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USDA Production Forecasts for
Pork, Beef, and Broilers:

An Evaluation

Dwight R. Sanders and Mark R. Manfredo

One-step-ahead forecasts of quarterly beef, pork, and poultry production are

examined and evaluated based on traditional criteria for optimality-efficiency and
unbiasedness-as well as their performance versus a univariate time-series model.
However, traditional regression methodology for evaluating forecasts is avoided due

to interpretive issues. Instead, an empirical framework focusing on forecast errors

is employed. Results suggest USDA forecasts are unbiased, but generally not efficient.
That is, they do not fully incorporate the information contained in past forecasts.

Moreover, USDA's predictions do not encompass all the information contained in

forecasts generated by simple time-series models. Thus, practitioners who use the

USDA forecasts may want to supplement them with time-series forecasts.
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Introduction

Farmers and ranchers rely on NASS reports in making all sorts of production and

marketing decisions ... such as how much corn to plant, how many cattle to raise,

and when to sell. NASS estimates and forecasts are greatly relied upon by the

transportation sector, warehouse and storage companies, banks and other lending

institutions, commodity traders, and food processors. Those in agribusiness who

provide farmers with seeds, equipment, chemicals, and other goods and services

study the reports when planning their marketing strategies (U.S. Department of
Agriculture/National Agricultural Statistics Service, online, 2001).

By their own assertion, the estimates and forecasts developed by the U.S. Department
of Agriculture (USDA) and its agencies-such as the National Agricultural Statistics
Service (NASS)-provide important information for decision makers throughout the
entire agribusiness sector. Therefore, it is critical this information be unbiased and effi-
cient to maximize social welfare and assure efficient allocation of resources.

Researchers have closely scrutinized USDA estimates in terms of accuracy (Kastens,
Schroeder, and Plain; Garcia et al.), information content (Carter and Galopin), and market
impact (Sumner and Mueller). These issues are germane because government-supplied
information is costly. Accurate public information can result in improved decision
making by private forecasters while also reducing variation in market price (Smyth).
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Recognizing which government-supplied information is useful and which is not is
important. With this knowledge, informed decisions can then be made as to whether the
production of these forecasts should be improved, or perhaps even discontinued.

Most academic research examining production forecasts, as opposed to the release of
survey data (Schaefer and Myers), has focused on the crop production forecasts issued
in the USDA's Crop Production publication (Irwin, Good, and Gomez). However, the
USDA also provides meat production estimates in its monthly publication, World
Agricultural Supply and Demand Estimates (WASDE). Despite 1998 farm-level receipts
for beef, pork, and poultry totaling nearly $60 billion (50% larger than those for corn,
soybeans, and wheat combined),' production forecasts for livestock have not been closely
evaluated except by Bailey and Brorsen. Specifically, Bailey and Brorsen examined the
accuracy of the USDA's monthly forecasts for annual beef and pork production over the
period 1982-1996. They found that over the entire 15-year sample period, the USDA
forecasts were biased predictors, and furthermore, did not meet the optimality condi-
tions set forth by Diebold and Lopez.

The following analysis shares a similar objective with Bailey and Brorsen, but uses
a distinctly different methodology. The principal goal of this research is to provide in-
sight into the performance of government-supplied forecasts for beef, pork, and poultry
production. Based on personal contacts with various industry analysts,2 it is our obser-
vation that industry participants and traders do not widely anticipate the release of
USDA meat production forecasts, nor do they rely heavily upon them for price analysis.
Thus, the following two-part research question is posed. Are the USDA's forecasts
optimal? And if so, do they provide information beyond that of a relatively simple or
naive forecasting model?

While Bailey and Brorsen provide important insight into this question, this study
extends their work in three key respects. First, Bailey and Brorsen examine monthly
forecasts for annual production in a fixed-event framework. A fixed-event framework
looks at the properties of a forecast for a given event made at a variety of times leading
up to the event. For instance, monthly forecasts for, say, 1995 annual beef production
may begin in May of 1994 with the final forecast being made in December of 1995,
resulting in a series of 20 monthly forecasts of annual production. Here, we pursue a
different approach and analyze the USDA's production forecasts for a given quarter in
a rolling-event framework where each forecast is a distinctly different event. For
example, in the first quarter of 1995, there is a forecast made for second-quarter produc-
tion, and in the second quarter there is a forecast made for third-quarter production,
and so forth.3 To incorporate the rolling-event framework, we use quarterly time
series of one-step-ahead forecasted and realized production levels, providing a great-
er number of independent time-series observations. But, more importantly, quarterly
data closely reflect the aggregation level used by livestock market analysts (e.g., Mintert;
Hurt).

1 These figures are based on 1998 farm-level receipts provided by the USDA/Economic Research Service (ERS), online at
http://usda.mannlib.cornell.edu/.

2 At the request of the analysts interviewed, their names and employers are not revealed. Their statements are verified,
however, by a search of various newswires (Bloomberg and Futures World News) the day before and after the October 12,
2001 WASDE report. These searches revealed pre- and post-report analysis of the crop production estimates, but no mention
of the USDA forecasts for meat production.

3 See Clements and Hendry (pp. 59-60) for further discussion on fixed versus rolling-event forecasting.
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Second, this research expands on Bailey and Brorsen's analysis by examining three
major meat categories: beef, pork, and chicken. This combination allows a direct compar-
ison among industries with distinctly different production cycles. Third, as recommended
by Granger, the out-of-sample performance of the USDA forecasts is compared to that
of a simple time-series model. This comparison is not intended to be a search for a
"better model." Rather, we are looking for a possible explanation as to why trade parti-
cipants do not focus on the USDA's forecasts, and if the forecasts can be improved with
standard time-series techniques.

Traditionally, forecast efficiency is evaluated in a simple regression framework
(Mincer and Zarnowitz). However, this methodology can be fraught with econometric
problems and interpretive issues (Granger and Newbold, p. 281). In this study, we follow
the advice of Granger and Newbold, and the example of Pons, and focus on the forecast
error series. This approach allows us to test the USDA's forecasts for the traditional
optimality conditions-unbiasedness and efficiency-while also utilizing a set ofnontra-
ditional tests. The framework is useful because it provides a clear and comprehensive
approach to forecast evaluation.

The results of this research are important because they assess the accuracy and
efficiency of the USDA's quarterly meat production forecasts. If the forecasts are
suboptimal (e.g., biased), then the results will tell practitioners how to correct the
forecasts for use in their private models. Furthermore, the USDA may want to review
its current forecasting procedures for the meat complex. Our findings may also provide
an explanation as to why the trade does not appear to rely heavily on these forecasts.
Additionally, the results of this study will give policy- and decision makers knowledge
of the errors inherent in this type of forecasting (Aaron). Finally, this research provides
some information as to the relative forecastability of production across beef, pork, and
poultry. Given the size of these industries, accurate and efficient forecasts can have a
large dollar impact on the food marketing chain.

Data

This study focuses on the one-quarter-ahead forecasts for beef, pork, and broiler
production taken from the USDA's monthly WASDE reports. For beef and pork, the
forecasts are for total commercial production during the calendar quarter. The
broiler forecast is for federally inspected production on a ready-to-cook basis for the
calendar quarter.

The WASDE is released between the 8th and 14th of each month. Thus, the forecasted
level of meat production is collected from the January, April, July, and October WASDE
reports for each calendar quarter. 4 For instance, from the January issue, the forecasted
meat production for the first calendar quarter (January, February, and March) is col-
lected. This collection process results in a series of rolling-event forecasts. Furthermore,
because the forecast for a particular quarter occurs 8 to 14 days into the quarter, the
forecast intervals do not overlap, and the preceding quarter's realized production is
known. This collection process eliminates the problem of inconsistent ordinary least
squares (OLS) estimates of standard errors associated with overlapping forecasts (Brown

4 The USDA actually updates the quarterly forecasts with each monthly release of the WASDE.
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and Maital; Clements and Hendry, p. 57).5 Actual or final production levels are collected
as reported in the USDA's Livestock, Dairy, and Poultry reports. The data span from the
third quarter of 1982 (1982.3) through the fourth quarter of 2000 (2000.4), resulting in
74 quarterly observations of one-step-ahead production forecasts and actual values.

Not surprisingly, the absolute level of meat production demonstrates strong season-
ality and trends. Therefore, to assure stationarity in the variables, the analysis focuses
on seasonal differences defined as the change in production from the same quarter of the
prior year. Furthermore, the data are converted to log levels, where the seasonal differ-
ences represent percentage changes from the same quarter of the prior year.

For example, let At equal the level of production in quarter t, and Ft equal the one-
step-ahead forecast of production for quarter t. The variables of interest are thus defined
as the change in actual production, AP, = ln(A,/A, 4), and the forecasted change in
production, FPt = ln(Ft/At 4), such that the change represents the percentage change in
quarterly meat production from the prior year.6 Organizing the data in this manner
provides time series consistent with those used by the trade and most industry analysts
(e.g., Hurt; Kastens, Schroeder, and Plain), and are well suited for the evaluation
methods presented below.

Methodology and Results

One objective of this research is to compare and contrast the USDA's forecasts across
the three primary meats: beef, pork, and broilers. Another is to compare the USDA's
forecasts to that of a relatively naive alternative. Granger suggests simple univariate
models as worthy standards of comparison. In this vein, we generate forecasts from a
simple autoregressive model to serve as a standard of comparison for the USDA's
forecasts. Summary statistics and measures of forecast accuracy of the USDA forecasts
and simple time-series forecasts are examined. Procedures for testing bias, efficiency,
information content (encompassing tests), forecast improvement, and their results are
then presented.

The Time-Series Alternative

The alternative used in this analysis is an AR(4) model applied to the seasonally differ-
enced data. A series of one-step-ahead forecasts are made by modeling AP, as an AR(4)
process. This is not meant to be a forecasting competition; rather, the specification is
meant to represent a simple time-series alternative to the USDA's forecasts. The data
used to estimate the forecasting models begin with the first quarter of 1975 (1975.1).
The models are reestimated as additional data become available; however, they are not
respecified. For example, the forecast for 1982.3 is made with an AR(4) model estimated

5 The forecast horizons do not overlap, and they are truly one-step-ahead forecasts. Therefore, they will not have an inher-
ent moving-average process as identified by Granger and Newbold (p. 282). Also, the prior quarter's actual production, and
hence forecast error, is known within a reasonable certainty level. Production estimates are released each week and revised
with a two-week delay. So, by the 8th or 14th of (say) April, the actual production levels for January and February are known,
and weekly revised estimates for March are available. Therefore, the actual forecast error is known, and it should not demon-
strate autocorrelation due to a lack of knowledge about prior forecast errors (Clements and Hendry, p. 57).

6 The seasonally differenced actual production, AP, = ln(A,/A, 4), and forecasts, FP, = ln(F, /A, 4), are stationary series (aug-
mented Dickey-Fuller tests).
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with 30 observations of APt from 1975.1 through 1982.2, and the forecast for 1998.4 is
made with an AR(4) model estimated with 95 observations from 1975.1 through 1998.3.
The result is a series of 74 one-quarter-ahead forecasts for AP, from 1982.3 through
2000.4.

Throughout the analysis, this forecast series is used as a standard of comparison
against the USDA forecasts. Equivalent statistical tests are performed on both the USDA
forecasts and the time-series alternative. When appropriate, direct comparisons are
made and conclusions about the USDA's forecasting procedures are drawn. The analysis
begins by examining the summary statistics and comparing traditional measures offore-
cast accuracy.

Summary Statistics and Forecast Accuracy

The summary statistics for each series are presented in table 1. Given that the vari-
able(s) of interest represent the percentage change in quarterly meat production from
the prior year, the summary statistics presented are the mean and standard deviation
of the percentage growth rate over the sample period. For example, beef production grew
at an annual rate of 1.05% with a standard deviation of 3.00% from the third quarter
of 1982 (1982.3) through the fourth quarter 2000 (2000.4). It is worth noting that broilers
demonstrated the fastest growth (over 5% per year), while pork production was the most
volatile with a standard deviation of over 6%. For all of the markets, both the USDA and
the time-series forecasts have the optimal property of being less volatile than the actual
series being forecasted (Granger and Newbold, p. 283).

Various summary measures of forecasting accuracy with respect to actual production
(APt) are presented in table 2. The summary statistics include root mean squared error
(RMSE), mean absolute error (MAE), and Theil's U.7 Because the underlying variables
of interest show markedly different volatility levels, accuracy comparisons among beef,
pork, and broilers must be made cautiously. Comparing the USDA forecasts with the
time-series alternative, the USDA forecasts are more accurate by all measures across
the three sectors. As observed from table 2, the lone exception is the time-series model
which produces a lower MAE for beef compared to the USDA forecast. Generally speaking,
it appears the USDA forecasts provide the least improvement in accuracy measures in
the beef sector.

Accuracy is an important criterion by which to measure forecast performance. How-
ever, if the forecasts are not optimal (unbiased and efficient), then they are not the most
accurate forecasts possible (in a mean-squared error framework) using the available
information set. The following section looks at the optimality of the USDA forecasts.

The Traditional Test for Optimality

Traditionally, forecasts are evaluated for optimality by regressing actual values against
the forecasts:

(1) APt = ao + PFP, +o,,

7
For n observations, the RMSE = ( e

2
/n)

0-5, MAE = 2 I e I /n, and Theil's U = (e e
2
/n)'

5
/( AP

2
)

0° 5
.

118 July 2002



An Evaluation of USDA Meat Production Forecasts 119

Table 1. Summary Statistics: Beef, Pork, and Broilers, 1982.3-2000.4

Actual Production

Statistical Measure Beef Pork Broilers

Mean 0.0105 0.0126 0.0506
Standard Deviation 0.0300 0.0618 0.0264

USDA Forecasts Time-Series Forecasts

Statistical Measure Beef Pork Broilers Beef Pork Broilers

Mean 0.0049 0.0082 0.0483 0.0066 0.0166 0.0525
Standard Deviation 0.0293 0.0616 0.0222 0.0248 0.0501 0.0189

Note: Numbers in the table are interpreted as percentages; e.g., the mean growth rate for beef production is 1.05%
with a standard deviation of 3.00%.

Table 2. Forecast Accuracy Measures, 1982.3-2000.4

USDA Forecasts Time-Series Forecasts

Accuracy Measure a Beef Pork Broilers Beef Pork Broilers

RMSE 0.0262 0.0299 0.0186 0.0266 0.0399 0.0230
MAE 0.0220 0.0222 0.0154 0.0203 0.0310 0.0190
Theil's U 0.8294 0.4776 0.3269 0.8439 0.6363 0.4033

aRMSE is the root mean squared error, and MAE is the mean absolute error.

and then testing the joint null, ao = 0 and Po = 1. However, Granger and Newbold (p. 282)
are careful to point out that this is only a necessary condition for efficiency. Further-
more, Holden and Peel demonstrate the joint null is a sufficient, but not necessary, con-
dition for unbiasedness. Thus, a rejection of the null does not lead to clear alternative
statements about the forecasts' properties.

Given these interpretive problems with the traditional test, we follow the suggestion
of Granger and Newbold (p. 286), and Holden and Peel, and focus strictly on the forecast
errors, et =APt -FPt. The first step in this framework is to evaluate the forecasts for a
systematic bias.

A Test for Bias

Following Pons, a test for forecast bias is conducted in the following OLS regression
framework:

(2) et = (APt - FPt) = y + ptF

The null hypothesis of an unbiased forecast, y = 0, is tested with a t-test.8 Optimal fore-
cast errors should have a zero mean (Diebold and Lopez). If the null hypothesis cannot
be rejected, then on average the forecasted growth rates equal the actual (APt =FP,). The
appropriate two-tailed alternative hypothesis is that the forecasts systematically over-
(y < 0) or underestimate (y > 0) actual production.

8 This is equivalent to testing that ao = 0, under the restriction that Po = 1, in equation (1).
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Table 3. Forecast Bias Test (e t = y + t), 1982.3-2000.4

USDA Forecasts Time-Series Forecasts

Description Beef Pork Broilers Beef Pork Broilers

Estimated Y 0.0057 0.0044 0.0023 0.0040 -0.0040 -0.0019
(t-Statistic) (1.44)a (1.27) (0.87)a (1.29) (-0.87) (-0.72)

a Newey-West covariance estimator.

The estimation results for (2) are presented in table 3. 9 Consistent with the findings
of Bailey and Brorsen, the USDA forecasts underestimate production (y > 0) for beef,
pork, and broilers. However, none of estimated biases are statistically different from zero
at the 5% level. Likewise, the time-series forecasts do not exhibit a statistically signifi-
cant bias. These results suggest the USDA's forecasts are not biased-i.e., they cannot
be statistically improved by simply adding or subtracting a constant to the forecast. The
next section tests for forecast efficiency.

Tests for Efficiency

Forecasts are strongly efficient if the forecast errors, et, are orthogonal to all information
at the time the forecasts are made, whereas they are weakly efficient if et is orthogonal
to all past forecasts and forecast errors (Nordhaus). Here, we test for weak efficiency with
the following regressions:

(3) et = ai + PFPt + Pt;

(4) et = a2 + pet + Pt.

A condition for efficiency is that P =0 in (3) and p =0 in (4).10

In equation (3), if P + 0, then the forecast is inefficient in the sense it is not a minimum
variance forecast. The intuition behind this test lies in the fact that FPt is formed with
some information set, Qt-3, which is available when the forecasts are made at time t -1.11
Forecast errors, et, should be orthogonal to that information set (p = 0). If they are not
(P t 0), then the information is not being efficiently or optimally incorporated into the
forecast, FPt. For example, assume QR, 1 exclusively contains the number of cattle on feed
at time t -1, and the forecaster uses an elasticity of 0.5% between the number of cattle
on feed at time t -1 and beef production at time t. However, say the true elasticity is 1%;
then, although the forecaster is using this piece of information, he or she is doing so in-
efficiently. In this example, the P in equation (3) would equal one. Since the P is greater
than zero, then the forecasts are systematically too conservative. The actual forecasts
can be improved by scaling them by a factor of two (1 + P = 2).

9 In this and all subsequent regression models, heteroskedasticity is tested using White's test, and serial correlation using
the Lagrange multiplier test. Heteroskedasticity is corrected using White's heteroskedastic consistent covariance estimator
and serial correlation using the covariance estimator of Newey and West (Hamilton, p. 218).

10 Equation (3) is equivalent to testing that 0P = 1 in equation (1), and equation (4) is equivalent to testing for first-order
serial correlation in (1) under the restriction that ao = 0 and Po = 1 (Clements and Hendry, p. 58).

" Strong efficiency would question whether or not Q,_, contains all available information.
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Table 4. Beta Efficiency Test (et = cl + FPt + pt), 1982.3-2000.4

USDA Forecasts Time-Series Forecasts

Description Beef Pork Broilers Beef Pork Broilers

Estimated p -0.3632* -0.1142* -0.1454 -0.3420* -0.0582 -0.2708
(t-Statistic) (-3.50) a (-2.06) (-1.50) (-2.86) (-0.622) (-1.92)

Note: An asterisk (*) denotes significance at the 5% level.
aNewey-West covariance estimator.

The results of estimating (3) are presented in table 4. Looking at the USDA forecasts,
the null hypothesis of efficiency (3 = 0) is rejected at the 5% level (two-tailed t-test) for
both beef and pork, but not broilers. The estimated beta coefficients are negative, which
indicates the forecasts are too extreme, resulting in positive (negative) forecasts associ-
ated with negative (positive) errors. For instance, the estimated P for beef is -0.3632.
So, the USDA forecast needs to be scaled down by a factor of 0.6368 (1 + P). The time-
series forecasts show a similar pattern of negative coefficient estimates, and the null
hypothesis of efficiency is rejected for beef at the 5% level. The fact that this inefficiency
characterizes forecasts by both the USDA and the time-series models may suggest an
underlying structural change which is difficult to capture with formal modeling proce-
dures. This could result from rapid technological advances such as improved information
flow in the supply chain.

Equation (4) tests if forecast errors are systematically linked to past forecast errors.
If p s 0, then the forecasts are inefficient because current forecast errors are related to
past errors, and the forecasts can be improved by adjusting them by p. Ifp > 0, then past
errors tend to be repeated: overestimates followed by overestimates. Likewise, if p < 0,
then overestimates are followed by underestimates.

Table 5 shows the results of estimating equation (4). Again, there is some consistency
across the three meat sectors. The estimated p is positive for all three USDA meat pro-
duction forecast series, and it is statistically significant (5% level) for beef and broilers.
So, past forecast errors have some tendency to be repeated. For instance, the estimated
p for beef is 0.3156. So, if the previous quarter's forecast error is 2%, then the current
quarter's forecast should be adjusted by subtracting 0.6312% (0.3156 x 0.02 = 0.006312).
Positive serial correlation (p > 0) in the errors could be due to a slow recognition of
technical change or regime shifts which are difficult to capture in structural econometric
models. This inefficiency is not evident in the time-series models relying on serial corre-
lation to generate forecasts.

Our results suggest the USDA's forecasts are not capturing some relevant time-series
information. This could stem from a forecasting method that relies entirely on structural
equations and ignores time-series properties. In such a case, a composite of the USDA's
forecast and the time-series forecast may be an improvement. We formally demonstrate
this technique in the following section with a test of forecast encompassing.

Forecast Encompassing

A preferred forecast is said to encompass an alternative if there is no linear combination
of the forecasts which would produce a smaller mean squared error than that of the
preferred (Mills and Pepper). Put another way, if a composite predictor formed from the
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Table 5. Rho Efficiency Test (e t = a2 + pet_ + pt), 1982.3-2000.4

USDA Forecasts Time-Series Forecasts

Description Beef Pork Broilers Beef Pork Broilers

Estimated p 0.3156* 0.1515 0.2504* -0.1285 -0.0226 0.0358
(t-Statistic) (2.80) (1.30) (2.18) (-1.12) (-0.20) (0.30)

Note: An asterisk (*) denotes significance at the 5% level.

weighted average of two individual forecasts is considered, then the preferred forecast
is said to encompass the alternative if the alternative forecast's optimal weight (X) in the
composite is zero. 12 The inferior forecast then contains no useful information not found
in the preferred forecast (Harvey and Newbold). Forecast encompassing is tested with
the following regression model:

(5) elt = a3 + -(e - e2t) + et,

where e1t is the forecast error series of the preferred forecasts, and e2t is the forecast
error series of the competing forecasts. A test of the null hypothesis, A = 0, is a test that
the covariance between elt and (elt - e2t) is zero. Accepting the null hypothesis implies a
composite forecast cannot be constructed from the two series which would result in a
smaller expected squared error than using the preferred forecasts by themselves. Thus,
the preferred forecast "encompasses" or is "conditionally efficient" with respect to the
competitor (Harvey, Leybourne, and Newbold).

To gain some intuition into this test, consider some extreme examples. First, consider
the case where the preferred and competing forecasts are identical. Thus, the forecast
errors are identical (elt =e 2t). In this case, the competing forecast clearly provides no
marginal information to the preferred, and the optimal weight in a composite forecast
is trivially zero (X = 0). Now, consider the case where the alternative forecast produces
an error, e2t, of equal size but opposite sign of the preferred forecast error, elt. Then, the
estimated X in equation (5) would be 0.5, and the optimal composite predictor would be
an equally weighted average of the preferred and alternative forecasts.

Here, we test for forecast encompassing using both the USDA and the time-series
forecasts as the preferred models. The OLS estimates of equation (5) are presented in
table 6.13 The null hypothesis that the USDA forecast (the preferred forecast) encom-
passes the time-series forecast (competing) is rejected at the 5% level for beef, pork, and
broilers (columns A, table 6). These findings indicate the accuracy of the teUSDA forecasts
could be improved by combining them with time-series forecasts from a relatively simple
AR(4) model. Furthermore, the optimal weight (X) received by the competing time-series
forecast s is relatively large at 0.2509,0.2885, and 0.4776 for the broilers, pork, and beef
forecasts, respectively, showing time-series behavior is a relatively large component of
the optimal composite forecast.

To verify these results, equation (5) is reestimated with the time-series forecasts as
the preferred and the USDA forecasts as the competing. The results are reported in

12 In this study, X, is the weight on the competing or alternative forecast, and 1 - X is the weight on the preferred forecast.
13 Harvey, Leybourne, and Newbold show the traditional F-test is oversized in small samples when forecast errors are

nonnormal. However, our forecast errors do not demonstrate a statistical deviation from normality (Jarque-Bera test) and
.mple size is relatively large (74 observations).
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Table 6. Forecast Encompassing Test [el, = a3 + .(el - e2) + et], 1982.3-2000.4

[A] [B]
USDA Encompass Time-Series Encompass

Time-Series Forecasts USDA Forecasts

Description Beef Pork Broilers Beef Pork Broilers

Estimated X 0.4776* 0.2885* 0.2509* 0.5224* 0.7115* 0.7491*
(t-Statistic) (5.78)a (3.66)a (2.29)a (6.32) (9.01) (6.83)

Note: An asterisk (*) denotes significance at the 5% level.
aNewey-West covariance estimator.

columns B of table 6. As expected, the time-series forecasts do not encompass all of the
information contained in the USDA forecasts (X = 0 is rejected at the 5% level in all cases).
Of course, the estimated coefficient for each market equals one minus the estimated X
from columns A of table 6. Each set of forecasts contains some unique information, and
a composite forecast consisting of the USDA and time-series models would have provided
a statistically lower MSE than either series alone over the sample interval.

It is clear the USDA forecasts for meat production were not optimal over the entire
sample period. This result is consistent with the findings of Bailey and Brorsen. How-
ever, Bailey and Brorsen also found the USDA's forecasts improved through time, with
most of the improvement in the early or initial monthly forecasts for annual production.
Although they observed much more modest improvements in forecasts made near the
end of the production year, their findings still raise the possibility that our results could
be driven by some particularly poor forecasting in the early part of the sample. Conse-
quently, it is important to test if the USDA's performance changed through the sample
period. A change in performance could have occurred if the USDA's methodologies were
altered or if the underlying data-geerating process became more or less noisy. In either
case, the potential for changes in forecast performance is investigated in the following
section.

Forecast Improvement

Bailey and Brorsen found the information provided by annual USDA beef and pork
production forecasts improved from 1982 to 1996, with most of the improvement in the
long-horizon forecasts. To test for improvement or worsening in USDA quarterly fore-
casts, the bias, efficiency, and encompassing tests [equations (2)-(5)] are first tested for
stability using the Chow break-point test. The first quarter of 1991 is used as the break
point. This roughly splits the data in half, with 34 observations from 1982.3 through
1990.4, and 40 observations from 1991.1 through 2000.4.

The null hypothesis of no change in the parameter estimates between the two samples
cannot be rejected for any of the tests or markets (results not shown). For example, the
estimated p from equation (4) for the USDA's beef forecasts is 0.235 (t-ratio = 1.32) in
the early subsample, and 0.357 (t-ratio = 2.38) in the second subsample. In this example,
the F-statistic generated by the Chow break-point test is not statistically significant at
conventional levels. Collectively, the Chow tests suggest the behavior of the USDA fore-
cast errors did not change after 1991.1.

The second test resembles the methodology used by Bailey and Brorsen. The absolute
values of the forecast errors are regressed against a time trend:
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Table 7. Time Improvement Test (I et I = 01 + 02 Trendt + pt ), 1982.3-2000.4

USDA Forecasts Time-Series Forecasts

Description Beef Pork Broilers Beef Pork Broilers

Estimated 02 x 102 -0.0134 -0.0152 -0.0001 -0.0219* -0.0386* -0.0005
(t-Statistic) (-1.60)a (-1.40) (-0.02) (-2.39) (-2.78) (-0.68)

Note: An asterisk (*) denotes significance at the 5% level.
aWhite's covariance estimator.

(6) et l = 01 + 02 Trendt + pt .

The null hypothesis (02 = 0) of no systematic reduction or increase in the absolute value
of the forecast error, et , through time is tested with a two-tailed t-test. The results are
presented in table 7.

Although the coefficient estimates are negative across the three meat sectors-indicat-
ing the absolute forecast errors have become smaller-the null hypothesis cannot be
rejected at the 5% level for any of the USDA forecasts. A Chow break-point test, with
1991.1 serving as the break, was also administered for equation (6). Again, there was not
a statistically significant difference in the estimated parameters before and after 1991.1.
Because it is also possible I et I has a seasonal component, equation (6) was estimated with
quarterly intercept shifters to test for systematically higher or lower | et I in particular
quarters and with slope shifters on the trend variable to test for changes in forecasting
accuracy in particular quarters. The null hypothesis of equal parameter estimates for 01
and 02 across quarters could not be rejected with a standard F-test (5% level). There is
no evidence to suggest forecasting is more or less difficult in a particular quarter, or that

I et | increased or decreased through time in a particular quarter. Therefore, combining
the quarters-as presented in equation (6) and table 7-is an accurate representation.

Figure 1 visually supports this conclusion, where the time-series plots of I et j do not
appear to demonstrate any patterns. In contrast to USDA forecasts, the time-series
forecasts for beef and pork demonstrate a statistically significant (5% level) decrease in
the absolute forecast error over the sample interval. This result is potentially due to
more precise coefficient estimates of the AR(4) process as the sample grew through time.
In summary, these tests do not provide any convincing evidence to indicate the USDA
forecast accuracy examined in this study has statistically changed through time. Our
findings appear to be consistent with those of Bailey and Brorsen who found only a
modest reduction in forecast errors near the end of the year being forecasted.

Summary and Conclusions

This study examines the performance of the USDA's quarterly forecasts for beef, pork,
and poultry production as reported in its monthly publication, WorldAgricultural Supply
and Demand Estimates (WASDE). Specifically, this research attempts to establish if these
forecasts exhibit the properties of forecast optimality-namely that they are unbiased
and efficient. In addition, encompassing tests are conducted to assess whether the
USDA forecasts can potentially be improved upon by incorporating information from an
alternative forecast. The alternative forecast used in the encompassing tests is estimated
with a simple AR(4) model. Tests are also conducted to determine if forecast performance
changed over time.
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The findings suggest USDA forecasts are unbiased, but inefficient. Specifically, in the
cases of beef and pork, forecasts do not efficiently incorporate the information available
at the time they are made. The USDA forecasts are too extreme. Furthermore, with beef
and poultry, forecast errors display positive serial correlation, revealing errors are
repeated. Summary measures of forecast accuracy (RMSE, MAE, and Theil's U) suggest
the USDA forecasts are more accurate than those produced by the AR(4) model. How-
ever, none of the USDA forecasts encompass the information contained in the simple
AR(4) forecasting model.

Consistent with Bailey and Brorsen's results for short horizons, there is little evi-
dence to show the USDA's forecasts have improved through time. Finally, the results
do not strongly suggest one sector is "easier" to forecast than another. The beef forecasts
violate optimality conditions more frequently than either pork or poultry, which may
indicate relatively long production cycles make forecasting more difficult. Alternatively,
structural changes or productivity changes (e.g., increasing carcass weights) in the beef
sector may be difficult to capture in formal models. Finally, beef production, unlike
confinement pork and poultry operations, is still largely susceptible to the vagaries of
weather, a factor which contributes to random shocks in production.

Based on the results of this analysis, the USDA may want to review its methods for
producing quarterly meat production forecasts. 14 In particular, the encompassing tests
suggest there is valuable information contained in alternative forecasts that may be
used to improve existing meat production forecasts. Although this research does not
attempt to make specific recommendations for improving the USDA's forecasting proce-
dures, creating composite forecasts between its current methodology and simple time-
series models [such as the AR(4) used here] can improve forecasting accuracy. Improved
accuracy would undoubtedly raise the trade's reliance on, and anticipation of, these
forecasts.

While the USDA can take steps to improve its forecasts, practitioners should not com-
pletely ignore these forecasts. The results presented here demonstrate how to construct
composite forecasts that are more efficient. Furthermore, even though the USDA's meat
production forecasts are not optimal, they do contain information not found in simple
time-series models. Such information may be useful in improving existing private fore-
casts. Although our findings indicate USDA forecasts are inefficient, they may still
provide value to those market participants who lack the expertise or resources to gener-
ate their own forecasts. Thus, these results do not suggest the USDA should discontinue
this service.

Finally, decision makers-whether private or public-need to recognize the potential
errors in meat production forecasts (Aaron). These errors appear to be most pronounced
in beef. This may be due to the relatively long production cycle, a higher susceptibility
to random weather shocks, and perhaps rapid technological advances which are difficult
to capture in formal models. It is also likely that forecasting accuracy deteriorates rapidly
as the forecast horizon lengthens. This issue, however, is left for future research.

[Received July 2001; final revision received March 2002.]

14
In personal interviews with USDA analysts, they indicated they rely on structural econometric models to produce longer-

term forecasts, whereas quarterly forecasts rely more heavily on subjective inputs such as seasonal adjustments, current
slaughter weights, and potential weather impacts.
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