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Abstract
Many frequency bands for wireless services are severely underutilized by the primary

users (PU) to which these bands are assigned. This motivates a new class of wire-

less communication devices known as cognitive radios (CR), which identify vacant

spectrum and transmit accordingly. In this thesis, the PU traffic model knowledge

as well as all the observations available to the CR are included in the CR transmis-

sion decisions. A transmission strategy is introduced that is based on comparing

an a-posterior probability (APP) log-likelihood ratio (LLR) with a threshold. The

objective is to maximize the utilization ratio (UR) subject to that the interference

ratio (IR) is below a certain level. In papers A and B, we study CR transmission

strategies that are based on all noisy observations of the PU activities, even when

the CR itself is transmitting. Paper A demonstrates a more than 300% increase

in UR over standard energy detection, for the same IR value, at the PU signal to

CR noise power ratio (SNR) of −5 dB. Then, in paper B, we use a continuous-

output hidden Markov model for the received signal and calculate an APP LLR

based on this model. This paper shows that this strategy is the optimum in the

sense of maximizing the UR, given a certain maximum allowed IR, among all CRs.

Moreover, two practical schemes for calculating the transmission threshold are intro-

duced. Numerical results show that the first method yields a threshold that is close

to optimum when the PU use a large fraction of the available spectrum (i.e., when

the PU activity level is high). The second method is analytically proven to always

give a valid threshold. Simulation results show a 116% improvement in UR with PU

state estimation over energy detection, at an SNR of −3 dB and IR level of 10%.

In paper C, we extend paper B to consider that PU activities cannot be observed

when CR is transmitting, in other words they are censored. This new strategy,

entitled CLAPP, calculates a new LLR, which is compared with a threshold. This

threshold is computed with a bisection search method. Simulation results show that

CLAPP has a 52% gain in UR over the best censored energy detection scheme for

a maximum IR level of 10% and an SNR of −2dB. In paper D, we introduce new

time-varying thresholds for sequential spectrum sensing. These new thresholds, for

an SNR of −10 dB, in comparison with standard sequential detection with parallel

(fixed) thresholds with similar probabilities of misdetection and false alarm, per-

forms 54% faster in terms of maximum detection time (90 percentile). Keywords:

Spectrum utilization, cognitive radio, sequential detection, censorship, CLAPP.
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Chapter 1
Background

In recent years, the explosive growth of the population, the cost of transportation,

the demand for worldwide goods and services, and a lack of resources have put

telecommunication networks in focus. The internet is stretching between different

corners of the world. Every day, more and more devices are hooked up to the grid.

This is due to the rise of machine-to-machine communication, which results in more

devices being connected to the network than the number of people. Thus, networks

are getting congested, and the demand for more data rates increases faster than

before.

1.1 Demand for data rate is demand for the spec-

trum

Due to its convenience, mobility, and availability, wireless communication has be-

come a necessity. Many people are now using mobile phones or other smart devices

such as tablets and running their businesses or lives on the go. The mobile data

traffic had a exponential growth and is expected to reach 11.2 EB (each Exabyte is

1018 bytes) in 2017 [1].

This revolution has accelerated since the introduction of the iPhone in 2007.

Now thanks to high-speed internet over Wi-Fi or 3G (and recently 4G), users are

enjoying streaming video on busses or even in the skies. Statistics show that video,

which needs high speed and low delay, comprises more than 66.5% of the mobile

data traffic [1]. Due to the ease of deployment in most growing countries, wireless

data networks are growing much faster than wired networks. The United States

already plans to bring wireless broadband internet access to 98% of Americans [2].

This is a huge demand for wireless networks and cannot be realized with the already

congested frequency spectrum.

3



4 Background

Spectrum is one of the most expensive commodities in the world. There are a

lot of attempts to reach higher spectral efficiency by increasing modulation orders,

increasing the channel coding rate, and multiple input multiple output (MIMO).

However, these efforts are not scaling with the demand.

A lot of vacant spectrum is wasted due to one or many of the following factors

1. Inefficient use of spectrum due to system design, e.g., modulation and coding,

2. Inefficient use of spectrum due to hardware limitations, such as filters’ sharp-

ness, spectrum spilling due to nonlinearities in power amplifiers, spectrum

growth due to the phase noise in radio frequency (RF) chains,

3. Certain traffic patterns of spectrum usage created by operators and their net-

work users.

Academia and industries have spent a considerable amount of resources on re-

search and development to address these issues. Modulations and codings are ap-

proaching the Shannon limits, which makes higher spectral efficiencies theoretically

impossible [3]. On the other hand, hardware impairments limit the possibility of ef-

ficient use of frequency bands. Many of these hardware limitations can be mitigated

by signal processing methods, which will increase the cost and complexity of such

devices and are impractical for cheap and simple terminals.

Therefore, more frequency bandwidth must eventually be allocated for public

internet services. There is a lot of research and development going on for higher fre-

quency bands. Nevertheless, due to propagation properties of higher bands, mainly

bands below 10GHz can be used, for wide area coverage. Yet, almost all these bands

are already licensed. Furthermore, in certain frequencies, the exclusive right of using

spectrum is very expensive. Alone in Germany in 800 MHz band, an auction was

held in May 2010 [4], and three operators paid 3.576 Billion euros for just 60 MHz

which amounts for 59.6 Euros per Hz. Thus, spectrum is probably one of the most

expensive commodities in the world. This induces a lot of research and discussions

about dynamic spectrum auctioning and sharing.

However, studies have shown that many of these useful bands, which are not

allocated for data/internet services, are not in use or are underutilized. Especially

in certain geographical locations, licensed spectrum underutilization is more severe.

In certain bands, 70% of time, spectrum is vacant [5]. Thus, there lies big hope in

reusing vacant time-frequency slots, i.e., spectrum white spaces.
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1.2 Cognitive radio

The need to reuse spectrum will give rise to a new paradigm in spectrum access,

named opportunistic access, in which the spectrum is accessed whenever it is avail-

able. The enabling technology for opportunistic and dynamic spectrum access is

software-defined radio [6, 7]. For the first time, J. Mitola and G. Q. Maguire [7]

envisioned communication devices that adapt themselves to the spectrum [6] and

coined the term cognitive radio (CR).

To use the spectrum efficiently, multiple users can share the same spectrum and

transmit at different times. Some of the users are licensed users known as primary

users (PU) and some are unlicensed secondary users known as cognitive radios (CR).

Here, it should be noted that unlicensed does not mean unregulated. All users must

be regulated by a regulatory body that enforces certain rules to protect other users

from intentional and unintentional interferences. PUs are usually telecom operators

or legacy radio equipment that have some method for sharing spectrum between each

other and control the amount of interference. Thus, their medium access control

(MAC) will allow them to be aware of each other and cooperate in controlling when

and in which band to transmit. However, normally secondary use of spectrum refers

to the other users that are either unaware or unable to join the same MAC as the

PUs. Moreover, PUs have the high priority to use the spectrum and CRs must

respect this right. This creates certain difficulty for CRs since they are unaware

of the PUs’ intentions to transmit or stop transmitting. Thus, one of the major

challenges in implementing a CR network is to tackle this spectrum uncertainty. On

top of that, all the natural limitations of wireless communication, such as channel

fading uncertainty and receiver noise uncertainty, are still.

Applications of CR technology can be extended over different licensed bands.

For instance, TV broadcasting is limited to certain hours. Global positioning system

(GPS) satellites are in different orbital positions at different times of the day and

have no (or weak) coverage indoors. In peace time, most military communication

or sensing, e.g., radar, bands are either vacant or much less active.

1.2.1 Cognitive cycle

Cognitive radios perform a series of activities in order to achieve the spectrum reuse

goal. These activities, which are known as the cognitive cycle [8, pp. 5], try to

create an understanding of the radio spectrum and a plan for using it effectively. In

the cognitive cycle as depicted in Fig. 1.1, which is a simplified version of the more

complete cycle presented in [7], the spectrum sensing is responsible for creating

a map of the current spectrum usage. The spectrum adaptation phase uses that
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Frequency spectrum

Spectrum
sensing

Spectrum
adaptation

Transmission
decision

Figure 1.1: The cognitive cycle

map to adapt the CR transmission accordingly. For instance, if the CR intends to

use OFDM, it can nullify the bands whose presence the PU has sensed. Finally, a

transmission decision is made with respect to the CR traffic and adaptation results.

The last arrow between transmission decision and frequency spectrum shows that CR

decisions influence the spectrum. A simultaneous PU and CR transmission results

in interference for the PU. And the PU might react by attempting to retransmit.

CR transmissions can, in some cases, be done without harming the primary

transmission. Research has also been conducted on how to transmit in the same

time-frequency slot as the PU, without increasing the probability of error for the

PU [9] [10, Ch. 2], but this is beyond the scope of this thesis. Here, we assume that

any CR transmission at the same time-frequency slot as the PU is harmful.

Thus, spectrum sensing plays a crucial role in the cognitive cycle. Due to high

data-rate expectations, there is a need to reuse large chunks of the spectrum. Cog-

nitive radios intended for such uses must employ wideband spectrum sensing.

1.2.2 Challenges and difficulties

In many cognitive radio applications, such as ultra-wideband detect-and-avoid, i.e.,

to detect existence of a narrowband PU and avoid that part of the band, the key

limiting issue is spectrum sensing. Spectrum sensing is performed by a (normally)

non-coherent receiver in the designated band [11]. In spectrum sensing, there exist

several problems dependent on the setup, which include but are not limited to

• low PU signal to CR noise ratio (SNR) or wide-bandwidth scenarios [12],

• no information about the transmission type for the PUs of the band,

• hidden or exposed terminal cases as depicted in Fig. 1.2, i.e., the PU signal at

the CR is weak. Thus, the CR might cause interference due to not receiving



Cognitive radio 7

CR

CR

Hidden node problem

Exposed node problem

PU TX

PU TX

PU RX

PU RX

CR interference for PU

Weak PU signal not sensed by CR

Figure 1.2: The hidden node and exposed node problems

PU signal or the PU signal at CR being strong, hence PU receiver is far from

CR transmitter, which results in the over-protection of PU due to the detection

of close PU transmission,

• bursty and hopping PUs, i.e., when the PU changes the band frequently and

starts and stops transmissions in a random fashion.

Wideband spectrum sensing is a big challenge in itself, due to the large amount of

noise contribution. In such situations where low PU signal to CR noise ratio might

cause a larger detection delay or instead higher probabilities of misdetection, i.e., the

probability that a PU is present and CR misses it, and false alarm, i.e., the proba-

bility that PU is absent and CR detects that it exists, inexpensive and less-complex

methods such as energy detection are not enough. In addition, the capability of CRs

utilizing energy detection spectrum sensing are limited by the so-called SNR wall,

i.e., the SNR below which robust detection is impossible for the given detector [13].

This is due to the low received power of the PU signal at the CR receiver and uncer-

tainties about signals, noise, and channels [14]. Specifically, in wideband spectrum

sensing, this effect is more visible [15, 16]. This can ultimately result in large sens-

ing delays. Nevertheless, spectrum opportunities appear and disappear quickly, and

they depend on the occupancies in different bands. Moreover, a real cognitive radio,

which according to the cognitive cycle [7,17] should adapt itself to the dynamics of

the spectrum, needs to be agile to react to the changes in the spectrum as quickly as

possible [18]. However, in some cases such as energy detectors, agility compromises

the accuracy of sensing the spectrum, which ultimately jeopardizes not only the

interference level made for the PU but also reduces the spectrum reuse. Thus, a

CR that can optimally incorporate all previous observations, and thus decides about

transmission within a short time, is appealing. Sequential spectrum sensing, which
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accumulates more samples until it reaches one of two decision thresholds, has proven

to be, on average, faster than traditional energy detection [19–21]. However, since

detection time varies in sequential detection, it is not a good candidate for slotted

CR systems in which the PU and CR are assumed to transmit in time slots.

To avoid all the challenges with the spectrum sensing, some of the publica-

tions [22, Ch. 10] assume that spectrum opportunities are known input to the CR

algorithm. This means that a CR just needs to have knowledge of its geographical

position. Then it can look up a database that associates the positions to the spec-

trum availabilities. However, knowing the position and querying in that database

needs extra equipment and further internet access, which makes the CR functionality

and portability difficult.

1.3 Spectrum regulation for reuse

There are huge industrial and standardization activities going on side by side for the

implementation of cognitive radio applications. The issue of dynamic spectrum reuse

is even being considered at the highest political level, such that the White House

Office of Science and Technology Policy, in cooperation with Federal Communication

Commission (FCC), is drafting the policies and road map for dynamic spectrum

access (DSA) in the U.S. [5].

In standardization, two tiers of national and international organizations are con-

tributing. Frequency regulation bodies in different countries, such as the FCC in the

U.S. and the Office of Communications (OFCOM) in U.K., are trying to define new

use case models for unlicensed use of spectrum in the licensed bands [23, Ch. 4]. The

second tier is international standardization organizations such as the international

telecommunication union (ITU) and the European telecommunications standards

institute (ETSI). They are playing a major role in the standardization of DSA and

CR in the world. This is usually seen within the context of spectrum management,

which is one of their activities. Spectrum management consists of [24, pp. 197–198]

1. Spectrum planning to allocate frequency bands for different services according

to the international standards normally introduced by the ITU or ETSI,

2. Spectrum authorization for granting access to certain use by certain operators,

3. Spectrum engineering, which entails the development of standards for electro-

magnetic compatibility for equipment,

4. Spectrum monitoring and compliance to check whether all the users are using

spectrum according to the regulations.
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Unlicensed use of the spectrum in the licensed band such as TV bands enables

the (re-)use of these bands. As an example, in 2008 the FCC released a report on the

performance of devices operating in TV white spaces, which resulted in approving

unlicensed use of white spaces [24, pp. 229–231].

Alongside the regulation, the IEEE, among others, is leading the technology

standardization of such reuse not only by holding technical conferences such as

DySPAN but also by having multiple standardization committees such as [23, pp.

45]

• IEEE SCC41/P1900 on next generation radio and spectrum management, to

stimulate the research and development of CR,

• 802.22 for wireless rural access network for reuse of TV bands for internet

provision in rural areas,

• 802.16h and 802.16.2 for coexistence in WiMax 802.16 licensed bands,

• 802.11 (Wi-Fi) subcommittees for coexistence and common channel framework

operations.

1.4 Industrialization and standardization of

dynamic spectrum access

Industrial use of CR is initiated by both research-funding organizations such as the

national science foundation (NSF) and also by defense and military users such as

the defense advanced research projects agency (DARPA). DARPA, in their Next

generation communications program (XG), focuses on spectrum awareness, adap-

tive transmission and interference evaluation [23, Ch. 4]. The NSF and the Eu-

ropean Union have funded many projects, such as GENI, E3, WINNER+, WIP,

SOCRATES, ROCKET, and ORACLE, that have addressed one or many of the

issues in DSA and software-defined radio. The introduction of the unlicensed use

of white spaces motivated big software companies such as Microsoft, Apple, and

Google to actively engage in the development of technology, industrialization, and

standardization for reuse of TV white spaces. Now some of these companies are in

the process of creating and providing the geographical database for TV white space

secondary use.



10 Background

1.5 Scope of this thesis

This thesis highlights the importance of PU models and presents model-based CR

transmission strategies for reutilizing frequency spectrum. In particular, we will

focus on the CR transmission decision problem. That is, how the CR, based on

noisy observations of the PU transmission, should decide whether to transmit or

not. To treat this problem, we will use models for the PU data traffic, the PU

transmitted signal, and the PU-CR channel. Clearly, we want simple models for

mathematical tractability, but also models that reflects reality.

For the work presented in this thesis, the most important model is the PU data

traffic model. It has been shown that Markov models fit real data traffic fairly well

and are used in many CR research papers [25–31]. Knowledge of model parameter

is necessary for the CR to fully exploit the PU activity model. In previous works,

such as [32,33], the impact of model parameter estimation on the CR performance is

evaluated, which, overall is quite promising. The development of the system model

in this thesis from the discrete-output HMM in Paper A to the continuous-output

HMM in Papers B and C, allows the CR to form a more accurate perception of the

reality and better utilize the vacant spectrum. Markovian PU traffic models, are

discussed in further detail in Chapter 2.

In the traditional implementations of cognitive radio, in which just the currently

sensed received signal is considered for the transmission decision in the succeeding

time slots, the important fact that PU traffic might be according to a certain model

is ignored. Moreover, the CR hopes that its observation resembles the true trans-

mission state of the PU and that the PU will not change its state in the period of

CR transmission. Clearly, since this CR does not incorporate the PU transmission

model in its decision, the performance of the CR may improve if the CR decision

algorithm includes such a model. Markov decision process [25–28], the partially

observed Markov decision process [29, 31] and some works on the prediction of the

future state of the PU in [30,34–36] were introduced before to exploit Markov mod-

els for CR. Papers A to C in this thesis belong to the latter class of predictive CRs.

These papers introduced less complex algorithms, which in certain sense are opti-

mal, and, in the case of Paper C, considering observation censorship due to the CR

self transmissions. The use of Markov models and all the previous observations is

shown to provide a considerable improvement in the performance of the CR.

To address the issue of low SNR in wideband spectrum sensing regimes, Paper D

introduces a certain class of truncated sequential probability ratio test (SPRT) for

spectrum sensing to ensure that the test would be terminated after a certain number

of samples. Note that the SPRT has attracted a lot of attention due to its optimality

in average sample number (ASN) in CR [37–45]. In standard SPRT, even though
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it is optimum in the sense of ASN, the maximum detection time can still be fairly

large. To address this problem, we introduce sequential detectors with varying

thresholds for energy-based spectrum sensing. These detectors are performing on

average (or in 90 percentile sense) much faster than regular energy detection for the

same probabilities of misdetection and false alarm. This enables agile and reliable

spectrum sensing in low-SNR scenarios.

This thesis, introduces a set of models, metrics and tools for better identifying

and reusing spectrum opportunities in time. Models, metrics and tools are designed

in such a way to match reality as much as possible and at the same time they are

based on solid and tractable math.

The upcoming chapters are structured as follows. We first introduce the PU

traffic model in Chapter 2. Then, in Chapter 3, CR spectrum sensing is reviewed.

In this chapter, the assumptions and their motivation for the CR model are also

presented. Performance measures to judge the quality of a CR are established in

Chapter 4. Chapter 5 describes the model-based CR transmission schemes. Finally,

Chapter 6 wraps up the introduction of this thesis by listing the contributions and

conclusions of this thesis and pointing out directions for future work.
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Chapter 2
Primary user transmission model

As explained in the previous chapter, coexistence of CRs and PUs is deeply depen-

dent on the behavior of the PU and knowledge about the PU transmissions present

at the CR.

PUs can be any radio communication or sensing device such as mobile commu-

nication, global positioning system, or a radar. All of them share some features that

can be exploited to facilitate the detection of their existence. These features can be

as low-layer (physical layer) as

• periodicity of PU signal,

• carrier frequency and bandwidth,

• modulation format.

In contrast, they can be as high-layer as activity pattern, e.g., a scanning radar,

which scans a certain geographical area periodically. These features can be ex-

ploited by secondary unlicensed users of the frequency spectrum to better utilize

the temporal/spatial white spaces. From now on, all these features, which can dis-

tinguish a radio transmitter from white noise, are referred to as PU model features

or simply the PU model. These features can vary in time or space. However, for

a certain window of time or space, they might be fixed. Most of these features are

known or can be estimated at the CR. For instance, in TV bands, the frequency,

bandwidth, modulation, and even time of broadcasting is publicly known. Also, cell

phone users have certain usage patterns throughout the day.

It might be preferable to use fewer of these features to have a rather general

system that can handle many types of PU transmissions. One approach is to model

some of the PU signal properties in the worst-case scenario with minimum knowledge

about them.

13
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Figure 2.1: PU transmission model

This chapter is more about the PU traffic model rather than the signal model.

The PU signal model and its properties will be explained in the next chapter together

with the CR receiver signal model.

2.1 Markov model

Markov models, i.e., stochastic models in which the current state given the last

state is independent of all previous states, is long in use for modeling many different

processes [46]. From the early stages of the development of network activity models

up to the latest development in cognitive radios [10, pp. 214–227], Markov models

have been and are a major tool for modeling the activities of network users. Markov

models, despite their simplicity, provide strong mathematical frameworks for mod-

eling the behaviors of processes with memory. The use of a simple Markov model

as the PU traffic model is described in this section.

One simple Markov model is a discrete-state discrete-time Markov chain consist-

ing of two states of on and off, which can be considered as the most basic transmission

model. It is presented in Fig. 2.1. The PU is alternating between active and idle

states, qk = 1 and qk = 0. This Markov chain can be mathematically expressed with

transition probabilities ai,j = Pr{qk+1 = j|qk = i} > 0 for i, j ∈ {0, 1}, where qk

denotes the PU state in time slot k. The initial distribution of the states is assumed

to be in a steady state [46] and is defined as

π ,
[

π0 π1

]

,
[

Pr{qk = 0} Pr{qk = 1}
]

=
[

a10
a01+a10

a01
a01+a10

]

, k = 0, 1, 2, · · · (2.1)

The transition matrix is

A ,

[

a00 a01

a10 a11

]

, a00 + a01 = a10 + a11 = 1. (2.2)

These probabilities can be easily estimated by observing for a long enough period

such that the PU arrives in a steady state.

This model inherently assumes some properties such as
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• PU time slots have a fixed and predefined size,

• PU transmissions are done in bursts of an integer number of time slots,

• PU has periods of idle slots in between transmissions which are also an integer

number (more than zero).

Indeed, not all PUs have these properties. However, in the next chapter, when we

discuss our adopted CR model, these assumptions are motivated. Many kinds of

telecommunication network traffic can be adequately represented as Markov models,

for example, the following

• human conversation on the phone is followed by silences for listening,

• many wired networks are using Ethernet protocol (IEEE 802.3), which is a

frame-based protocol with a fixed frame size,

• most data networks use TCP/IP (Transmission Control Protocol / Internet

Protocol), which involves packet transmission and acknowledgements of re-

ceived or failed transmission and retransmissions,

• normal video content is served after video coding compression with known

encoders such as H.264, which has a standard format and flow of data,

• web traffic normally consists of a request and many pieces of replies, depending

on the web page contents.

All of them have some properties in common such as bursty transmissions, fixed

slot lengths, and non-zero idle periods. Moreover, these activities, given their last

state, are independent of states long before. These are just some of the reasons that

make Markov models suitable for modeling PU activities in the frequency spectrum.

Moreover, measurement campaigns have confirmed the Markov model hypothesis

for PU traffic [47] [29].

Throughout this thesis, we consider this simple two-state Markov chain as the

PU traffic model.

Many other Markov-based models, such as semi-Markov models, continuous-

time Markov chains, and embedded Markov models, are also introduced in the

literatur [31] [48]. Some of them are briefly reviewed in the next section.

2.2 Other PU models

Of course, the PU traffic can be modeled as just bursty traffic. Thus, one way is

to use the latest observation of the spectrum as the only knowledge about the state
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of the spectrum. The simple standard energy detection based CRs, which decide

whether to transmit or not by comparing the energy in a certain band for a fixed

period with a threshold, is one of the simple methods not assuming any specific

PU [8, Ch. 10]. In the next chapter, this type of CR and its properties will be

explained in detail.

Another approach for addressing the PU traffic model is to have a geographical

database (lookup table) of known PU activities. This is mostly useful when there is

a scheduled broadcast, e.g., TV broadcasting [22, pp. 347].

For radio communication networks, like any other telecommunication network,

one simple method to model the arrival of the entities (nodes, packets, cells, ...)

can be a Poisson process. Other processes, such as Pareto distribution processes or

Weibull distribution processes, are also proposed. Another class of processes that

model network traffic is models such as embedded Markov models. In this class, one

can refer to models such as interrupted Poisson process, semi-Markov models, and

Markov modulated Poisson processes [49].

Indeed, the two-state Markov chain, as explained in the previous section, is a

very simplified model. Much research has been devoted to exploring other, more so-

phisticated models that give more degrees of freedom. One class of these advanced

models is the semi-Markov models (SMM). SMMs are a generalization of Markov

models. The transitions in a SMM are time-dependent and random. It was shown

in [48] that this model matches certain Wi-Fi traffic. However, dealing with any

arbitrary distribution of the transition time is quite difficult and thus a more sim-

plified version can be used instead. An example of simplified SMMs for which all

holding times, i.e., the time spent in one state, are exponentially distributed, are

called continuous-time Markov chains.

One of the reasons why Markov processes are so interesting is their application

to the Markov decision process (MDP). MDPs are processes in which the state of

the system is influenced by their decisions. If the state of the system is not observed

directly, but only through another random process, it is called a partially observed

MDP (POMDP). These decision-making tools are briefly reviewed in Chapter 5.



Chapter 3
Cognitive radio and spectrum sensing

model

In this chapter, first, the structure of the CR that this thesis is based upon, is

presented. Then, the assumptions related to this model are reviewed. We cover the

whole signal path from PU traffic until a CR transmission decision is made.

In Chapter 2, we introduced the PU traffic model and established a simple two-

state Markov model for it. In this chapter, we discuss the PU signal from the

perspective of the CR.

3.1 Spectrum sensing

Any communication system, including CR systems, is comprised of three basic com-

ponents: transmitter, receiver, and the channel in-between. In CR scenarios, there

are no intentions for the CR to transmit to the PU, or vice versa. Since the CR

is interested in re-utilizing the time-frequency vacancies, the CR has to locate the

available spectrum by capturing the current state of the PU. To do so, three com-

ponents involved in a CR system model can be defined, the PU transmission model,

the PU-CR channel, and the CR spectrum sensing. Spectrum sensing forms the

CR perspective from the PU signal. There are many different types of spectrum

sensing in the CR community [11, 22]. Generally, CR spectrum sensing is designed

to address one or more of the following challenges

• hardware limitations such as filters imperfectness, ADC (analog to digital con-

verter) low resolution and dynamic range and limited complexity DSPs (digital

signal processor), and sampling rate,

• the hidden PU problem, as depicted in Fig. 1.2, in which the CR is not able to

sense the PU signals with low power or PUs with low probability of intercept

17
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features such as spread spectrum signals,

• spectrum agility to be able to react to the spectrum changes very fast.

As explained in the previous chapter, the more information available of the

PU signal model, the better CR perception from the PU activities. The CR is

interested in an accurate model of the PU signal, e.g., orthogonal frequency-division

multiplexing (OFDM) signal with certain parameters. Knowing an accurate model

would be very helpful for spectrum sensing, e.g., one can use simply a matched

filter detector matched to the PU signal [22, pp. 267]. However, depending on any

specific model may cause robustness or sensitivity issues.

If certain information about the periodicity of the signal exists, a cyclostationary

feature detector can be used [50]. Some knowledge regarding the PU transmission in

narrowband can be exploited by wavelet feature extraction [22, pp. 272–273]. An-

other simple (low-complexity) spectrum sensing method is energy detection. It mea-

sures the energy in a time slot after passing the received signal through a bandpass

filter and sampling. Another recent method in spectrum sensing is the application

of random matrix theory. In this method, either the ratio of the largest eigenvalue

of the sample covariance matrix to the smallest one or the average eigenvalue to the

minimum one is compared with a threshold [51].

Spectrum sensing can be performed in different setups, e.g., single-node vs. net-

worked, centralized vs. distributed, and sequential vs. fixed-sample-size. To mitigate

the problem of the hidden PU node, the spectrum sensing can be performed by co-

operation between CR nodes, spatially apart. This cooperation can be done in a

distributed fashion, or a central fusion center.

One can make the spectrum sensing more agile by performing it sequentially, i.e.,

continue sampling until the decision variable reaches one of two thresholds [11, 19].

It was shown that sequential spectrum sensing is on average four times faster, for

the same probabilities of misdetection and false alarm, than a fixed-sample-size

detector, which was earlier referred to as energy detection [19, pp. 53–56]. This

scheme enables the CR to sense in wideband or low-SNR scenarios.

Spectrum sensing, in this thesis, is based on a simple energy detection. So, the

complete block diagram of the CR side will be according to Fig. 3.1. In this setup,

the received signal is down-converted and filtered in the designated band. Then,

the energy and a decision variable, e.g., the log-likelihood ratio (LLR) of energy

samples, are calculated. By comparing this decision variable with a threshold, a

decision for transmission is finally made. The decision for transmission in the next

slot is denoted by uk+1 in this thesis and is equal to zero or one for no transmission

or transmission, respectively. We cover the details of this model in the next sections
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Figure 3.1: Cognitive radio block diagram

in this chapter. Details about the strategy for deciding to transmit are given in

Chapter 5.

3.1.1 Sequential probability ratio test with parallel thresh-

olds

The SPRT has particular characteristics, mentioned earlier in this chapter, which

are appealing in the context of cognitive radio research, where the primary goal is

to make use of under-utilized radio spectrum.

In the Wald model [52], a test statistic, normally a probability ratio or a function

of it, is accumulated until it reaches one of two (or many) thresholds γ0i and γ1i as

depicted in Fig. 3.2. Here, it is assumed that the threshold functions are designed

such that the longest detection time is (much) shorter than the PU slot time. If

the test statistic passes the lower threshold γ0i , the test will announce no PU signal

(q̂k = 0), and if the test statistic passes the upper threshold γ1i a PU signal detection

is announced (q̂k = 1). After making a decision, a new test will start.

3.1.2 Sequential spectrum sensing with varying thresholds

The Wald SPRT algorithm is well known in the spectrum sensing literature. How-

ever, its downside is apparent when there is a mismatch between design and actual

parameters of the distributions, or when there is a change of distribution in the

middle of the test (which is not normally studied in the CR context). Under these

conditions, the maximum number of samples needed by the SPRT to reach a de-

cision could be rather high [53–57]. In this thesis, we introduce a certain class of

truncated SPRTs in spectrum sensing to ensure that the test would be terminated

at a certain number of samples. Two different types of this class of thresholds are

studied, and it was shown with these truncating thresholds, without too much loss

in ASN, in 90% of the cases the detection time is improved.

3.2 PU transmission model from CR perspective

The goal of developing a CR is to exploit time-frequency vacancies. To take advan-

tage of time-frequency slots that are not used by the PU, the CR must be aware
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of the PU activities. In the rest of this thesis, it is assumed that the CR has a full

buffer to reuse the spectrum whenever it is available.

3.2.1 Network of PUs or CRs

The CR will receive the PU signal, which is attenuated by the PU-CR channel,

where also noise may be added. If there is more than one PU in the vicinity of the

CR, the aggregated signal will be received at the CR antenna. It is reasonable to

assume that PUs operating in the same frequency band and are co-located, belong

to the same network, and thus from a CR point of view can be modeled as a single

entity. Since the protection of each one of the PUs is as important as the others, a

network of PUs can be represented by a single but more active PU. If there exists

a network of synchronized, centralized cooperative CRs that observe PU(s), it can

see the PUs as operating on a single Markov model. It should be noted that this

assumption will reduce the complexity of the design. However, to design an optimum

system, a multi-PU model must be considered.

3.2.2 PU-CR fading channel

Another factor in modeling the PU-CR interaction is the channel in-between. Wire-

less channel gains are normally considered as random fading processes, such as

Rayleigh, Rician, Nakagami, etc. [58,59]. For simplicity, it can be assumed that the

fading gain is constant and known to the CR during the operation of this CR.

Another approach to modeling the fading process is to include the fading in

the PU transmission model. Thus, whenever the channel is in a deep fade, it is

assumed that there is no PU transmission, no matter what the real state of the

PU is. Furthermore, in the case where there is no deep fade, the standard PU

transmission model will be deployed. However, there is a caveat to this approach.

If the PU-CR channel is in fade, the CR cannot sense PU activities. Now if the

channel between the CR transmitter and PU receiver is not in fade, interference is

inevitable.

With this brief introduction, a simple two-state Markov model can be used to

represented a wide range of PU transmissions, PU network activities, and even fad-

ing channels. Furthermore, a simple Markov model will simplify the mathematical

analysis for the rest of the derivations. In the next sections, the simplified two-state

Markov model will be presented as the PU transmission model.
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3.2.3 Slotted PU and CR activity

In this thesis, the PU transmissions are assumed to be slotted, since in most of to-

day’s digital communication systems, transmissions are confined to within a packet,

frame, or generally a block structure of some minimum length TF. It is assumed

that the CR is expecting PU activities and vacancies in much smaller slots of length

T ≪ TF.

As discussed in Section 2.1, the existence of a PU transmission in slot k, i.e.,

during time t ∈ [kT, (k + 1)T ), is denoted by the state qk = 1, and its absence is

denoted by qk = 0.

Smaller slot sizes T improve the agility of the CR to adapt its transmission to

the PU activity. In this thesis, for simplicity, we will assume that the CR slots are

synchronized to the PU slots. However, due to the small slot length T of the CR in

comparison to the PU frame length TF, any mismatch in synchronization will not

cause major performance degradation.

3.3 Signal and noise models

Due to the noise and other channel impairments, the CR is unable to directly observe

qk. This gives rise to three different models used in the included papers. After that,

in the Section 3.3.2, the idea of observation censorship due to the CR transmission

is modeled.

3.3.1 Sampling receiver

In the following sections, the uncertainties in signal and noise are modeled as Gaus-

sian random processes. The receiver front end is an energy detector whose output

yk is written as

yk ,
K−1
∑

i=0

|r (kT + iTs)|
2 (3.1)

where r(·) is the complex envelope of received signal low-pass filtered to the PU

signal bandwidth W , T is the period in which energy is collected, and Ts is the

sampling time. The energy samples are accumulated, and K is the total number of

samples in each CR time slot. In the block diagram in Fig. 3.1, i and k denote the

time index for the received signal and the CR slot index, respectively.

We assume that the received PU signal can be modeled as a Gaussian random

process. The Gaussian PU signal model is commonly assumed in the literature [38],

[6], and it is reasonable for many combinations of PU signal formats and channels
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Figure 3.2: Signal model for four papers

(fading as well as nonfading). Assuming the PU signal to be a Gaussian signal

is a worst-case scenario. Any other signal model improves the fundamental limits

on performance of spectrum sensing. A Gaussian signal model can also be seen in

practice, e.g., the OFDM signal is very close to Gaussian.

If we select Ts such that Ts ≫ 1/W , then the samples r(iTs) are approximately

statistically independent. Note that K is constrained as K ≤ T/Ts.

In state qk = 0, the noise n(iTs) ∼ CN (0, σ2
0) is a zero-mean complex circular

Gaussian sample with variance σ2
0 , and the received signal will be r(iTs) = n(iTs).

Thus, yk is, after normalization, chi-square distributed with 2K degrees of freedom.

Since noise and channel uncertainties exist in the CR observation of the PU

signal, the true PU state from Fig. 3.2 is not observable. Depending on the state of

the PU, a continuous energy level that consists of noise only, or signal plus noise,

is observed. This model corresponds to a continuous-output hidden Markov model

(HMM) depicted in Fig. 3.2. In Paper A, for further simplification, the energy is
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Figure 3.3: Discrete-output HMM model in Paper A

thresholded to give an estimate of the current PU state. Thus, the system model

corresponding to Paper A is a discrete-output HMM presented in Fig. 3.3.

3.3.2 Simultaneous or separate sensing and transmission

In papers A and B, we assume that spectrum sensing is possible also when the CR

is transmitting. One can achieve this by, e.g., self-interference cancellation if the

CR transmission power is small enough. Previously, the transmission and reception

in the same band at the same time has been shown to be possible, in theory, e.g.,

in [60] as well as in practice, e.g., in [61].

However, usually, due to the hardware limitation, e.g., complexity and cost,

there is only one antenna and a duplexer that alternates between transmission and

reception. This stops the CR from observing all the PU states. We say that the PU

observations are censored.

Of course, the CR’s intention is to transmit whenever the PU is not active, i.e.,

it is in qk = 0. But this cannot always be achieved due to the noise and PU signal

uncertainties. Further, if there exists any observation censorship, the job is even

more difficult. Eventually, a collision might happen. From the CR point of view,

whenever uk = 1, the PU state is censored. This censorship causes the following

problems for CR decision making

• the CR cannot observe all PU activities,

• the censorship of observation is dependent on the previous CR transmission

decisions and ultimately on all previous PU states,

• statistics of CR decision variables vary a lot with just changing the threshold.

Thus, the strategies provided in papers A and B cannot address the scenario with

the observation censorships. In paper C, we address this scenario with censorship,

which calls for a new decision variable and algorithm for computing it.
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Chapter 4
Performance measures

The purpose of a CR is to reuse radio spectrum as efficiently as possible. To judge

CRs and compare them, we need performance metrics. No matter how well the

spectrum sensing is performed, a CR is not able to perfectly predict the future

activities (states) of the PU in advance. Thus, the CR will eventually interfere with

the PU. The amount of this interference should be kept below a certain level. These

measures can compare CRs from different perspectives, such as

• performance of CR spectrum sensing,

• performance of CR in presence of PU with certain transmission model,

• performance of CR transmitter to CR receiver link,

• the amount of interference of CR(s) for PU(s) or vice versa,

• the delay corresponding to performing spectrum sensing,

• the power consumption of the CR.

This thesis cannot cover all these items. The performance measures related to the

contributions in this thesis are covered in the next two sections. After that, some

other metrics are presented in the last section of this chapter.

4.1 Performance of spectrum sensing

Spectrum sensing is a detection algorithm performed to determine what is the cur-

rent state of the PU. Thus, it inherits the same performance measures used in

detection theory. Detection, which is embraced in the radar area, has long been

used for identifying and testing the presence of a target. The performance of radar

is measured by the probabilities of misdetection (PM) and false alarm (PFA), which
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are used in the field of hypothesis testing or detection. Normally, to design a detec-

tor, one keeps the probability of false alarm fixed and minimizes the probability of

misdetection, so-called constant false alarm rate.

The performance of a detector can be characterized by plotting the probability of

1−PM vs. PFA, which is called receiver operating characteristic (ROC) [19, pp. 56].

The ROC is also used for characterizing and evaluating spectrum sensing algorithms.

A detector with a higher ROC is normally preferable.

In the context of CR, the probability of misdetection is related to the risk of

interference with the PU. The probability of false alarm can represent the spectrum

opportunities that are missed by the CR. Thus, PM and PFA can be written as

PM = Pr{q̂k = 0 | qk = 1},

PFA = Pr{q̂k = 1 | qk = 0}

where q̂k is the PU state estimate at the CR after observing energy samples from

the PU signal up to yk. The next section will demonstrate better measures that

depend on the PU traffic.

Another factor that comes into play, is when one uses sequential detectors for

spectrum sensing [11, 19]. These algorithms do not take a fixed number of samples

for making a detection. The number of samples varies test by test and is a random

variable. These detectors can achieve a given probability of misdetection and false

alarm (under certain SNR conditions) by adjusting their thresholds. However, de-

pending on the shape of the thresholds, the distributions of the detection time may

differ. One can compare the mean detection time or a certain percentile of detection

time.

4.2 Model-based performance metrics

The CR is interacting with the PU in the spectrum. Thus, considering the per-

formance of a CR without considering the interacting PU is not enough. To have

a reasonable measure for assessing CR performance, one might consider the inter-

ference caused by the CR for the PU and the spectrum vacancies not used by the

PU and utilized by the CR. To achieve that, we have introduced two new measures

called interference ratio (IR) and utilization ratio (UR). The CR’s goal is to take

advantage of any spectral opportunities and transmit in them. However, due to

channel and noise uncertainties, it may create unintentional interference for the PU.

The CR transmission strategy decision is denoted by uk+1, where uk+1 = 0 and

uk+1 = 1 represent no transmission and transmission, respectively, in slot k + 1.

This decision uk+1, in the most general case, is a function of y1, y2, . . ., yk. Inter-
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ference will happen whenever the CR transmits at the same time as the PU. Thus,

the interference ratio (IR) ρ is defined as [62]

ρ , Pr{uk+1 = 1|qk+1 = 1}. (4.1)

Utilization of the spectrum occurs whenever the CR transmits in a vacant time–

frequency slot. Thus, we define the spectral utilization ratio (UR) as

η , Pr{uk+1 = 1|qk+1 = 0}. (4.2)

Any CR would like to have a strategy that keeps ρ below a specified level, say

ρmax, and at the same time maximizes the utilization ratio η. Hence, we call a

transmission scheme that maximizes η while ρ ≤ ρmax, an optimal transmission

strategy for the given model parameters. Usually, increasing η causes ρ to increase.

Designing a CR system based on the definition of UR and IR is advantageous

compared to designing one based on PFA and PM because the CR does not have

to over-protect the PU for the sake of not violating the IR requirement and thus

might increase UR. Another property of IR and UR is the relationship with known

communication metrics such as rate and probability of error. Without any particular

assumption on the CR’s modulation and coding, a CR average rate, as defined in

Paper A, Sec. III-B, is calculated based on UR and IR as

R = Rb(ηπ0 + ρπ1) = Rb (π0(η − ρ) + ρ) , (4.3)

where R and Rb are the average CR transmission rate in bit/s and the data rate

for continuous CR transmission in bit/s, respectively. Thus, for small ρπ1/π0, R is

approximated by Rbπ0η. In the same way, the probability of error can be derived

for the CR as

Pr{error} =
(

Pr{error|qk+1 = 0, uk+1 = 1}ηπ0 (4.4)

+ Pr{error|qk+1 = 1, uk+1 = 1}ρπ1

)

/(ηπ0 + ρπ1).

The first term in (4.4) includes the probability of error in the absence of the PU

transmissions, and the second term includes the probability of error in the presence

of a PU transmission. In this thesis, the focus is mainly on the UR and IR.

4.3 Other performance metrics

In different publications, many well-known measures are introduced [8,10,22]. Here,

some of them are reviewed. In the CR optimization problem, researchers considered

short-term and long-term power constraints. Usually, a Gaussian CR-PU channel
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is considered and the amount of interference the CR causes for the PU is measured

in the received CR power at the PU receiver. In these situations, usually, the per-

formance of CR is also characterized in rate (or even capacity) for a given Gaussian

channel. So, the purpose of CR is to adapt its power to a certain level, at which

PU can safely transmit while at the same time maintaining a rate that is feasible

for the CR.

In [63], the notions of achievable rate and capacity for cognitive networks were

used. Information-theoretic measures can express the bounds for CR performance

in the presence of cooperative and non-cooperative PUs.

Indeed, as in any other communication system, in cognitive radio scenarios, the

performance of PU link or CR link can be specified in rate and probability of error [9].



Chapter 5
Model-based CR transmission strategy

Cognitive radios are designed to serve the purpose of exploiting the vacant time–

frequency slots in the spectrum. This quest has some major obstacles in the way.

The first and foremost issue with reacting to the spectrum state change is causal-

ity, i.e., the CR only observes the spectrum state that has already past. This makes

it more difficult for the CR to find the time-frequency holes ahead of time. Unless

the PU conveys its future states prior to transmission to the CR (or there exist

tables of PU operations), the CR is not able to know PU states ahead of time, with

certainty. In this case, the PU traffic model can play a crucial role in predicting the

future vacancies of the spectrum. The models discussed in this thesis, as explained

in Chapter 2, are based on the Markov model and thus they are stochastic. This

means that, even with PU statistical model knowledge, the predicted PU state might

not match the actual PU transmission state. Fortunately, observing a large enough

number of PU states, normally through another random process, e.g., channel or

noise, can give the CR a pretty good perception of PU activity and its potential

future states. Moreover, one can estimate the SNR and PU model parameter by

just observing the received signal.

On top of the PU traffic uncertainty, there are all the uncertainties of PU-

CR channel and CR receiver noise. They occlude the CR’s perception of the PU

state. The job for the CR, without having the exact previous PU states, is much

more difficult. Thus, in the presence of channel and noise uncertainties, having an

accurate signal model that includes the PU traffic is highly desirable.

As explained in Chapters 3 and 4, the intention of the CR is to reuse spectrum

with a strategy that decides whether to transmit or not. This strategy, given all

the previous observations from PU and CR transmission decisions, makes a decision

denoted by uk+1, which can be zero or one. In this chapter, the methods introduced

in this thesis as well as some other spectrum reutilization methods are reviewed.
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5.1 Markov-model-based strategies

The Markovian behavior of network entities, as discussed in Chapter 2, makes

Markov models a good choice for modeling PU data traffic in CR networks [64].

In this section, we briefly review two classes that are based on Markov model as-

sumptions for PU traffic. This first class of such attempts are based on Markov

decision processes (MDP). MDP is a process in which transition probabilities be-

tween states are dependent on the action taken. In MDP, there exists an immediate

reward function received after transition between two states [65]. Now the goal is

to maximize the reward by choosing proper actions. With the help of optimization

methods such as value iteration or policy iteration, an appropriate policy can be

found. MDPs have been implemented in dynamic spectrum access [26, 39, 66, 67].

When perfect knowledge of PU states is not available to the CR, an extension

of MDP, which is called partially observed MDP (POMDP), is applicable. Thus,

POMDP does not have direct access to the Markov states, but rather observes them

through another random process, e.g., noise. POMDP better captures the difficulties

of uncertainties in the PU-CR channel and CR receiver noise. A lot of research has

been done that focuses on CRs based on POMDP, such as [29, 31, 68–71]. Often,

exact solutions of POMDPs are computationally intractable. Hence, there exist

several approximate solutions such as grid-based algorithms or principle component

analysis.

The second path in the model-based CR strategies, which we used in this the-

sis, is prediction-based strategies. In this class, the strategy predicts the next PU

state(s) using one or all observations up to the current one [34, 35, 72]. There ex-

ist different spectrum prediction methods, such as HMM-based, neural-network-

based, Bayesian-inference-based, moving-average-based, and autoregressive-model-

based [72]. Markov models play a crucial role in many strategies [36]. The strategies

provided in the contributions of this thesis are in this class. In Papers A and B, we

developed a dynamic spectrum access strategy entitled a-posteriori probability log-

likelihood ratio (APP-LLR)-based spectrum reutilization strategy. In Paper C, we

extend the strategy to the case where CR is unable to sense during its own transmis-

sion and those observations are censored, so-called censored a-posteriori probability

log-likelihood ratio (CLAPP).

5.2 APP-LLR-based strategy

There are many challenges associated with CR, mainly due to the spectrum sens-

ing problems. We introduce a new model for the inclusion of the PU model in

decision making regarding CR transmission. This model not only includes the last
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Figure 5.1: Proposed APP-LLR based opportunistic access strategy

energy observation but also takes all observations before the last one into account.

This method considers all information available both in the system model, and the

observations from the spectrum.

The proposed system is depicted in the block diagram presented in Fig. 5.1. In

this figure, after sampling a down-converted filtered signal, its energy is calculated

and accumulated for a certain given period. Based on the energy of the signal, the

a-posteriori probability (APP) LLR is computed. For the transmission strategy, a

threshold is needed as follows

uk+1 =







1, if zk ≤ θl

0, if zk > θl
, (5.1)

where zk , log
Pr{qk+1=1|yk}

Pr{qk+1=0|yk}
, θl and yk , [y1, y2, · · · , yk] are the a posteriori log-

likelihood ratio, the threshold for zk, and all observations up to kth slot, respectively.

In Papers A and B, we use the same model with minor modifications. In Paper A, the

threshold can be calculated with a closed-form expression. In Paper B, to find the

threshold, we can calculate the inverse empirical cumulative distribution function

(ECDF) of the LLRs at the level of allowed interference ratio for the samples, which

are corresponding to the next state of the PU being one. However, knowledge of the

PU state, even for a training period, is not available in practical situations. Thus, it

is needed to estimate the PU states for a certain training period, based on estimated

PU states, estimate the ECDF of the LLR values. For this period of threshold

estimation, the forward-backward method is used for PU state estimation [46].

5.3 CLAPP

As it was explained in Section 3.3.2, due to the hardware limitations, usually, the

CR cannot sense and transmit in the same band at the same time. Thus, the whole

energy samples vector yk is not available and some energy samples are missing.

This calls for revisiting the procedure of calculating the LLRs and also of finding
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the threshold. The transmission strategy has access to the spectrum’s energy yk

only when uk = 0. In other words, the CR will observe the list y′
k,

y′
k ,







y′
k−1, if uk = 1,

[y′
k−1 yk], if uk = 0

, k = 1, 2, . . . , (5.2)

where y′
0 = [ ], i.e., an empty list. Obviously, the length of y′

k is smaller than or

equal to k. Here, the LLRs shall be calculated based on y′
k. However, y′

k is very

different from yk and thus also its CDF. The reason is that the distribution of y′
k is

dependent on the previous CR transmissions.

In the CLAPP algorithm, we calculate the LLRs based on a statistic from avail-

able observations. This statistic is calculated recursively. When observations are

missing, CR is using the prior knowledge to predict the PU future states. The details

are developed in Paper C.

In this strategy, we use the same idea as APP-LLR to decide whether to transmit

or not by thresholding CLAPP LLRs. However, in this strategy, choosing a threshold

influences which observations must be censored and thus the LLRs. The threshold is

found by a bisection search method. To do so, we need the IR as a function of model

parameters (a01, a10, σ
2
0 and σ2

1) and the threshold. Given the model information,

we can calculate the IR numerically. Bisection needs a condition of monotonicity of

IR as a function of the threshold, which is demonstrated in Paper C.



Chapter 6
Contributions and conclusions

This thesis aims to propose robust and reliable algorithms with low complexity for

spectrum sensing and reutilization. To reach this goal, we developed a set of model-

based strategies that allow a CR to coexist with a PU operating based on a Markov

chain.

First, we start with a discrete-output hidden Markov model (HMM) in Paper A.

In this model, the two-state Markov model is at the heart. The PU signal, after

passing through a noise process, is estimated by thresholding. This model is pre-

sented in Fig. 3.3. In this figure, PFA and PM represent probability of false alarm,

and misdetection, respectively caused by thresholding.

The next step in improving the signal model is to model a received signal by a

continuous-output HMM process in Paper B, which is presented in Fig. 3.2. This

model is more accurate, since there is no hard decision making early in the signal

model, unlike discrete-output HMM.

The Paper C signal model, which is depicted in Fig. 3.2, takes the model in

paper B to a new, more practical level. Paper C considers that the PU signal is

not observed, i.e., censored, during CR’s own transmissions. Thus, the PU signal

observations are not only influenced by noise and PU transmission uncertainties,

but are also disrupted by CR transmissions.

A number of contributions were introduced for covering the decision-making part

of the cognitive cycle. It is shown that the inclusion of a model for the PU allows

the spectrum utilization to increase considerably, which is due to the fact that the

integration of the PU model into the the CR transmission strategy will enable the

CR to have a credible estimation of PU states.

6.1 Contributions

The main contributions of this thesis are found in three appended papers.
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6.1.1 Paper A: An LLR-based cognitive transmission strat-

egy

In this paper, we use a hidden Markov model to form a framework for modeling the

behavior of CRs in the presence of the PU and all the uncertainties. Additionally,

a benchmark for evaluation of CR performance is introduced. Then, using this

foundation and these measures, a new CR transmission strategy is designed and

implemented. This new design ensures that the vacant spectrum is optimally used

conditioned on that the level of interference for the PU, due to all uncertainties

in the model, does not exceed a certain level. We demonstrate a more than 300%

increase in UR compared to simple energy detection for up to 1% allowed IR at the

SNR of −5 dB.

6.1.2 Paper B: On optimum cognitive spectrum reutiliza-

tion strategy

This paper presents an a-posteriori LLR-based cognitive transmission strategy, which

maximizes the spectrum utilization ratio for a given PU transmission model and al-

lowed interference ratio. In Paper B, we generalize the discrete-output HMM in

Paper A to a continuous-output HMM. Two methods for calculating the threshold

for this strategy in practical situations are presented. One of them performs well

when the PU activity level is high, for all SNRs, or when the PU activity level is

small and the SNR is high. We prove that the other method never violates the al-

lowed IR. In addition, an upper bound for the UR of any CR strategy is presented.

Simulation results show an improvement of more than 116% in UR compared to

energy detection at an SNR of −3 dB and IR level of 10% for the threshold that

guarantees no IR violation.

6.1.3 Paper C: Sensing or Transmission

This paper extends the contribution in Paper B by considering that the CR can

either transmit or sense but not both at the same time. In this scenario, the obser-

vations during CR transmissions are censored. This calls for a new algorithm that

handles missing observations. In this paper we introduced a new strategy (CLAPP),

which uses the prior information whenever an observation is censored. Previously,

some statistics, e.g., forward and backward variables, for censored observations in

the following cases, were calculated [73]. However, there were no statistics calcu-

lated from all censored observation through a deterministic strategy to the best of

our knowledge. In CLAPP, LLRs also indicate how much the CR can safely con-

tinue to transmit before sensing, without interfering with the PU transmissions more
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that ρmax. Thus, CLAPP inherently saves energy for sensing. Moreover, CLAPP

provides an easy way to compute LLRs with low complexity.

CLAPP simulation results show a 52% gain in UR over the best censored energy

detection scheme for a maximum IR level of 10% and an SNR of −2 dB.

6.1.4 Paper D: Wideband sequential spectrum sensing with

varying thresholds

In this contribution, sequential detectors with varying thresholds are used for energy-

based spectrum sensing. The performance of this class of sequential spectrum sensors

is evaluated in terms of the probabilities of false alarm, misdetection and detection

distributions. This performance is compared with the standard fixed thresholds

introduced by Wald [52]. It is shown that for an SNR of −10 dB, among tests with

Wald and triangular thresholds with similar probabilities of misdetection and false

alarm, triangular performs 54% faster, in terms of maximum detection time (90

percentile).

6.2 Conclusions

This thesis introduces strategies that include a PU model and all the observations

available at the CR even if some PU observations are censored by CR transmissions.

To evaluate the performance of CR in the presence of a PU, the UR and IR perfor-

mance metrics are introduced. Simulation results show a considerable improvement

in the CR performance, in terms of UR, by utilizing the PU state model and all

the previous observations. We have proven that APP-LLR is the optimum strategy

when all the energy samples are observed. In addition, an upper bound for all CR

strategies operating in the presence of a Markov-model-based PU is derived.

The models and methods introduced in this thesis alongside other state-of-the-

art technologies such as software-defined radio can be used to remedy major CR

challenges mainly SNR wall issues. Inclusion of the PU traffic model in the CR

transmission decisions and using sequential agile spectrum sensing can makes the

CR more useful. Furthermore, since the models and methods introduced in this

thesis are simple, they can be applied to a broad range of applications and PU

networks. Even one might consider these strategies to be deployed in current network

infrastructures to use spectrum, licensed or unlicensed, more effectively. A crucial

point in the deployment of these tools is the knowledge of model parameters. It

is mentioned that these parameters can be estimated fairly accurately. Thus, real-

world implementation of these strategies, specially CLAPP, is feasible due to their

simplicity.
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Another challenge regarding utility of strategies, provided in this thesis, is cal-

culating thresholds. Given the model parameter knowledge, one can compute the

thresholds for corresponding scenarios. However, storing thresholds in a big lookup

table, for given parameters, is not practical.

Moreover, the performance measures introduced in Chapter 4, UR and IR, can

be used for evaluation of CR performance by regulatory organizations, e.g., FCC or

PTS.

To summarize, the overall advantages and disadvantages with the methods de-

veloped in this thesis are as follows.

Advantages

• By employing a simple two-state Markov model for the PU traffic, we gain

the advantage of being able to predict the future behavior of the PU to some

degree with moderate CR complexity.

• Strategies have low complexity and can be implemented rather easily.

• In the CLAPP algorithm consideration of observation censorship due to self

transmissions makes it appropriate for less expensive implementations.

• Introduction of UR and IR, as performance metrics, makes assessment of a

CR performance, from a regulatory standpoint, more practical.

Disadvantages

• A more accurate model for the PU traffic would lead to better prediction of the

PU, but at the price of more CR complexity and sensitivity to model errors,

• The current framework treat all CR transmissions as harmful to the PU re-

ceiver. A better modeling of the CR-to-PU receiver channel could enable more

spectral re-utilization,

• These strategies are dependent to the model parameters and proper thresholds.

In real-world applications, these parameters should be estimated fairly well to

enable high performance

6.3 Future work

We tried to choose a general framework for modeling the PU and CR. There still exist

some assumptions or considerations that can be further improved or generalized. In

this section, some examples of future extensions to this thesis are reviewed.
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In Chapter 2, a simple two-state Markov model and some other Markov-based

models are introduced as candidates for PU traffic model. Throughout this thesis,

a two-state Markov model is used. One way that might potentially improve the

performance of the system in more complex PU traffic is the use of semi-Markov

models.

Another extension to the PU traffic model is modeling multiple PUs on the same

band as well as modeling multi-band PU(s). One can even include the CR traffic

model into the transmission strategy.

As explained before, knowledge of the model parameters is important in this

thesis. The effects of the model parameter estimation on the strategies performance,

specially CLAPP, can be studied. Moreover, this estimation error can be included

in the strategies to have more robust strategies.

Chapter 3 reviews the CR signal model. In this thesis, we have used energy

detection as the spectrum sensing. If there exists more information about the PU

signal, a matched filter can be used instead. This can increase the SNR and improve

the UR of the system considerably.

In addition Chapter 3 also includes the PU-CR channel in the PU model and

channel gain influencing the SNR. To better capture the channel behavior, the chan-

nel can also be independently modeled. One can even consider two-state Markov

models for all the channels between PUs’ and CRs’ transmitters and receivers.
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