawaii, December 10-13 2012.

[10] N. Murgovski, L. Johannesson, and J. Sjöberg. Convex mod-
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