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Yield Response and Production Risk: An Analysis
of Integrated Pest Management in Cotton

Brian H. Hurd

Production uncertainty is commonly believed to be an impediment to the
adoption of less pesticide-intensive methods in agriculture such as integrated
pest management (IPM). To investigate the effects of pest control inputs on
yields and yield variability, data from a cross-section of San Joaquin Valley
cotton producers were analyzed in a heteroskedastic production model. The
results suggest that yields are increasing with soil quality, crop rotation, fre-
quency of field monitoring, and the use of independent pest control advisors.
Yield variability was not found to be significantly affected by production inputs,
including pesticides and IPM practices with the exception of frequent contact
with extension farm advisors which was found to contribute to reduced yield
variability.

Key words: cotton, heteroskedasticity, integrated pest management, pesti-
cides, stochastic production functions.

Introduction

Producer behavior under risk and uncertainty has long been an interest of economists
and has been investigated widely by many researchers (e.g., Arrow; Pratt; Sandmo; An-
derson, Dillon, and Hardaker; Robison and Barry). One of the strong implications drawn
from both theoretical models and empirical research is that risk-averse producers opti-
mally use less of a risk-inducing input than they would under certainty. This has important
implications for the adoption and use of less chemical-intensive agricultural practices like
those associated with integrated pest management (IPM) which have been considered
more “risky” than pesticides by many producers. To reduce agricultural nonpoint source
pollution and public and farm worker exposure to hazardous chemicals, agricultural re-
search has focused on improving the knowledge and information available to farmers to
control pests through a greater variety of methods and through methods that emphasize
cultural practices that contribute to the interruption of pest life cycles.

In this article, the normative producer model presented by Antle (1989) is used to derive
behavioral implications for input use under risk. These implications then are used to
examine the recent use of IPM in the production of cotton in the San Joaquin Valley of
California. The econometric production model of Just and Pope is applied to estimate
the contribution of these IPM techniques to yields and risk. In the following section, the
model of firm behavior under input risk and the econometric framework are presented.
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Next, the estimation procedure is described, followed by a presentation of the data and
some summary details of the recent use of IPM in cotton production. The remainder of
the article consists of a presentation and discussion of the results of the estimation, as
well as a summary of the key points and policy implications of the analysis.

Input Choices under Input and Output Risk

Consider a simplified model of the decision problem confronting agricultural producers.
Following Antle (1989), we define the short-run problem of the producer as choosing the
quantities of a vector of agronomic and pest control inputs (X) to maximize expected
utility (EU). The argument of the producer’s utility function is assumed to be the distri-
bution of net returns (7). Therefore, producers not only are concerned with the expected
level of return, but also are affected by the spread and skew of the distribution of net
returns. These characteristics are reflected in the moments of the distribution (e.g., mean,
variance, and skew). Antle (1989) models producer utility as a function of the first three
moments; however, in this article only the first two moments are modeled. Therefore,
greater generalizations can be extended to the analysis and may be appropriate in some
empirical situations. For the current analysis, this simplification is appropriate, since an
examination of the yield data used in the empirical model does not suggest a skewed
distribution (see fig. 1).!

Let m, and m, represent the location and dispersion (i.e., the first two moments) of the
distribution of net returns, respectively. These moments are functions of the underlying
production factors and characteristics such as a vector of producer’s variable inputs (X),
a vector of fixed and exogenous factors (Z) (e.g., soil quality and the intensity of pest
damage), and the vector of associated production parameters (¢).2

With the expectations operator represented by E, the producer’s problem is defined as:

(1) - Max EU[m\(X, Z, ¢), my(X, Z, )],
X
where the expected utility function is assumed to be continuous and twice differentiable.

Defining S, as a bounded subset of Euclidean space from which possible net returns ()
are drawn, the first two moment functions are defined as:

(2) m(X, Z, ¢) = E[1T] = f MdF1 | X, Z, ¢),
and
(3) my(X, Z, ¢) = E[Il — m]* = f (It — m)* dF(L | X, Z, ¢).

Marginal utility of expected profit is defined as dEU/dm, = U,, and marginal utility of
variance of profit is defined as dEU/dm, = U,. Utility is assumed to be increasing in
expected profit, U, > 0; producers are assumed to be risk averse, U, < 0. These conditions
simply conform to standard intuition that utility increases with increasing expected profit, -
and utility decreases with increasing variability. The first-order conditions (FOC) resulting
from the solution of the optimization problem in equations (1)—(3) can be written as:

dEU am, U,dm,
“) dx 0= ax N U, dx
This equation characterizes the optimal input and strategy decisions of the producer in
terms of the distribution of profit. Equations (2), (3), and (4) provide the structural form
equations for a system that, in general, can be solved simultaneously for optimal input
quantities. It will be useful to express equations (2)—(4) in terms of the function of net
returns that the producer faces.

0 for each x € X.
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Figure 1. Frequency distribution of 1990 San Joaquin Valley cotton yields

Profits from agricultural production frequently are expressed in terms of net returns per
acre, and this measure serves as the basic unit of the objective function of the agricultural
firm.? To express the underlying stochastic nature of net returns, we use the stochastic
production framework developed by Just and Pope. Used in several studies of production
factors (e.g., Farnsworth and Moffitt; Griffiths and Anderson), this framework allows for
the development of a significantly more flexible statistical model that accommodates both
risk-increasing and risk-decreasing factors of production (in contrast to more simple and
traditional models that impose specific risk behavior on inputs—see Just and Pope for
examples).

Normalizing the profit function on the basis of output price (i.e., defining quantity units
such that the output price is one), the one-period per acre profit function is defined as:

&) = fX, Z o) + WX, B)e — WX,

where the function f{*) represents deterministic yields as a function of a vector of input
choices (X), a vector of exogenous factors and pest levels (Z), and a parameter vector ().
The function A*(+) models the interaction of input levels with random fluctuations in
production () that are assumed to be independent and normally distributed with a mean
of zero and a variance of ¢2. The magnitude of this random disturbance is influenced by
the vector of input choices (X) through the parameter vector (8).# Input prices, normalized
by output price and given by the vector w, reflect the costs of both agronomic and pest
control inputs. '

The expression for net returns given in equation (5) exhibits the roles that input choices,
pest conditions, and uncontrolled stochastic factors play in affecting agricultural yields.
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The stochastic stocks in the model are the result of variability of weather and pest infes-
tations, the use of latent and proxy variables that have not accounted fully for the effects
of underlying physical processes, and the influence of other effects that are uncontroiled
for in the analysis (e.g., nitrogen carryover in the soil).

Assuming that prices are known with certainty or, more generally, that they are statis-
tically independent of the production disturbance, this model that is based on the model
derived by Just and Pope is combined with the FOC [equation (4)] based on the work of
Antle (1989). Together these equations characterize the producer’s optimal input choice.
From equation (5), we can express the expected value and variance of net returns as:

©) El] = m, = (X, Z, &) - WX,
(7) VO] = m, = E[Il — m,? = E[h*(X, B)e]* = WX, B)o>.

Input choices can be seen to affect variance either positively or negatively depending
on the partial effect of the input on the function A(+). The effect of the input on yield
variability is given by the sign of the partial effect of the input on the function A(*), Ay,
where the subscript indicates the partial derivative with respect to the function’s argu-
ments. Substituting the derivatives of equations (6) and (7) with respect to input choice
into equation (4) results in the following expression for optimal input choice:

3

®) £+ %hxaz W,
1

This expression equates the value of the marginal product (fy) to the normalized marginal
input cost (w), with an adjustment term that represents a premium for risk. Assuming
risk aversion (U,/U, < 0), the adjustment term is either positive or negative depending
on the sign of /4y (i.e., whether the effect of the input is risk increasing or risk decreasing).
Given inputs that affect variance and the risk preferences of producers, these conditions
demonstrate the importance of risk in influencing input choice.

Estimation Procedure

The aim of the empirical application described below is to use data obtained from cotton
producers to estimate the marginal contributions of inputs—in particular, pest manage-
ment practices—to yields (fyx) and to yield variability (). In order to estimate these
relationships using the stochastic production function specified in equation (5), some
further analysis is necessary. Let per acre yield (Q) be given by:

® Q= fIX, Z o) + WX, B)e,

where E[e] = 0; Vle] = ¢% and Elee] =0, i + j.

Assuming the correct functional specification of the model, the parameter vector « can
be estimated without bias using ordinary least squares (OLS). However, given the effect
of X on the variance of Q, the estimates are not efficient since the variance of the model
is not constant across observations. This is the definition of heteroskedasticity and results
in estimated standard errors that are biased. The correction for this problem leads both
to an efficient estimation of the parameter « and to the estimation of the effects of the
inputs to yield variance (i.e., estimates of g).

To correct for heteroskedasticity, a feasible generalized least squares (FGLS) estimator
is used. This estimator requires the estimation of the error covariance matrix, 27, which,
given the cross-sectional data analyzed in the model, is assumed to be diagonal (i.c., yields
are assumed to be independent among the fields in the sample).* The FGLS estimator is
defined as:

o = (X' X)) X2 Q.

To estimate the error covariance matrix, the estimated residuals from the OLS esti-
mation are used since they are consistent estimates of the true error distribution and,
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hence, can be used to estimate the effects of input use on yield variance and to obtain an
estimate of the error covariance (3-!). The estimated residuals are given by:

(100 =0~ fIX, Z, &) = fX, Z, o) — f(X, Z, & + h*(X, Ble = WX, B),

where & is the estimated vector of expected production parameters and 4%(X, B)¢ is the
estimated random disturbance.

To obtain consistent estimates of 3, given consistent estimates of #, requires a functional
specification that is unknown and must be maintained as a joint hypothesis in the model.
Two general forms of heteroskedasticity have been addressed in the literature, additive
and multiplicative (see Kmenta for a discussion of each form). In practice, however, there
is a preference for using the multiplicative form because it has the desirable property of
malntalnlng predicted variances that are positive, whereas the additive model can result
in predicting negative variances.® Based on an analysis of these data, Hurd presents a
comparison of the estimation of both forms of heteroskedasticity and rejects the additive
specification based on statistical performance.

Therefore, the following specification is defined to estimate the error covariance and
the effect of inputs on variance:

(11 In(@#) = In(h(X, B)&*) = In(h(X, B)) + In(&®) = X'8 + v,

where v = In(i2/6%); E[e] = 0; E[eg] = 0; and Vel = o2

If ¢ is normally distributed and if # converges in distribution to u, then (since v is the
logarithm of a normal variate that has been squared) v is distributed as the logarithm of
a x? divided by its degrees of freedom. Therefore, v will be distributed asymptotically -
with a mean and variance given by Harvey as: E[v] = —1.2704 and V[v] = 4.9348. The
results of these properties include 1nconsequent1a1 bias in the estimation of the constant
term and an asymptotlc covariance matrix of 3, given by 4.9348(X"X)~!.

To summarize, the estimation procedure involves three steps. The first step concerns
the empirical specification of the model and the use of OLS to obtain consistent estimates
of & and 1 in equation (10). Next, the estimated residuals (i) are squared and transformed
by taking natural logarithms and then regressed on the inputs to obtain consistent estimates
of 8. In the final step, these estimates of 8 are used to construct a feasible generalized
least squares estimate (&*) that is both consistent and efficient. In the next section, the
data used in the estimation are described.

Data and Model Specification

Research and development into improved pest control practices has aided agriculture in
the pursuit of methods that are effective in controlling pests while minimizing the negative
effects of pesticide use. In our sample, cotton growers in the San Joaquin Valley have
demonstrated familiarity with IPM and many of its practices, with 77% of the growers
rating themselves as at least moderate users of IPM and only 2.4% reporting that they
were not familiar at all with TPM. It is estimated from this study that IPM methods are
practiced, at least partially, on nearly 70% of the acreage surveyed.

The data used in this study were obtained in 1990-91 from a field-based survey of IPM
methods used in the production of cotton. The data consist of production and pest control
information from a sample of 165 cotton fields. The survey, administered to approximately
90 farm managers by National Agricultural Statistics Service (NASS) enumerators, was
based on “area frame” sampling protocols to produce an acreage-based representative
sample of fields; therefore, some farm managers provided information on more than one
field. After adjusting for missing data, a random selection of 30 observations was also
removed to provide the basis for model validation.” The following econometric analysis
was based on 94 observations of individual fields.

The distributions of yields are illustrated in figure 1; the yields are normally distributed
(refer to endnote #1 for statistical confirmation), with a mean of 1,233 pounds of lint per
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Table 1. Summary Statistics of Variables

Ex- Stan-
pect- dard
ed Devia-
Variable Definition Units Effect Mean tion
Q Pounds of harvest lint per acre Ibs. 1,232.6 2410
SOIL Soil quality (scale 1-10) subjective number + 6.94 1.67
N Total pounds of applied nitrogen Tbs. + 162.0 91.39
HU Total seasonal accumulation of degree days - degree days + 25473 1474
(60°F)
CLTVS Number of cultivations for weeds number + 3.19 1.61
CLT_WDS Interaction variable crossing number of cul- subjective number + 26.27 28.75
tivations with the sum of reported weed (0-5)
intensities )
PESTCOST  Expenditure on pesticide applications dollars + 54.31 44.66
MONITOR Total number of times the field was moni-  number + 30.12  11.32
tored
YRSIPM Years practicing IPM years + 11.13  10.09
ROTATE Non-cotton crop planted within previous 0,1 + .55 .50
two years
CDM Crop development monitoring used in field 0, 1 + .73 45
BP Biological preserves used in field manage- 0,1 + .08 .27
ment
INDPCA Independent pest control advisor was con- = 0, 1 ? 49 .50
sulted
ADV Number of annual contacts with extension  number + 6.64 9.70
service
AGE Age of the primary field operator years + 46.7 13.0
EDUC Highest grade completed by primary field grades + . 14.5 2.5
operator
YRSCOT Number of years experience growing cotton  years + 22.85 1145
BGRASS Intensity of Bermuda grass problem in field subjective number - .55 1.03
(0-5)
JGRASS Intensity of Johnson grass problem in field subjective number - .69 1.23
(0-5)
VERT Concern about verticillium wilt in field 0,1 - 47 .50
MITES Concern about mite infestations in field 0,1 - 92 27
LYGUSCT Highest monitored count of lygus per 50 count - 10.05 13.31

sweeps

acre (2.5 bales) and a standard deviation of 241 pounds. The data included information
on the use of several IPM strategies recommended by University of California IPM
guidelines (“Integrated Pest Management for Cotton in the Western Region of the United
States™) and by extension farm advisors (Goodell; Kirby; Leigh). Summary statistics of
these variables and others included in the analysis are presented in table 1.

The factors hypothesized to affect yield and yield variability included both variable
inputs and other factors that are fixed in the given time period or exogenous to the producer.
There were a number of limitations on model selection imposed by the data. First among
these limitations was the binary nature of many of the pest control measures. In most
cases, this reflected the use (or nonuse) of the practice. This limitation greatly influenced
the choice of a linear/quadratic specification by ruling out logarithmic transformations of
many of the independent variables.

The primary focus of this research was to investigate the role and effects of IPM in the
production process. The analysis considered six IPM practices that have been developed
and promoted by University of California Extension personnel. These practices include:

(1) Crop Rotation: Regular rotation of crops is practiced to interrupt the life cycles of
insect and weed pests.

(2) Crop Development Monitoring: Systematic monitoring of plant growth and stage of
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development is useful to identify specific crop stresses related to agronomic and/
or pest factors.

(3) Independent Pest Control Advisor (PCA): Independent PCAs do not have a financial
interest in pesticide sales and therefore may be less likely to recommend chemical
controls prematurely.

(4) Biological Preserves: The practice of providing buffering habitat for beneficial insects
is intended to aid in the biological control of insect problems.

(5) Farm Advisor Contact: Local extension farm advisors facilitate the communication
of changing local conditions and the experience and practices of other area growers.

(6) Intensive Field Monitoring: In addition to crop development monitoring, the regular
and systematic scouting for insect and weed problems and the testing of soil con-
ditions can alert farmers to changing field conditions.

Consideration was given to combining these IPM-use variables to form a single index
reflecting IPM intensity. However, after considering a simple count model and various
weighting strategies (including factor analysis), it was decided that more useful interpre-
tations of the results were obtained by treating each practice independently and thus
identifying the relative contributions from various practices. In addition to IPM factors,
the analysis included several variables that proxy for management ability and experience.
Age, education level, and cotton production experience each were hypothesized to con-
tribute to the successful production of cotton.

Some inputs were unobserved and proxy variables were substituted in the model. For
example, actual soil conditions were unobserved; however, the survey measured perceived
soil quality (SOIL) on a subjective scale, where the “least capable soil” was equal to 1
and the “very best soil in the Valley” was equal to 10. This variable was modeled linearly
since it is fundamentally an ordinal measure (i.€., it cannot be assumed that a soil rated
at 8 is twice as productive as a soil rated 4). Due to differences in perceptions across
growers and difficulties relating the subjective scale to a physical measure of soil quality,
this proxy variable may be a source of bias in the model due to errors-in-measurement
problems. Also unobserved was the actual level of nitrogen available for uptake by the
crop. As a latent variable that should be correlated with available nitrogen, we used a
measure of nitrogen applied during the season.

Another agronomic variable included in the analysis was a measure of photosynthetic
potential. Based on the accumulation of degree days (a measure of heat units) during the
length of the season, this measure is a latent variable for sunlight in the growing process.
Ideally, the measure should reflect the accumulation of degree days from planting through
harvest and would vary by field. Unfortunately, such information was unavailable and
was approximated by location-specific measurements and assumptions on season length.
This measurement problem can have implications for the interpretation of the results,
given that heat units beyond those necessary for the crop to reach maturity do not con-
tribute to yield.

The analysis was further conditioned by several important cotton pests that can reduce
productivity. These pests were controlled independently in the analysis to facilitate the
identification of the impacts of particular problems. However, there were some important
difficulties in measuring pest intensity relating to both pest dynamics and grower percep-
tion of intensity. For the two weed species (i.e., Bermuda grass and Johnson grass), the
analysis was based on two proxy variables for competition from weeds. The proxies were
based on responses of growers to subjective questions asking them to estimate the “in-
tensity” of the problem on a scale of 1 (no problem) to 5 (very significant problem). The
effects of verticillium wilt and spider mites on the cotton were more difficult to measure.
Treatments for each of these problems generally are considered on a “presence/absence”
basis (i.e., either the problem exists or it does not). Therefore, our measures reflect this
either/or response with a binary variable based on the subjective concern of the grower.
The control for lygus bugs was more consistent with the physical effect of lygus which is
dependent on the relative population size, since measurements were based on a systematic
count system.
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Table 2. Estimated Effects of Inputs on Expected Yields and Yield
Variance (Ibs./acre)

Estimated Coefficients
(t-Statistics)

Independent ~
Variables 1) 28 3 @%
SOIL 42,93* .10 26.34*
(3.79) (.49) 2.74)
N 2.99* .0048 2.96*
(4.60) (.35) (4.56)
. N2 —-.0078* .000015 ~.0067*
(—5.18) (.46) (—3.61)
HU 3.62 ~.017 4,52
(1.05) =27 (1.24)
HU? ~.00077 .0000029 —.00095
(—=1.13) (.23) (—1.34)
CLTVS 3.15 .47 —-54.30
.093) (.81) (—1.43)
CLTVS? ~7.70% —.054 -.11
(—1.89) (—.87) (—.026)
CLT_WDS 4.90* .0076 4.50%
4.87) (.58) (3.33)
PESTCOST -.099 036 .99
(—.077) (1.48) (.94)
PESTCOST? ~.0074 -.00018 —.021*
(—.96) (—1.40) (=3.73)
MONITOR 49.57* -.032 39.91*
(3.14) (~.10) (2.24)
ROTATE 109.76* .57 124.23*
(3.45) (.91) (12.79)
CDM ~70.65 .98 ~40.80
(—1.52) (1.03) (—.86)
BP 85.32 —.14 146.17*
(1.39) (~.11) 2.44)
INDPCA 194.94* A2 182.94*
(4.82) (.14) (4.87)
ADV 7.00 .18 18.02
(71 (.99) (1.60)
ADV? .54 —.025* —.40
1.04) (—2.47) (—.55)
BGRASS —36.48 - —115.30*
(—1.16) (—3.05)
JGRASS -10.23 - 22.65
(-.52) (1.75)
VERT —-121.28* - —192.45*
(-3.31) (—5.70)
MITES 213 — -6.27
(.035) (-.11)
LYGUSCT —4.60% - 48
(-2.07) (.26)
AGE ~4.64 .15 3.74
(—.45) (71) (.30
AGE? 074 -.0016 —.045
(.65) (~.70) (-.31)
EDUC 63.65 1.67 82.94
(1.04) (1.40) 1.52)
EDUC? -1.97 -.065 -2.56

(~.84) (~1.45) (~1.26)
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Estimated Coefficients

(-Statistics)

Independent _
Variables 1) 2(3) 3@
YRSIPM -9.09 .19 -3.73
(—1.36) (1.39) (—.65)
YRSIPM? .096 —.0058 .0080
' (.53) (—1.56) (.049)
YRSCOT 15.50* .058 6.23
(2.59) (.51) (.96)
YRSCOT? ~-.25% —.0011 -.013
(—1.98) (—.45) (—.089)
INTERCEPT —4,853.9 13.65 —5,870.00
(—1.09) 17 (—1.26)
Adjusted R? .798 191 .790
Mean of Depen- 1,250.2 7.21 1,250.2

dent Variable
Sample Size = 94

* Indicates a coefficient is statistically significant at the 5% level.

Cotton is a significant consumer of water in the San Joaquin Valley. Since 1990 was
the fourth year of drought in this study area, water use was a highly sensitive issue and
one that many growers were reluctant to dlscuss as a result, there were many missing
values for the quantity of water applied to the fields. Although state and federal water
deliveries to growers were reduced slightly, cotton production did not appear to be affected
significantly. Experts did not expect significant changes in water and crop allocation until
the fifth year of drought. Since many growers have the capacity to supplement their surface
water allotments with groundwater, and none of the growers indicated that their irrigation
schedules were deficient, it does not appear that production practices were water-con-
strained because of the drought during the 1990 growing season. We assume in our
empirical model, therefore, that sufficient water to grow the crop was available to all fields
planted to cotton.

In specifying the functional form of the equations estimated, limitations on the types
of data required a combined linear and quadratic specification. The quadratic specification
allowed the model to reflect diminishing returns for many of the modeled inputs. However,
in contrast to a logarithmic specification, the quadratic specification can produce results
that are contrary to expectation. For example, the quadratic specification can result in
estimating negative marginal products for input quantities beyond a certain range. In some
cases this is consistent with expectations in which too much of a particular input may be
detrimental; however, in general, the normal range of the input would correspond to a
positive marginal product.

Results

Estimation results from the econometric analysis are presented in table 2 and some
economic interpretation of the statistically significant results is provided in table 3. Col-
umns labeled 1, 2, and 3 in table 2 depict coefficient estimates and ¢-statistics for the first-
stage application of OLS on yields, for the second-stage variation models, and for the
corrected FGLS model of the contribution of inputs to expected yields, respectively. These
parameter estimates and associated ¢-statistics indicate the magnitude and strength of the
relationships among various inputs, pest control practices, pest levels, and management
variables and the expected value and variance of yields.
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Table 3. Estimated Value of Marginal Products and Elasticities
of Yield Mean and Variance

Estimated Estimated
Percentage  Percentage
Change in  Change in
Yield Due Yield Variance
to a Per- Due to a
centage Percentage
Estimated  Changein  Change in
Value of Input (@ Input (@

Marginal variable variable
Product mean) mean)
Inputs of Input® % AQ % Ac?
(Variable Name) POy, % AX, % AX,
Soil 20.01 .15 -
(SOIL)
Nitrogen .59 .10 -
N)
Cultivations® 12.92 .044 -
(CLTVS)
Monitoring Frequency 5.30 .17 -
(MONITOR)
Crop Rotation 94.42 .055 -
(ROTATE)
Pesticide Expenditures -.97 —.057 —
(PESTCOST)
Biological Preserves 111.09 .009 -
(BP)
Farm Advisor Contact - — —.00081
(ADV)
Independent PCA 139.03 .073 —
(INDPCA)
Bermuda Grass —87.63 —.051 -
(BGRASS) .
Verticillium Wilt —146.26 —.073 -
(VERT)

* Calculated at the average expected cotton price of $.76/1b.

® Assumes moderate weed problems with four weed species (i.e., WEEDS
= 16).

¢ Yields are increasing in PESTCOST up to an expenditure of $23 per acre.

To express the estimation results more clearly, the associated estimates of elasticities
and the values of the marginal products for the variables that were statistically significant
are shown in table 3. The elasticity measures were calculated at the mean values reported
for yield and inputs, and indicate the percentage changes for yields and variance expected
to result from a percentage change in the level of the input. For example, from column
1, an increase in soil quality by level is estimated to add $20 to expected net returns per
acre.

Consider first the effects of the inputs and management factors on expected yield. Of
the six IPM variables in the model, crop rotation (ROTATE), frequency of field monitoring
(MONITOR), and the use of an independent pest control advisor (INDPCA) contribute
significantly to yields, and after the correction for heteroskedasticity, the use of biological
preserves (BP) also contributes significantly. The hypothesis that information provided
by crop development monitoring (CDM) and farm advisor contact (4DV) contributes to
yields is not supported by the evidence from this model. The coefficients on farm advisor
contact (ADV and ADV?) have the expected signs, indicating diminishing marginal pro-
ductivity to farm advisor contact; however, they fall below typical levels of statistical
significance, as do the estimates for crop development monitoring (CDM).
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The significance of crop rotation is underscored in this analysis both by its statistical
significance (z-statistic = 12.8) and its economic significance. The recent planting of crops
other than cotton contributed nearly $94 per acre on average to gross returns (see table
3). The benefits from crop rotation, in enhancing nitrogen carryover and in avoiding the
establishment of weed problems and other pests, have long been acknowledged by agron-
omists. This result indicates that, within this sample, rotated fields out-perform those
that are not under a regular rotation schedule.

Due to the very small sample of growers reporting the use of biological preserves (only
13), the estimated yield effects and value of marginal product (VMP) associated with
biological preserves are not well supported in the analysis. The estimated VMP of $111
is a surprisingly high value from a practice that does not contribute directly to productivity,
but rather provides a habitat for beneficial insects and a trap crop for damaging pests.
Biological preserves cannot be expected to perform as well as the estimates indicate, but
should be considered as a subject for future research.

A second surprising result concerns the expected contribution from employing an in-
dependent pest control advisor. The estimated VMP of $139 is clearly a surprising result,
and one that cannot be dismissed as a result of low frequency in the sample. Forty-six
percent of the sample reported the use of in-house entomologists or independent pest
control advisors. The expectation was that pest control advice would differ only slightly
between chemical company representatives and independents, and thus it would be im-
portant to gather data on actual practices and not just source of advice, as had been done
in many previous IPM studies (e.g., Hall; Burrows; Farnsworth and Moffitt). This un-
expected result suggests that the quality of the advice may indeed be a function of its
source and price.

Expenditures on pesticides (PESTCOST and PESTCOST?) perform according to ex-
pectations, with diminishing marginal returns. According to this specification, however,
the marginal return to pesticides becomes negative after $23 per acre are expended. This
result is consistent with the understanding that with increasing severity of pest problems,
yields are likely to fall in spite of increasing pesticide expenditures. Several researchers
have reported similar findings in attempts to measure the productivity of pesticides (e.g.,
Miranowski; Farnsworth and Moffitt). Farnsworth and Moffitt, estimating a stochastic
production model using cotton production data from the early 1970s, found that greater
insecticide use was associated with higher variance and lower expected yields. Again, the
role of pesticides as a damage-control input suggests that their use will be greatest when
pest damage is expected to be high.

Evidence of the detrimental effects of pests is found in the model. Significant losses of
115 Ibs./acre and 192 Ibs./acre are attributed by the model to both Bermuda grass (BGRAS'S)
and verticillium wilt (VERT), respectively. The evidence from insect and arachnid pests
(e.g., lygus and mites) was less clear. In the first-stage estimation, lygus was found to be
significantly harming yields; however, the corrected model no longer supports a significant
relationship. .

The performance of the agronomic variables, soil (SOIL) and nitrogen (N and N?), was
consistent with expectations, with the latter indicating diminishing marginal returns. The
coefficients on heating units (HU and HU?) had the correct sign; however, they were not
statistically significant. Cultivations for weed control (CLTVS, CLTVS? and CLT__ WDS)
appear to be effective and economical when there are significant weed problems present
in the field.

While management ability and experience are expected to be productive assets in ag-
riculture, the results do not support a systematic relationship between the management
proxies (i.e., age, education, and cotton production experience) and yields. Experience
growing cotton (YRSCOT and YRSCOT?) is significant, with expected signs on the co-
efficients in the initial OLS estimation, but it loses significance after correction for het-
eroskedasticity. Age (AGE and AGE?) and education (EDUC and EDUC?) of the operator
both have estimated coefficients with the expected sign (i.e., indicating diminishing mar-
ginal returns); however, neither achieves statistical significance. In either case, the mag-
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nitude of the coefficient indicates a relatively small effect associated with years of expe-
rience.

Considering the effect of these variables on the variability of vields, no support was
found in this study for the view of pesticides as a risk-reducing input, as has been suggested
by previous theoretical research (e.g., Antle 1989; Robison and Barry). Pesticide expen-
ditures, regardless of the estimation specification, were found not to have any statistical
relationship to the variance of yields. This is a significant finding because “excessive”
pesticide use commonly is rationalized by the argument that the excess of the marginal
cost over the expected value of the marginal product could be interpreted as a risk premium
paid by risk-averse producers.

The only significant factor in explaining yield variance in this model was the frequency
of farm advisor contact (4DV and ADV?). The estimated coeflicients for farm advisor
contact indicate that yield variability begins to fall after four contacts per season. This is
a curious result given that farm advisor contact is not significant in explaining expected
yields; however, it is consistent with the expectation that frequent farm advisor contact
is an effective information source, particularly if this information is sought several times
throughout the growing season. In this model, neither pesticides nor IPM practices ap-
peared to contribute to yield variability.

Conclusions

In this article, economic theory has been used to illustrate the importance of distributional
attributes in affecting models of choice and behavior. These models of choice and behavior
provide a foundation for an understanding of how individuals are likely to respond to
changes in perceived risks and incentives. The adoption and use of new technologies in
agriculture can be better understood and facilitated by the use of these models and their
empirical investigation.

This examination of inputs, yields, and yield variability has shown that flexible models
of production risk are valuable for analyzing the relationships between inputs and outpits,
and can be useful for the assessment of new and changing technologies such as IPM. As
research, development, and implementation of strategies and methods of pest control
continue, and as farmers seek to reduce their losses from pest damage, statistical evidence
is an important informational tool to improve decision making at a variety of levels.

The evidence found in this study confirms the important role of many production inputs
such as soil quality, nitrogen, and crop rotation, and additionally identifies practices that
have not been widely observed as important such as monitoring, independent pest control
advice, and the potential of biological controls. The evidence further suggests that concern
about the effects of these inputs on yield variability may be overblown. There was no
empirical support suggesting that pesticides reduced risk, nor was there support for the
claims that IPM is a “risky” technology. In fact, the evidence suggested that frequent
contact with local extension advisors may serve to reduce risk. Analysis of the marginal
risks for other commodities or for other regions may indicate that some pest control
practices do increase or decrease yield variability significantly and, therefore, risk attributes
of technology ought to remain a concern for producers.

Because the prevailing view of integrated crop and pest control systems for many
commodities involves both inter- and intra-seasonal production diversity, the analysis of
firm-level marginal risks should, when feasible, be structured in terms of a whole-farm
approach. This suggests future research should consider a broader range of production
that involves multiple crops and production over time. Additionally, pest control research
needs to better incorporate the methods of analyzing the productivity of damage control
inputs, and this requires methods for the measurement of crop damage (e.g., yield loss).
This in turn requires a program of monitoring and the calibration of a model that measures
the relationship between pest levels and production loss, neither of which were available
for this study. Adoption of thesé suggestions would provide a more complete framework
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for the analysis of marginal risk in production and for the assessment of pest management
practices that frequently involve production diversity and inter-temporal practices and
effects.

[Received June 1 993, final revision received August 1994.]

Notes

! This model can be generalized to include higher moments, as has been done by Antle (1983). There is a
certain appeal to the relevance of the third moment (skew) in that risk-averse economic agents are particularly
concerned about downside risk. However, in this study, there did not appear to be empirical support for extending
the analysis beyond the first two moments. An analysis of the distribution of yields confirms the normality that
appears in figure 1. The Shapiro-Wilk statistic, ¥, was computed to test the normalcy of the data. The resulting
value (W = .981) is associated with a significance level of .48, so clearly the hypothesis of a normal distribution
cannot be rejected. Based upon this result, we restrict our analysis to the first two moments.

2 Later in this article, this production parameter will be partitioned into a mean effect («) and a variance effect
()
3 The utility model that has been developed has as its arguments the moments of the distribution of total
profits per season. Since the model has implicitly treated the marginal utility of wealth as constant across growers
and ignores dynamic considerations such as investment, it should be viewed only as an approximation of the
behavioral process of the grower. The approximate nature of the utility model is carried one step further below,
as constant returns to scale are assumed. This assumption enables the analysis to consider per acre formulations
of profit and production. On a per field basis, this assumption is clearly viable since growers typically manage
fields and not specific acres within that field; however, they base many of their decisions on costs and yields
that frequently are measured on a per acre basis. Consistent with the empirical observation that production
scale did not affect either the expected: yield or yield variance, discussion of profit and production analysis
throughout this article will continue to indicate a per acre basis.

4 This function is raised to the ¥ power to allow a more convenient treatment of variance.

s This assumption may not hold strictly due to the fact that some fields in the sample were not independently
managed. However, the sample included approximately 90 different managers who can be assumed to be
reasonably independent. Given the small sample of potentially dependent fields, there is no reasonable method
to account for systematic spatial autocorrelation in these data.

s Antle (1983) proposed a solution to this problem by using nonlinear programming methods to constrain the
estimated variances to be positive. This procedure was rejected for this analysis due to a lack of theoretically
justified support of the additive model and the unknown consequences on the estimated coefficients resulting
from the binding of the nonnegativity constraints in a programming model.

7 The sample of 30 observations was randomly pulled from the data prior to any estimation or data analysis.
This sample of 30 observations provided a method of validating the model results by using the estimated model
to predict out-of-sample observations. The results of this test indicate that the model has significant predictive
ability (less than 10% error for most observations; see Hurd). The remaining loss in observations was due to
missing or unreported data. It is not expected that these missing data were systematically related to the sample,
and therefore this loss is not expected to adversely bias the sample.
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