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A Linear Approximate Acreage
Allocation Model

Matthew T. Holt

It is shown that the first-order differential acreage allocation model developed by
Bettendorf and Bloome and by Barten and Vanloot, and based on certainty
equivalent profit maximization, may be extended to a levels version. The levels
model, referred to as a linear approximate acreage allocation model, is potentially
useful when panel or cross-sectional data are employed. An empirical application
with U.S. state-level corn flex acreage data for the period 1991-95 indicates the
feasibility of the approach. Estimated price and scale elasticities are generally larger
than previous estimates, and are perhaps indicative of acreage response under the
provisions of the 1996 Farm Act.
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Introduction

Over the years there has been considerable interest in estimating agricultural acreage
supply equations (see, e.g., Burt and Worthington; Gallagher; Lee and Helmberger; Holt
and Johnson; Shonkwiler and Maddala). Given the long history of government interven-
tion in agriculture in the U.S. and elsewhere, a primary goal of these studies typically
has been to develop a set of acreage response elasticity estimates, presumably for use
in policy analysis and forecasting. In recent years, the basic acreage supply response
framework has been extended to include, among other things, risk effects due to price
and production uncertainty (see, e.g., Just; Chavas and Holt 1990, 1996; Krause, Lee,
and Koo; Krause and Koo; Lin; Pope 1982; Pope and Just; Traill). Of interest is that
most acreage supply models reported in the literature, and especially those that
incorporate risk effects, have not been estimated within a systems framework. That is,
total acreage constraints ordinarily have not been incorporated into model specifications
in a manner a analogous to that for other agricultural supply models (e.g., Chambers and
Lee). The implication is that estimates of acreage scale elasticities defined as the
response of a particular crop to an increase in total agricultural land typically have not
been reported.

The few studies that have examined acreage supply decisions in a systems frame-
work include Bewley, Young, and Coleman; Binkley and McKenzie; Coyle; Moore and
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Negri; Bettendorf and Blomme; Wu and Segerson; and Barten and Vanloot. Only
Bewley, Young, and Coleman; Bettendorf and Blomme; and Barten and Vanloot report
estimates of acreage scale elasticities. Further, only the empirical models developed by
Coyle; Bettendorf and Blomme; and Barten and Vanloot are based on formal economic
models, and therefore are the ar only ones for which homogeneity and reciprocity
(symmetry) conditions may be logically imposed and tested.l

The Bettendorf and Blomme-Barten and Vanloot (BB-BV) model is of particular
interest in situations where output price or revenue risks are potentially important in
acreage planting decisions. As these authors show, it is possible to derive a system of
(linear) acreage allocation models by using the basic mean-variance utility framework.
The system they estimate is similar in its specification to Theil's Rotterdam demand
system, and hence represents a first-order differential acreage allocation model. Among
other things, these authors show that estimates of price and scale elasticities may be
readily obtained from their model. There are times, however, when it is neither practical
nor feasible to estimate a first-order differential acreage allocation system of the type
developed by Bettendorf and Blomme and by Barten and Vanloot. Such instances occur,
for example, when either cross-sectional or panel data (with a relatively small number
of time-series observations) are employed.

The purpose of this study is to illustrate that the basic BB-BV framework may be
modified to accommodate panel or cross-sectional data. Specifically, we show that a
levels version of the basic BB-BV acreage allocation model, termed the linear approxi-
mate acreage allocation model, is readily attainable. This model, too, may be practicably
employed in empirical analyses. The usefulness of our approach is demonstrated by
estimating acreage supply response on corn normal flex acres (NFA) for eight Corn Belt
states in the U.S. for the 1991-95 period.2 Estimates of acreage supply response on NFA,
particularly in the Corn Belt region, are of interest to policy makers in the U.S. because
they are indicative of what future agricultural supply response might be in a free
market environment.

In the next section we develop the basic modeling framework. The data used in the
analysis are then discussed, followed by the presentation of the provisional model and
elasticity estimates. Conclusions are offered in the final section.

An Acreage Allocation Model

Here we follow the basic set-up of Bettendorf and Blomme and of Barten and Vanloot,
with several modifications. To begin, we assume a representative producer makes
decisions about which crops to grow in a manner similar to that of an investor deter-
mining the composition of an investment portfolio. That is, we assume a representative

l While Moore and Negri, and Wu and Segerson derived their model specifications by assuming expected profit maximi-
zation, they do not discuss or impose the implied symmetry conditions in their estimated acreage allocation models. Likewise,
Binkley and McKenzie discuss symmetry conditions, but apparently do not use or otherwise test for reciprocity in their
empirical analysis.

2 In essence, normal flex acres represent the share of a farmer's base program acreage for a particular program crop
(ordinarily 15%) that, during the period examined, could be planted to any crop desired without restriction. More impor-
tantly, there were no associated guarantees of direct price or income support from the federal government associated with
flex acres.
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farmer maximizes certainty equivalent (CE) profit, t, subject to a total land constraint.
Of course, in the case of agriculture, important sources of risk include output price and
crop yield uncertainty. Formally stated, the farmer's allocation problem3 is to

(1) max CE(i) = {aTre - 1/2aTZalao - iTa},

where a is an n-vector of acreage levels allocated among n crops, and re = (r, ..., re )T is
an n-vector of expected net returns with typical element given by 4

(2) i = E(pyi) = PiYi + cov(pi, yi) - i,

where E is an expectation operator; pf is the expected per bushel price of the ith crop; ye
denotes the expected yield per acre of the ith crop; cov(pi, yi) denotes the covariance
between price and yield; and ci is the per acre cost of production. 5 In (1), the {n x n}
matrix Z is a symmetric, positive definite second-moment matrix of expected returns
per acre. That is,

(3) Z = E [r- E(r)][r- E(r)] }

var(rl) cov(rl, r2 ) ... cov(r, rn)

cov(rl, r2) var(r2 ) ... cov(r2, r )

cov(r l , r) cov(r2 , rn ) ... var(r n,)

where

var(ri) =E[r i- r] 2 (variance of returns for ri),

and

cov(ri, rj) = E[ri -r [r - r ] (covariance of returns between ri and rj).

Also in (1), A E ++ is a scalar coefficient of absolute risk aversion, and iTa = Ein 1ai = at
denotes the land constraint, where i = (1, ..., 1)T is an {n x 1} summation (unit) vector
and atot represents total acres available. In this study, total acres available (aot) is
treated as being exogenously determined.

The Lagrangian function associated with the optimization problem in (1) is

(4) max L(a, p) = aTre - l/aTa - u[atot - iTa],
{a,})

3 Of course, formal econometric models based on specifications similar to (1) have been used previously in agricultural
supply response analysis. For example, Pope (1978) and Love and Buccola report estimates of systems of agricultural
production equations derived from a framework similar to that specified in (1). Additional commentary on specification of
econometric supply models based on CE profit maximization may be found in Pope (1982).

4 Here a superscripted T denotes vector (matrix) transposition.
5 Recall, for any pair ofjointly distributed random variables x andy, that E(xy) = E(x)E(y) + cov(x, y). See Bohrnstedt and

Goldberger for details.
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where p e %+ is a scalar Lagrange multiplier associated with the total acreage constraint.
By using summation notation, the Lagrangian function (4) may be alternatively stated
as

(5) max L(a, ... an, p)
{a1,....a n l }

n n n n

n

= a~r~e- 1/XI i afvar(r,) + ~ j &.1- )a~acov r cv rjr
i=1 i1 i=1 j=1

+ .at oi=l

where 6j = 1 if i =j, and 6ij = 0 otherwise. The necessary first-order conditions derived
from (5) are as follows:

aL n

(6a) r - aivar(ri) + E (1- 6i)acov(ri, r ) - =0, i 1, ... n,
ai j=l

and
3L n(6b) a - aj=O.
du j=l

Upon inspection, it may be readily verified that (6a) and (6b) are linear in the n + 1
unknowns, {al, ..., an} and pu. By rewriting (6a) and (6b) so that the endogenous variables
(i.e., {al, ... , an} and ,i) are isolated on the left-hand side and the predetermined variables
(i.e., {rl, ... , re} and ato ) are on the right-hand side, the first-order conditions in (6) may
be expressed alternatively as

(7a) alXvar(r l) + a2 Xcov(rl, r) + ... + aXcov(r1, r1) + p = r[,

(7b) alXcov(r l, r2 ) + a2Xvar(r2) + ... + ancov(r2, rn) + p = r2 ,

(7c) alXcov(r l , r2) r + acovar(r, r) + ... + avar(r) + = r,

(7d) al + a2 + ... + a = atot.

In matrix form, the linear system in (7) may be written as

(8)

Xvar( r) X cov(rl, r2 ) ... cov(rl, r, ) 1

Xcov(rl, r 2 ) var(r2 ) ... Xcov(r2,r)) 1

Xcov(r l, r) Xcov(r 2, r) ... Xvar(r,) 1

1 1 ... 1 0

al

a2

an

p

e

rl
e

r2

rn

atot

386 December 1999

I L

9

I 
� l

I 
I

I



A Linear Approximate Acreage Allocation Model 387

or, more compactly, as

(9)

where

var(rl) cov(r l, r2 ) ... . cov(rl, r ) 1

... X cov(r 2, r) 1

... Xvar(rn) 1

... 1 0

(an {n + 1} x {n + 1}
matrix);

x = [al, a2, ..., an, ]T

b = [rf, r2, ..., ri' atot[ 2

(an {n + 1} x 1 vector);

(an {n + 1} x 1 vector).

By using the {n x 1} summation vector i, and by using the definition of the second-
moment matrix Z in (3), we may represent the matrix A in linear equation system (9)
as

(S) i]
(10) A i 0iT ]•

Recall that Z is, by definition, a symmetric, positive definite matrix, and that under
constant absolute risk aversion (CARA) X. is a positive scalar constant. It therefore
follows that the {n x n} matrix M, defined as M = AX with typical elements Mij = Xvar(ri)
and Mij = Acov(ri, rj), i t j, also will be a symmetric, positive definite matrix, further
implying that M 1 exists. By noting that x = (a, 1 )T and b = (r, att)T, it follows that the

linear system in (8) may be expressed as

(11)
M i a re

.T ii I = I. I[II ta ]i T 0 A atot

To solve (linear) equation system (11), we need only apply the partitioned inverse
rule. Recall, for a linear system Ax = b, where A is an {n + 1} x {n + 11 matrix, that if A
may be written as

1All A12

A21 A22

Ax = b,

Xcov(r l , r2 )

Acov(rl, r )

1

kvar(r 2 )

cov( r 2, rn)

1

and
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and if Al exists, then by the partitioned inverse rule, the inverse of A is given by

1 1' AI All + AI,2F 2A 2F 1A1) -A1 1A12 F2(12) A`- =
A2' A -F 2A2 1 A F2

where

(13) F2 = (A22 - A2 A1A, 2 )1 .

In (12), I, is an {n x n} identity matrix (see Schott, pp. 247-48, for additional details).
Terms in matrix A in (11) corresponding, respectively, to All, A12, A21, and A22 in (12)
are as follows:

(14a) All = M = i, A12 = i,

(14b) A2 1 = iT, A22 = 0.

Substitution of (14) into (12) and (13) yields

(15) F2 = (0 - iTM-i)-l = (iTM-li)-1

and therefore

(16) A- x M=M i - 1(16) A-` [M M i 1 Ml(In -i(iTM-li) - liTM - l) M-li(iTM-li)-l

iT 0 (iTM-i)-liTM-1 _(iTM- 1i)-1

Note that the term (iTM-1i)-l in (15) and (16) is a (strictly positive) scalar. Now, the
solution to (11) is obtained by premultiplying both sides by A-1, yielding

a M-l(I - i(iTM-li)-liTM-1) M-li(iTM-li)- 1 r
(17) 1 i

J Lj (iTM- 1i)-liTM-1 iM-(iTM- i) - 1 atot

The solution for the n-vector a, the vector of optimal acreage allocations, may be
obtained directly from (17):

(18) a = M-li(iTM-li)-la + (M- 1 - M-li(iTM- 1i)-iTM-1)re.

Alternatively, the n-vector of optimal acreage decisions in (18) may be expressed com-
pactly as

(19a) a = ba + S*re,

where
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(19b) b = M-li(iTM-i) - 1

and

(19c) S* = M-1 - M-i(iTM-li)-liTM-

= M-1 (iTM-li)-lM-liiTM-1.

To explore the restrictions inherent in (19), note first that matrix S* as defined in
(19c) is symmetric (S* = S*T). This follows because iiT is symmetric and because M = Al
is, by definition, symmetric, so that M-1 is also symmetric. Further, post-multiplying S*
by i yields

S*i = (M- 1 - M-li(iTM-1i)-liTM-1)i

= M-li M-li(iTM-li)-liTM-li

= M-i - M-li = 0.

That is, S*i = 0 must hold. By similar arguments, it follows that iTS* = OT must also
hold. In other words, S* will be at most of rank n - 1. Now, premultiplying b in (19b) by
i gives

iTb = iTM-li(iTM-i) - = 1.

Consequently, the linear restriction iTb = 1 must hold as well.
To obtain a system ofn (linear) acreage allocation share equations, simply divide both

sides of(19a) by at,9 the total acreage variable. Performing this operation and arranging
terms yields the following system of n acreage allocation equations: 6

(20a) u = b + Sre

or, alternatively,

(20b) i = bi + sr, i1,..., n,

where S is defined such that S = S*/atot and U = a/atot, an n-vector of acreage allocations
(shares).

The system in (20) is an acreage allocation system. By making suitable stochastic
assumptions, the system's parameters may be estimated econometrically. 7 Of interest
is that the theoretically appealing properties of symmetry, homogeneity, and adding up
may be readily maintained in estimation. Also, in equation system (20), the matrix S is

6 Coyle derives a set of acreage equations nearly identical in specification to those in, respectively, equation systems (19)
and (20) by assuming (expected) profit maximization and by applying duality theory.

7 Alternatively, it is always possible to specify (20) so that the parameters in the matrix M* = at M, as defined in (19), are
estimated directly. Given that such an approach results in an otherwise linear model being transformed into one that is
nonlinear, there appears to be no obvious advantage to doing so.
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a positive semi-definite matrix such that xTSx > 0 for all x not proportional to i. If
necessary, this "positivity" condition may be maintained in estimation by using the
Cholesky factorization S = CTC and estimating the Cholesky terms in C directly as
described by Barten and Geyskens. The dependent variables in (20) are acreage shares
as opposed to expenditure shares, as might be derived from a cost function or an indirect
production function. Indeed, the system in (20) may be viewed as a levels version of
Bettendorf and Blomme, and Barten and Vanloot's differential acreage allocation
system. Accordingly, the levels model derived here may have more appeal than the
BB-BV specification in situations where cross-sectional or panel data are employed.

Recall that (20) is motivated by the notion that a representative farmer is risk averse,
and therefore seeks to optimally manage the total acreage portfolio. The risk-aversion
parameter and the second moments of returns, however, cannot be separately identi-
fied in estimation. This said, the parameters in the model are easily interpretable in
economic terms. The bi parameters represent acreage scale effects, and therefore show
how much more (less) acreage will be planted to the ith crop if total land availability
increases. In addition, each sii will be positive, indicating that an increase in expected
returns for the ith crop will increase acreage planted to that crop. A negative (positive)
value for si indicates that an increase in thejth crop's expected returns would decrease
(increase) the share of the ith crop in total plantings. These coefficients can be trans-
formed into elasticity formulae as follows:

(21) i = iP =U Jee viJ (price elasticities)
aprJ a uD

and

Oai atot bi
(22) i -i = 1,..., n (scale elasticities).

datot a i Di

The |, coefficients indicate the percentage increase (decrease) in acres planted to the ith
crop due to a 1% increase in total acres available (i.e., due to a relaxation of the acreage
constraint). The eiy have the usual interpretation as own- and cross-price acreage
response elasticities.

An Empirical Application

The linear approximate acreage allocation model described in the previous section is
applied to panel data for corn normal flex acres planted in the eight Corn Belt states
during the 1991-95 period.8 All data were obtained from various sources at the
Economic Research Service (ERS) of the U.S. Department of Agriculture (USDA).9

Specifically, a linear approximate acreage allocation model was estimated for corn
(i = 1), soybeans (i = 2), and a category defined as "other" (i = 3). On average, the share
of corn planted to total corn NFA over this period was 54%, while the share of soybeans

8 The states included are Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin.
9 We are indebted to Bill Lin and Dick Heifner of the Field Crops Branch, Market and Trade Economics Division, ERS, for

supplying much of the basic data used in the analysis.
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in total corn NFA was 33%. It is not entirely clear which crops were planted on the
remaining 13% defined as "other." Several possibilities include oats and winter wheat.
Oats is a relatively minor crop in the Corn Belt region that is also planted in the spring.
Alternatively, winter wheat is planted in the fall and harvested the following summer,
but its role in Corn Belt field crop production is more important than that of oats. As a
practical matter, state-level price and yield data and regional cost of production data are
available for both commodities. For this reason, we originally experimented by using
expected returns for both crops as a proxy for the (expected) returns associated with
"other." Based on this preliminary analysis, we concluded that expected wheat returns
are more representative of expected returns to "other," and so expected winter wheat
returns will be used as a measure of expected returns to the "other" category throughout
the remainder of the analysis.

To implement the model, it is necessary to compute expected returns per acre for each
crop. That is, as indicated in equation (2), it is necessary to calculate expected price,
expected yield, and the covariance of price and yield for each crop in each state over the
sample period. Following Chavas, Pope, and Kao, and Choi and Helmberger, we use
futures prices to represent expected prices. Specifically, average prices in March for
harvest-time futures contracts for corn and soybeans [December Chicago Board of Trade
(CBOT) contract for corn and November CBOT contract for soybeans] are used as a
measure of expected prices for these commodities. Average futures prices during the
previous September for the July CBOT contract are used for winter wheat. These
futures prices are adjusted to an equivalent state-level measure by subtracting the
average expected harvest-time state-level basis. Each expected state-level basis (by)
is, in turn, determined as a rolling weighted average of the observed basis differential
in the month preceding maturity for each contract during the most recent three years.
Specifically, b6 is computed as 1

3
(23) b= e(Ak-f)o(23) btainetiate= Ofkxp s (Plijt-k - fits -k)s

k=l

where j indexes states and t indexes time, and ok are weights such that do = 1/2,
(°2 = 1/3, and (3 = 1/6;11 pit denotes the state-level monthly average harvest-time price
received by farmers, where months represented are November for corn, October for
soybeans, and June for winter wheat; fit is the corresponding monthly average nearby
futures price (December for corn, November for soybeans, and July for wheat). Expected
state-level harvest-time prices (pot) are then determined by

(24) P = fit - be

where fit denotes the planting-time futures price, as described previously, and bit is the
expected basis, as defined in (23).

To obtain an estimate of expected per acre yields, the following formula is used:

10 A similar scheme for computing expected prices-i.e., one that relies upon three-year rolling averages and, moreover,
uses identical values for the ok weights-was employed by Chavas and Holt (1990, 1996).

n
1 In what follows, we us the notation j, I = 1 (Illinois), 2 (Indiana), 3 (Iowa), 4 (Michigan), 5 (Minnesota), 6 (Missouri),

7 (Ohio), and 8 (Wisconsin).
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6
(25) Yt = + 14 E Yijt-k - ma(Yijt- ... , Yijt-6 ) - min(Y-..., Yij- )

where 6i is an adjustment parameter which assures that deviations between observed
and expected yields sum to zero over the sample period. Implicit in (25) is the assump-
tion that farmers view historically very high (low) yields as being unrepresentative
when forming expectations. To estimate covariance between prices and yields, let ui =
Pijt - Pit and jt = Yijt - Yit; i.e., let uijt denote the price expectation error and vit denote
the yield expectation error. The price and yield covariance, cov(pjt, ijt), is then deter-
mined as a weighted rolling average of the product of historical price and yield expec-
tation errors. That is,

3

(26) coV(Pijt, Yijt)= )Uijt-kijt-k'
k=l

where the weights (the ok's) are as defined in (23). Finally, to compute expected per acre
net returns, it is desirable to have state-level cost of production data for each crop.
Unfortunately, such data are not available; historical data on costs of production for
corn, soybeans, and winter wheat are, however, available for the entire Corn Belt or
North Central region from ERS.

With this information, and by using expressions (23)-(26) to construct expected prices,
yields, and price-yield covariances, expected state-level returns (i.e., the rit values) were
computed in accordance with equation (2). These data, along with information on corn-
based NFA acres planted to corn, soybeans, and other crops in the Corn Belt, constitute
the basic information used to estimate the linear approximate acreage allocation model.

The system to be estimated is specified as follows:

n 7

(27) it = bi + E sikri + CilD + Vt,
k=l 1=1

where ca are parameters that denote (fixed) state-level effects (Wisconsin is omitted),
D, are corresponding state-level dummy variables, and Vt is a mean-zero random error
term. The parameter restrictions associated with (27) include: E i bi = 1, i Sik = 0, and

i i = 0 (adding up); Ek Sik = 0 (homogeneity); and Sik = ski (symmetry). Because the
covariance matrix associated with the error terms in (27) will be singular, an equation
must be deleted in estimation (Barten 1969). Accordingly, the "other" crop category is
omitted. Iterated seemingly unrelated regression estimates of (27), with symmetry and
homogeneity restrictions imposed, were obtained by using TSP version 4.3.

Parameter estimates, multiplied by 100, are reported in table 1. To conserve space,
values for omitted ci parameters (i.e., fixed effects parameters) are not reported;
however, they may be obtained by using adding-up conditions. Associated asymptotic
standard errors and asymptotic p-values reported in table 1 were obtained by using
White's heteroskedasticity-consistent covariance estimator. 12

2 Estimates of asymptotic standard errors, t-ratios, andp-values for omitted parameters and for price and scale elasticities
were obtained by using the "Analyze" feature of TSP. That is, estimates of asymptotic standard errors were obtained by using
the delta method, where the variance of an omitted parameter (elasticity) is calculated as a quadratic form of the White
heteroskedasticity-consistent covariance matrix of the parameters. In each case, the vector used in the quadratic form is the
analytical gradient of the omitted parameter (elasticity) with respect to estimated parameters.
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Table 1. Estimated Acreage Allocation Model Parameters

Parameter Estimate Std. Error t-Ratio p-Value

49.536

18.844

31.620

0.199

-0.186

-0.013

0.227

-0.041

0.054

10.997

6.366

12.556

-1.203

11.146

-8.552

-0.973

11.745

15.745

8.120

7.326

7.309

20.987

18.111

b,

b2

b3

811

S12

S13

S22

S23

S33

Cll

C12

C1 3

C14

C15

C16

C1 7

C21

C22

C23

C24

C25

C26

C27

2.565

1.668

2.027

0.028

0.017

0.018

0.027

0.023

0.023

2.208

2.463

2.508

2.509

3.261

3.401

2.504

1.034

1.462

2.172

1.066

2.082

1.079

1.162

19.316

11.295

15.601

7.129

-10.780

-0.690

8.308

-1.810

2.340

4.980

2.584

5.007

-0.479

3.418

-2.515

-0.388

11.355

10.767

3.738

6.870

3.510

19.456

15.580

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.490

< 0.001

0.070

0.019

<0.001

0.010

<0.001

0.632

0.001

0.012

0.698

<0.001

<0.001

·< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

Log Likelihood: 183.732

Corn: R2 = 0.810

Soybeans: R2 = 0.854

Other: R2 = 0.920

Notes: Values in the column headed "Std. Error" are asymptotic standard errors, computed by using
White's heteroskedasticity-consistent estimator. R2 denotes the square of the simple correlation between
observed and fitted allocations. There are a total of 80 observations. For bi, si, and cil, i = 1 (corn), 2 (soy-
beans), and 3 (other crop); I = 1 (Illinois), 2 (Indiana), 3 (Iowa), 4 (Michigan), 5 (Minnesota), 6 (Missouri),
7 (Ohio), and 8 (Wisconsin).
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Several conclusions emerge from results reported in table 1. To begin, consider
that 19 of 23 estimated parameters are "significant" at the a = 0.05 level. Of interest
is that estimated scale parameters are, in each case, highly significant, as indicated
by their associated p-values. There are also substantial differences in scale response
for these crops across states relative to Wisconsin, as suggested by the magnitude
and significance of nearly all ci parameters. In addition, each estimated si parameter
is statistically significant at the a = 0.05 level and is positive, indicating that acreage
planted to each crop will increase as expected returns to that crop increase. Results
show that expected corn and soybean returns have a significant influence on share
of corn NFA acres planted to corn and soybeans. Likewise, the parameter associated
with expected returns to winter wheat is significant in the soybean allocation equa-
tion at the a = 0.10 level, and vice versa. There apparently is no statistically signifi-
cant relationship between corn and other, as approximated by expected returns to
wheat.

Of additional interest is that matrix S, constructed from the siu coefficients in table 1,
is positive semi-definite, as required. Furthermore, this positivity condition is satisfied
automatically. Each equation also provides a reasonable fit to the data, as indicated
by simple R2 coefficients reported in table 1. Fitted shares for each equation at each
sample point are positive, indicating that monotonicity is satisfied. Finally, results of
a likelihood-ratio test revealed that, taken together, homogeneity and symmetry restric-
tions are not rejected at any usual significance levels. Specifically, the test statistic
is 1.770, which, from the asymptotic (3) distribution, is associated with a p-value of
0.622.13 It therefore seems that the linear approximate acreage allocation model is a
statistically valid and theoretically consistent representation of farmers' planting
decisions on corn-based NFA in the Corn Belt region during the 1991-95 period. What,
then, does this model indicate about acreage response elasticities?

To obtain further insights into the model's implied structure, estimates for the bi and
Si coefficients are converted into elasticities by using equations (21)-(22). Results,
obtained at sample means, are reported in table 2. Note first that own-price elasti-
cities for corn, soybeans, and other crops are relatively large (1.04, 1.54, and 0.61,
respectively) and are, moreover, significantly different from zero at the a = 0.05 level.
Cross-price elasticities between corn and soybeans also are fairly large in magnitude,
and are large relative to their asymptotic standard errors. The corn acreage elasticity
with respect to the expected soybean price is -0.78, while the soybean acreage elasticity
with respect to the expected corn price is - 1.58. The elasticity of other acreage with
respect to soybeans is -0.73, which is large in absolute terms and, moreover, is signifi-
cant at the a = 0.10 level.

On balance, these results indicate substantial interactions among expected returns
for corn, soybeans, and winter wheat in farmers' acreage allocation decisions in the
Corn Belt region. Scale elasticity estimates, reported in table 2, are also plausible.
Results show that a 10% increase in total corn-based NFA during the sample period
would have resulted in a 9.2% increase in acres planted to corn, a 5.7% increase in
acres planted to soybeans, and a 25% increase in acres planted to "other." This latter

13Alternatively, in a linear acreage allocation model for western Canada, Coyle resoundingly rejects the symmetry/reciproc-
ity restrictions.
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Table 2. Estimated Own-Price, Cross-Price, and Scale Elasticities

Elasticity Estimate Std. Error t-Ratio p-Value

e11 1.038 0.146 7.129 < 0.001

el2 -0.776 0.072 -10.780 < 0.001

613 -0.034 0.049 -0.690 0.490

621 -1.580 0.147 -10.780 < 0.001

E22 1.539 0.185 8.308 < 0.001

e23 -0.176 0.097 -1.810 0.070

631 -0.285 0.413 -0.690 0.490

632 -0.731 0.404 -1.810 0.070

E33 0.608 0.260 2.340 0.019

l1i 0.916 0.047 19.316 < 0.001

q12 0.566 0.050 11.295 < 0.001

113 2.504 0.161 15.601 < 0.001

Notes: All elasticities are evaluated at the sample means. Here, i = 1 denotes corn, i = 2 denotes soybeans,
and i = 3 denotes winter wheat (as representative of the "other" crop category).

estimate is high in part because "other's" share is relatively small (13%). Overall, our
scale elasticity estimates correspond favorably with those reported by Bettendorf and
Blomme and by Barten and Vanloot.

These elasticity estimates, at least for corn and soybeans, are generally higher than
previous estimates reported in the literature. For example, Chavas and Holt (1996)
report own-price elasticities for corn and soybean acreage of 0.25 and 0.10, respectively.
These authors also report a cross-price elasticity of -0.22 for corn with respect to
soybeans and of -0.12 for soybeans with respect to corn. Chavas and Holt (1990) report
generally similar magnitudes.l4 Of course, part of this discrepancy is attributable to our
use of state-level panel data for a relatively short time period; previous estimates were
obtained by using aggregate time-series data over a relatively long period. But this is
not the entire story. Data used here are indicative of a situation where farmers were
free to make planting decisions without the overriding influence of government
programs. It therefore seems very likely that acres planted to various crops, at least in
the Corn Belt region, will be more responsive to market incentives under provisions set
forth in the 1996 Farm Act.

14 Own-price elasticities reported by Chavas and Holt (1990) are 0.166 and 0.450 for corn and soybean acreage, respectively.
Acreage elasticity estimates reported by these authors are similar in magnitude to those reported by Gallagher and by Lee
and Helmberger. Of interest is that Lee and Helmberger also performed their analysis at the state level for the Corn Belt
region. Their sample period, however, corresponded with a time in which government supply control and price support
programs for field crops were omnipresent.
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Conclusions

In a set of recent papers, Bettendorf and Blomme, and Barten and Vanloot developed
an acreage allocation model that is similar in its specification to a Rotterdam demand
system. While their model is potentially useful for estimating acreage response with
time-series data, it has limited appeal when panel or cross-sectional data are employed.
In this analysis, we illustrate that the BB-BV framework, which is consistent with
certainty equivalent profit maximization and constant absolute risk aversion, may
be extended to a levels version. The resulting linear approximate acreage allocation
model is useful for maintaining the theoretically appealing properties of homogeneity,
symmetry, and adding up. The modeling approach was applied to a panel of state-level
corn NFA acreage data for the U.S. Corn Belt region during 1991-95. The estimated
model fits the data well and, moreover, appears to be consistent with all of the require-
ments of theory, at least as dictated by certainty equivalent profit maximization. The
results obtained are entirely plausible. They suggest, for example, strong and statistic-
ally significant interactions in acreage planting decisions for corn, soybeans, and "other"
(as represented by expected wheat returns). Implied acreage elasticities are also
generally larger than previous estimates. The framework presented here may be useful
in the future for estimating farmers' planting decisions.

[Received December 1998; final revision received April 1999.]
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