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Investigations of the microbial diversity and dynamics in activated sludge using molecular 

methods 

JOHAN FREDRIKSSON 

Department of Civil and Environmental Engineering 

Chalmers University of Technology 

ABSTRACT 
Wastewater treatment is necessary to reduce the health risks and environmental impacts 

associated with discharge of untreated wastewater. The most common way to treat wastewater 

in wastewater treatment plants is through the activated sludge process. Although the main 

principle of the process has been the same since its usage began 100 years ago, there has been 

a continuous development and modern wastewater treatment plants can be designed to 

remove not only organic material but also nitrogen and phosphorus by exploiting the 

properties of different microorganisms. However, as the demands on the wastewater treatment 

plants are increasing, either by lowered accepted effluent concentrations of nutrients or by 

increased volumes of wastewater, there is a need for further development of the processes. 

For this development to be possible, an increased understanding of the factors governing the 

composition and dynamics of the microbial communities in the wastewater treatment plants, 

is regarded as fundamental. 

The research presented in this thesis focused on the investigation of the diversity and 

dynamics of the microbial community in the activated sludge of a large wastewater treatment 

plant. Novel tools and methods for the analysis of data from a DNA-fingerprinting method, 

terminal restriction fragment polymorphism analysis, were developed and used for 

longitudinal studies of Bacteria and Archaea in the activated sludge. The archaeal community 

was determined to be less diverse, present in lower numbers and more static than the bacterial 

community. Methanogens, likely entering the sludge with the recycled water from an 

anaerobic bioreactor, dominated the archaeal community. The most abundant bacterial classes 

were the Alphaproteobacteria and Betaproteobacteria, which are both commonly found in 

varying proportions in wastewater treatment plants. However, which of these two phyla that 

was the most abundant, was found to be highly dependent on the method used to describe the 

diversity. Seasonal variations in the bacterial community composition were observed and 

could be explained by the seasonal variations in temperature. A major operational change, by-

passing of the primary settlers due to maintenance work, also coincided with changes in 

community composition. Thus, both operational parameters, such as treatment plant design, 

and environmental parameters which cannot be controlled, such as temperature, appear to be 

shaping the bacterial community in the activated sludge. Changes in both the archaeal and 

bacterial community composition coincided with observed changes in activated sludge floc 

properties. However, further studies are required to determine if these observations were due 

to causal relationships. 

Keywords: wastewater treatment, activated sludge, microbial ecology, population dynamics, 

Bacteria, Archaea, 16S rRNA, terminal restriction fragment length polymorphism. 
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INTRODUCTION 

WATER AND THE NEED FOR WASTEWATER TREATMENT 

Water is a necessity for everyone. We need clean water to drink, to cook food and for washing 

and cleaning. Wastewater is the water that we have used: water, urine and feces from our 

toilets and dirty water from showers, dishwashers and washing machines. Apart from 

households, wastewater is also generated in industries where water is used in the production, 

and of course, anywhere where you have running water, such as toilets or kitchens in public 

institutions or commercial establishments. 

Wastewater is generally rich in organic matter and nutrients such as nitrogen and phosphorus 

and discharge of untreated wastewater to the sea, or any other body of water, would have 

numerous consequences. The organic material would decompose producing bad smelling 

gases and the high amount of nutrients would lead to eutrophication with algal blooms 

followed by oxygen depletion and death of species requiring oxygen, such as fish. Wastewater 

also contains pathogenic bacteria and viruses from human feces and these would be a health 

risk if left untreated. For these reasons, wastewater must be treated before it is discharged into 

a body of water. In addition, a river or a lake that is receiving the wastewater from one 

community may be the drinking water source for another community. In such cases, a reliable 

and functional wastewater treatment is even more important. Consequently, increased 

wastewater treatment availability can improve public health significantly (Naik and Stenstrom 

2012).        

HOW DO WE TREAT WASTEWATER? 

The main aim of wastewater treatment is to reduce the amounts of organic material, nutrients 

and pathogens that are discharged. This is partly achieved by removing the solid material in 

the wastewater, the sludge, by for example sedimentation: letting solids sink to the bottom, or 

filtration: letting the water pass through a filter, but not the solids. However, this is not 

enough, as both organic material and nutrients can be dissolved in the water. Dissolved 

nutrients can be removed chemically, by addition of chemicals converting the dissolved 

nutrients to particles which can easily be removed, or biologically, using bacteria and 

naturally occurring conversion processes.  

A secondary aim of wastewater treatment is to convert the wastewater to an asset, for example 

by using the effluent water to replenish a drinking water source (Rodriguez et al. 2009) or by 

using the sludge as a source for energy production (Appels et al. 2008). Recovery of nitrogen 

and phosphorus for reuse in fertilizer production has also been suggested to become both 

increasingly important (Sengupta and Pandit 2011) and economically viable (Verstraete et al. 

2009) as the supply and quality of phosphorus rock is decreasing (Cordell et al. 2009). 

THE ACTIVATED SLUDGE PROCESS 

The activated sludge process was first presented a hundred years ago and is the most common 

method for wastewater treatment (see Alleman and Prakasam (1983) for an overview of the 
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development of the activated sludge process). Figure 1 describes the principle of the activated 

sludge process. The wastewater is aerated, which enables bacteria that need oxygen to convert 

the organic material to carbon dioxide. In the process, the bacteria form aggregates, flocs, 

which can be separated from the water by sedimentation. The flocs are held together by 

extracellular polymeric substances (EPS): a mesh of carbohydrates, proteins and DNA 

produced by the bacteria (Flemming and Wingender 2010). The structure and shape of the 

flocs depend on the characteristics of the wastewater, such as the concentrations of organic 

material (Ehlers et al. 2012), oxygen (Wilén and Balmér 1999) or ions (Zita and Hermansson 

1994; Sobeck and Higgins 2002), the composition of the EPS (Wilén et al. 2003) but also on 

the activity (Wilén et al. 2000) and composition (Klausen et al. 2004) of the bacterial 

community. An additional benefit of the formation of flocs is that particles, as well as trace 

organic contaminants, such as antibiotics or contraceptives (Hyland et al. 2012), may adhere 

to the flocs and can be more easily removed. After the sedimentation of the solids, the water, 

which now contains less dissolved organic material and very little solid material, is 

discharged. The solids, the sludge, is then recirculated back to the aerated tank, so that the 

bacteria can keep converting organic material to carbon dioxide, and the already formed flocs 

can serve as starting points for formation of new flocs. Not all solids in the incoming 

wastewater can be degraded by the bacteria and not all organic material is converted to carbon 

dioxide so to keep the amount of sludge in the system at a manageable level some sludge must 

also be removed all the time. 

The configuration depicted in Figure 1 is a very simple version of the activated sludge process 

and there are a variety of established more complex systems. By adding more tanks and 

varying aerated and non-aerated conditions, removal of nitrogen (Schmidt et al. 2003) and 

phosphorus (Oehmen et al. 2007) is also possible.  

 

 

Figure 1 Schematic overview of a simple activated sludge process  

 

THE MICROBIAL COMMUNITIES IN ACTIVATED SLUDGE AND THE NEED FOR MORE 

KNOWLEDGE 

The bacteria growing in the activated sludge are bacteria that are present in the wastewater but 

the design of the process defines which bacteria that will be maintained and enriched. To stay 

within the system bacteria must form flocs or attach to flocs, otherwise they will be washed 
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out in the separation of solids and liquids. The bacteria must also multiply, grow, faster than 

the sludge removal rate, or they will all be removed. To be actively growing the bacteria must 

also be competitive under the given conditions of temperature, pH, oxygen levels, nutrient 

concentrations and so on. The composition of the wastewater together with the design and 

operation of the process thus selects for the bacterial community in the activated sludge.  

Although bacteria are the most abundant there are also other microorganisms in the activated 

sludge. Eukaryotic organisms, such as Protozoa (Curds 1982) and Metazoa, which feed on the 

bacteria and organic material in the sludge are also present. The composition of the protozoan 

community is affected by the process design and influent wastewater characteristics (Dubber 

and Gray 2011) and the abundance of different species can be used as indicators of effluent 

water quality (Salvado et al. 1995; Pérez-Uz et al. 2010). The predation of bacteria by 

protozoa and metazoa improves the effluent water quality, as dispersed bacteria which do not 

settle well are removed, and it can also affect the dynamics of the bacterial community (Pogue 

and Gilbride 2007; Pinto and Love 2012). In addition, the presence of protozoa and worms 

can be exploited as a strategy to minimize sludge production (Wei et al. 2003; Lou et al. 

2011).   

Archaea have also been shown to be present in the activated sludge (Gray et al. 2002; Park et 

al. 2006; Hagman et al. 2008; Daims et al. 2009; Wells et al. 2009; Zhang et al. 2009), mostly 

in low numbers, but their contribution, if any, to the activated sludge process have not been 

determined. The Archaea was once considered a type of bacteria, but is now established as 

one of the three kingdoms which encompasses all life: Archaea, Bacteria and Eukarya (the 

latter including all fungi, plants and animals, including us humans) (Woese and Fox 1977). 

Initially, Archaea were believed to only exist in extreme environments, for example high salt 

concentrations, high temperatures or low oxygen concentrations, but it has now been shown 

that they are present in practically all environments (Robertson et al. 2005). It has also been 

established that ammonia-oxidizing Archaea, together with Bacteria, may have an important 

role in the global nitrogen cycle (Martens-Habbena et al. 2009; You et al. 2009; Di et al. 

2010). Consequently, most studies of Archaea in activated sludge have focused on their role 

in nitrogen removal, but although they are present, the Archaea seem to contribute little to this 

process (Daims et al. 2009; Wells et al. 2009). 

Viruses that use bacterial hosts are also present in activated sludge (Otawa et al. 2007) and 

may be important in shaping the bacterial communities as they can be species specific (Khan 

et al. 2002), keeping certain species at a low abundance while not affecting others.  

For many specific processes in biological wastewater treatment, such as for example nitrogen 

(Schmidt et al. 2003) and phosphorus removal (Nielsen et al. 2012) or unwanted foaming 

(Nielsen et al. 2009), the important groups or even species of bacteria, have been identified 

and characterized. Different configurations of the activated sludge process are also designed 

based on the knowledge of, for example, the growth rate and requirements of nitrifying or 

phosphorus accumulating bacteria. However, not as much is known about the bacteria in 

activated sludge at a community level. How are the communities formed? What are the 

dynamics of the bacterial communities? What is an optimal community composition? What is 
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the relation between community composition and process stability? How can we maintain a 

desired community composition? Can we predict or design changes in community 

composition? Answering these questions would take both the understanding and the 

development of the wastewater treatment processes to a new level and have even been 

proposed to be fundamental for further improvement of wastewater treatment (Yuan and 

Blackall 2002; Curtis and Sloan 2006; McMahon et al. 2007; Nielsen et al. 2010).   



5 
 

RESEARCH HYPOTHESES AND AIMS OF THIS THESIS 
The work presented in this thesis was part of a research project aiming at the investigation of 

links between microbial community composition and sludge characteristics and settling 

properties. The main focus of the project was the large-scale Rya WWTP in Gothenburg. The 

work presented here was carried out to provide answers to fundamental questions regarding 

the microbial community composition of the Rya WWTP, which would enable further 

investigations. The research was based on the following hypotheses:  

I. The microbial community composition in the Rya WWTP is highly variable. 

This hypothesis was based on the variable conditions of the WWTP, such as 

seasonal variations in temperature and organic loading, and that the properties of 

the incoming wastewater can be expected to be variable. 

II. The variations in microbial community composition are not chaotic. 

The microbial community is expected to be formed by the conditions defined by 

the operational parameters of the Rya WWTP, such as sludge age, temperature and 

variable aerobic and anaerobic conditions. 

III. The microbial community of the Rya WWTP is diverse, and includes both 

Bacteria and Archaea. 

Although WWTPs are environments with very defined conditions, they generally 

harbor microbial communities with a large diversity. The inclusion of Archaea in 

the hypothesis was based on the observation that Archaea, although not much 

studied in WWTPs, have been detected in a wide range of environments.  

 

From these hypotheses, the specific aims of the work were formulated: 

I. To the describe the composition of the bacterial and archaeal community in the 

activated sludge of the Rya WWTP (Papers IV and V). 

II. To describe the dynamics of the archaeal and bacterial community in the activated 

sludge of the Rya WWTP (Papers IV and V). 

III. To investigate if changes in bacterial and archaeal community composition can be 

attributed to changes in operational or environmental parameters (Papers IV and 

V). 

In order to reach these aims, a large part of the work in this thesis focused on the applied 

methods, with the following aims: 

IV. To develop functional and versatile tools for the analysis of terminal restriction 

fragment length polymorphism (T-RFLP) data (Paper I). 

V. To evaluate and develop strategies for robust T-RFLP data analysis (Paper II). 

VI. To investigate the effect of methodological choices on the resulting descriptions of 

community composition and dynamics in PCR based analyses of the 16S 

ribosomal RNA gene (Papers II and III). 
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OVERVIEW AND DISCUSSION OF METHODS FOR THE STUDY OF 

MICROBIAL COMMUNITIES 

THE STUDY OF BACTERIA IN NATURAL ENVIRONMENTS 

In natural environments microorganisms are rarely present in monocultures (Flemming and 

Wingender 2010). Different species with different characteristics live together, often in very 

complex communities. To describe a microbial community the individual components must 

therefore be separated and this separation is the basis for most techniques to study microbial 

communities in natural environments. 

The traditional way to study bacteria is by isolation, cultivation and characterization. 

Different bacteria are then separated by preference to the growth conditions, such as 

temperature, salinity and oxygen concentration, and by dilution, so that individual colonies 

can be isolated. However, it is estimated that there can be up to 10 000 different species in a 

single gram of soil and up to 500 different species in an activated sludge wastewater treatment 

plant (Curtis et al. 2002). It is not a small feat to find the right growth conditions for 10 000, 

or let alone 500 different species. In addition, generally only a fraction of the bacteria present 

in an environmental sample can be successfully isolated and cultivated (Hugenholtz 2002). To 

circumvent the problem of isolating the different species by growth condition preferences, 

DNA-based techniques have been developed.  

DNA EXTRACTION 

Most of the DNA-based techniques to study microbial communities are based on the 

extraction of DNA from a sample. The first step in a DNA extraction is to open up the 

bacterial cells, either by addition of chemicals to the sample, by mechanical force or both. 

This needs to be sufficiently harsh so that all cells are lyzed, but not so harsh so that the DNA 

within the cells is damaged. The following steps aim at removing everything that is not DNA: 

in an activated sludge sample there is EPS, humic substances, organic and inorganic material 

from the flocs as well as proteins, lipids and other cellular material. The optimal DNA 

extraction lyzes all cells and produces intact DNA, free from any contaminants that could 

interfere with subsequent DNA analyses. The DNA extraction is a very crucial step in DNA-

based analyses and it has been shown that the choice of method has a direct impact on the 

outcome of subsequent DNA analyses (Martin-Laurent et al. 2001; Vanysacker et al. 2010; 

Guo and Zhang 2013). However, evaluations of extraction efficiency, or motivations of the 

chosen method are rarely presented.  

For the work included in this thesis two commercial kits, Power Soil DNA Extraction Kit 

(MoBio Laboratories) and FastDNA SPIN Kit for Soil (MP Biomedicals), which both are 

commonly used and have been determined to produce high amounts of good quality DNA 

(Vanysacker et al. 2010; Guo and Zhang 2013), were evaluated. The DNA extracted with the 

Power Soil DNA Extraction Kit had a higher success rate in subsequent PCR analyses, 

possibly due to lower concentrations of remaining contaminants, and was therefore chosen. 

The lysis efficiency of the extraction procedure was evaluated and approved by microscopy 
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and staining of intact versus lyzed cells. In addition, the detection of 16S rRNA gene 

sequences from Gram-positive bacteria, which have a thicker and more resistant cell wall than 

Gram-negative bacteria, in Paper V also suggests that the lysis was efficient.  

PCR AND THE 16S RRNA GENE 

The polymerase chain reaction, PCR, is a process by which a DNA sequence, called a 

template, is copied multiple times using a polymerase, an enzyme which copies DNA, 

producing new DNA strands with the same sequence as the template. The section of the 

template that should be copied is chosen by the design of shorter DNA sequences, typically 

around 20 bases long, called primers, which match specific sites on the template. The aim of 

the PCR in the study of microbial communities is to copy a specific gene from all organisms 

that are present and has the gene. This gene can either be a marker gene, which can be linked 

to the identity of the organism, or a functional gene, which can be linked to a function that the 

organism can perform. Thus, when using PCR to study microbial communities the purpose of 

the PCR is most often not to copy a single template sequence, but to copy the same gene from 

as many organisms as possible at the same time. This puts high demands on the primers that 

are used as they must be specific enough to only match the desired gene, but also inclusive 

enough to match this gene in all different templates, despite possible variations in the gene 

sequences at the primer sites. 

The detection of functional genes by PCR indicates that the microbial community has the 

potential to perform a given function. For example, by targeting the genes for ammonia 

oxidation the possible contribution of Archaea and Bacteria to nitrogen removal in activated 

sludge can be evaluated (Wells et al. 2009; Limpiyakorn et al. 2010). Screening of functional 

genes can also be used to create a metabolic profile of a community, showing which 

metabolic processes that are likely occurring. For example, in a study of activated sludge few 

or no genes coding for proteins involved in photosynthesis were detected, but many genes 

coding for proteins involved in the degradation of aromatic compounds and carbohydrates 

(Sanapareddy et al. 2009).     

The most common marker gene for the study of Bacteria and Archaea is the gene for the 16S 

ribosomal RNA (rRNA) molecule, which is involved in the translation of rRNA to proteins, 

and is present in all forms of life. Differences in the sequence of the 16S rRNA gene can be 

interpreted in terms of evolutionary relationships and highly similar 16S rRNA gene 

sequences can therefore be determined to come from similar organisms. As 16S rRNA is the 

most commonly used marker gene there are also several large publically available databases 

which can be used for identification of probable source organisms for obtained 16S rRNA 

sequences. Examples of databases are NCBI GenBank (http://www.ncbi.nlm.nih.gov), 

greengenes (http://greengenes.lbl.gov), the Ribosomal Database Project 

(http://rdp.cme.msu.edu/ ) and the SILVA rRNA database project (http://www.arb-silva.de/), 

all of which were used in Papers III, IV and V. 

Although the 16S rRNA gene is used as a molecular clock, to measure evolution, not all 

regions of the gene have changed to the same extent. Some regions are conserved, meaning 

that they are the same or nearly the same, in most known bacterial sequences, while others are 



8 
 

highly variable, with different species having different nucleotide composition. When the aim 

of the PCR is to copy the 16S rRNA gene of all bacteria present in the sample, the primers 

that are used are designed to target the conserved regions of the gene. Primers designed to 

target the 16S rRNA gene of all, or at least most, bacteria are called universal primers. It is 

widely recognized, and has been shown in numerous studies (Sipos et al. 2007; Hong et al. 

2009; Lowe et al. 2010; Fortuna et al. 2011), that universal primers do not target all bacteria 

and may provide a skewed representation of the bacterial community. In Paper III, we showed 

that the choice of primers can have a profound effect on the description of the bacterial 

community in activated sludge. With one primer pair, 63F&M1387R (Marchesi et al. 1998), 

the bacterial community was determined to be dominated by Alphaproteobacteria while with 

another, 27F&1492R (Lane 1991), Betaproteobacteria was the clearly dominating class. The 

27F&1492R primer pair, or variations of the same, is widely used in studies of activated 

sludge (Layton et al. 2000; Figuerola and Erijman 2007; Kong et al. 2007; Jin et al. 2011; 

Yang et al. 2011) while the other primer pair, 63F&M1387R, is not. The source organisms of 

the sequences targeted by the latter but not the former, mainly Alphaproteobacteria, may 

therefore be underrepresented in surveys of bacterial communities in activated sludge.    

SEQUENCING AND GENE LIBRARIES 

By the use of PCR and universal primers, specific marker genes or functional genes of all 

bacteria in a sample can be obtained, but the problem of separating and characterizing the 

individual components still remain. One way to do this is through the generation of gene 

libraries. Here, the genes obtained in the PCR are inserted in clonal vectors, plasmids, which 

in turn are inserted in engineered Escherichia coli cells. As they grow and divide the E.coli 

cells will then not only copy their own DNA but also the gene that was inserted in the clonal 

vector. The transformed E.coli cells are grown on plates and spread out, so that single 

bacterial colonies, each derived from a single E.coli cell, can be separated. Thus, the pool of 

the genes from all bacteria obtained from the PCR has now been separated through the 

cloning and transformation of E.coli cells, and each E.coli colony contains a single gene 

sequence, which can be characterized by sequencing. The collection of E.coli colonies is 

referred to as a clone library, or gene library. 

Each gene in the gene libraries can be amplified by PCR and characterized by sequencing. 

The resulting set of obtained sequences is then analyzed to describe the bacterial community. 

Although highly informative, gene libraries also have limitations, mainly the low number of 

sequences that are typically analyzed due to the high cost and the time that is required. 

Although the cost for sequencing is decreasing, generation of gene libraries remain time-

consuming and labor-intensive. The number of sequences in a gene library is therefore 

typically around 100 and rarely above 1000, and these relatively few sequences are used to 

describe a community of, for example 1 000 000 000 individual cells of 9000 species, which 

are estimations for 1 ml of sludge (Curtis et al. 2002). The apparent limitation is that only the 

most abundant species will be represented in the gene library. Statistical methods can be used 

that estimate how many different taxa that are likely to be present in the sample (Chao 1984; 

Chao and Lee 1992). The number of observed taxa in the gene library can then be compared 
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with the estimated number of taxa in the sample to determine how well the gene library 

represents the bacterial community (Kemp and Aller 2004). 

In Papers III, IV and V, gene libraries were used to describe the bacterial and archaeal 

community in the activated sludge of the Rya wastewater treatment plant. The number of 

sequences in the libraries varied between 48 and 82 and consequently the estimated coverage 

was low for all libraries, at best 60% of all species. The obtained sequences thus only 

represent the most abundant species and do not give a complete picture of the diversity of the 

communities. 

The analysis tools used for sequence analysis were ClustalW (Thompson et al. 1994) for 

sequence alignment, BioEdit (Hall 1999) for inspection and the Phylip package (Felsenstein 

2005) for phylogenetic tree analysis and generation of distance matrices. An additional tool 

was also developed that divides the sequences in operational taxonomic units (OTUs) based 

on any given similarity threshold. The tool was implemented as an Excel template and is 

available at http://sourceforge.net/projects/toolsfortrflp. 

NEXT GENERATION SEQUENCING TECHNOLOGIES 

The development of new technologies has enabled sequencing of thousands (Kim et al. 2012), 

or even millions (Yu and Zhang 2012) of sequences from a bacterial community’s 

metagenome, which is all DNA from all bacteria in the community. With the next generation 

sequencing technologies (see Scholz et al. (2012) for an overview of different platforms), 

large data sets are obtained by direct sequencing of DNA. However, the retrieved sequences 

are generally short, at most a few hundred bases long, and the data analysis can be extremely 

complex (Desai et al. 2012). Even so, with these approaches both the structure and function of 

bacterial communities can be explored to a greater extent than what is possible with the 

traditional sequencing approach using gene libraries (Gilbert et al. 2008; Galand et al. 2009).  

DNA-FINGERPRINTING 

Instead of separating the pool of sequences obtained by PCR through cloning, different DNA-

fingerprinting methods have been developed. These methods exploit sequence differences to 

separate groups of sequences from others. Two common DNA-fingerprinting methods for the 

study of microbial communities are denaturing gradient gel electrophoresis (DGGE) (Muyzer 

1999) and terminal restriction fragment length polymorphism (T-RFLP) (Liu et al. 1997). 

Both methods rely on gel electrophoresis, which exploits the negative charge of DNA strands. 

DNA is loaded on a gel, which can be described as a mesh or a matrix, typically made of 

agarose, and when a voltage is applied, the DNA strands will migrate through the holes in the 

gel matrix, towards the positive charge. Longer strands will get entangled and move slower 

through the gel than short strands and in this way DNA strands can be separated by size. The 

sequences obtained in a PCR, either functional or marker genes, will all be of the same size 

and DGGE and T-RFLP therefore use different approaches to still be able to separate the 

sequences by gel electrophoresis.  
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DGGE 

To denature DNA is to open up double-stranded DNA, separating it into two single strands 

and can be achieved by increasing temperature or addition of a denaturing compound. How 

high temperature or how much of the denaturing compound that is needed depend on how 

hard the two strands bind together, which is determined by the nucleotide composition. In 

DGGE the gel contains a denaturing gradient, i.e. an increasing concentration of a denaturing 

compound. Sequences are loaded double stranded and depending on the nucleotide 

composition of the sequence the double stranded sequence will denature, open up into single 

strands, at different concentrations of the denaturing compound. As the double stranded 

sequences start to open up they get entangled and stop migrating. Sequences with different 

nucleotide composition will denature at different positions on the gel and a separation is 

achieved. The DNA, which is entangled at different positions on the gel, can then be 

visualized by addition of DNA-binding florescent dyes. DGGE can be used to compare the 

community composition of different samples by comparison of the patterns on the gel, i.e. the 

number of bands and the intensity of different bands. In addition, the bands can also be cut 

out, amplified by PCR and sequenced.  

T-RFLP 

In T-RFLP, one, or both, of the primers used in PCR are labeled with a fluorescent marker. 

After PCR the amplified sequences are digested with a restriction enzyme. Restriction 

enzymes recognize specific short DNA sequences, typically four bases long, and cuts double 

stranded DNA at the recognized site. Depending on the nucleotide composition of a sequence 

the restriction enzyme will recognize and cut the sequence at different positions. The pool of 

restriction fragments are then analyzed by gel electrophoresis and separated by size. At the 

end of the gel a fluorescence detector receives a signal every time a terminal restriction 

fragment (T-RF) passes and an electropherogram is generated. The electropherogram plots the 

fluorescence intensity against migration time and has a peak of fluorescence intensity for each 

time a T-RF is detected. By including reference fragments of known lengths and analyzing 

their migration times, the lengths of the detected T-RFs are calculated from the migration 

times. The resulting pattern of T-RFs of known lengths is referred to as the T-RF profile of a 

sample and as in DGGE analysis, the microbial community composition of different samples 

can be compared by comparing these patterns. 

The T-RFLP method was used in all papers included in this thesis. The software GeneMapper 

(Applied Biosystems) was used to generate the T-RF lengths and peak heights and areas, but 

all subsequent data analysis was carried out using tools developed and implemented as Visual 

Basic procedures in an Excel template. The Tools for T-RFLP data analysis template is 

described in Paper I and is available at http://sourceforge.net/projects/toolsfortrflp. T-RFLP 

analyses of more than a few samples, such as the time series analyzed in Papers IV and V, can 

generate large data sets where hundreds of T-RF profiles, each with size, peak height and 

peak area data for hundreds of T-RFs, should be compared and analyzed. Manual analysis of 

such data sets would simply not be feasible and automated analysis approaches and tools 

(Smith et al. 2005; Abdo et al. 2006; Culman et al. 2009) have therefore been developed. 

However, the available software or analysis tools offer few, if any, opportunities to compare 
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different noise reduction, normalization or alignment methods. The Tools for T-RFLP data 

analysis template was developed to meet the need for a flexible tool where different analysis 

approaches could be tested and new methods or features easily could be added. The first 

procedures of the template were developed simply to enable an analysis of the data where all 

parameters could be controlled and the data could be checked and visualized throughout the 

analysis. More features were then continuously added and now all steps in the T-RFLP 

analysis, from the initial setting of peak detection threshold and data analysis range, to the 

final comparisons of T-RF profiles using association coefficients, can be done in the same 

template. An additional tool to identify observed T-RFs by comparison with predicted T-RFs 

from the MiCAIII databases (Initiative for Bioinformatics and Evolutionary Studies 2007) 

was also developed and used in Paper IV. This tool was not included in the Tools for T-RFLP 

data analysis, but can be found at http://sourceforge.net/projects/toolsfortrflp. Additional 

multivariate data analysis of T-RFLP data was carried out using Primer-6 (version 6.1.11, 

Primer-E), PAST (Hammer et al. 2001) and CAP (Anderson and Willis 2003). 

A theoretical advantage of T-RFLP compared with DGGE is that the observed T-RFs can be 

identified by comparison with predicted T-RF lengths of sequences in databases. 

Identification of the differences between samples would thus be possible without having to do 

additional sequencing, as is required to identify bands in the DGGE analysis. However, as 

observed in Papers IV and V, and as described by others, the observed T-RF lengths do not 

correspond directly to the predicted T-RF lengths, but can be several bases longer. 

Furthermore, as we observed in Paper V, sequences with the same predicted T-RF length may 

produce different observed T-RF lengths, due to differences in nucleotide composition. 

Another observation from Paper V was that the same T-RF did not represent the exact same 

group of sequences in all samples, although in most cases the T-RFs of the same length in 

different samples were identified as coming from at least the same class. In conclusion, due to 

the discrepancy between predicted and observed T-RFs, the identification of T-RFs can be 

difficult, both when comparisons are made with external databases and gene libraries from the 

analyzed community. Furthermore, sometimes sequences from a wide range of taxa may have 

the same T-RF lengths, and this also affects the identification. In Paper IV we identified the 

T-RFs both by comparisons with a gene library and with an external database, where the 

precision of the latter was so low that the T-RFs could only be identified at the phylum level. 

In Paper V identification of the T-RFs at the level of class was possible by comparisons with 

the predicted T-RFs of the sequences in a gene library. 

After a thorough evaluation of the T-RFLP method in Paper II and use and interpretation of 

the results in Papers III, IV and V, I believe that T-RFLP is a good tool for detection of 

differences in the composition of the most abundant bacteria in different samples. However, 

the main drawback is that the identity of a T-RF is not absolutely certain unless a gene library 

is generated from the same sample. 

FISH 

A DNA-based method which does not depend on DNA-extraction and PCR is fluorescence in 

situ hybridization (FISH) analysis (Amann et al. 2001). In this method, fluorescent probes 
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targeting specific sections of the 16S rRNA molecule are added directly to the sample, which 

is prepared so that the probes can enter the cells. The samples are analyzed using fluorescence 

microscopy where the fluorescent probes that have bound to the 16S rRNA can be seen. The 

advantage of FISH is that the structure of the samples are intact so that in addition to seeing if 

a bacterial group is present we can also see where the bacteria are located in the sample. A 

disadvantage of FISH is that you have to know what you are looking for in order to choose 

the right probes. This requires knowledge of the composition of the community, for example 

through the generation of gene libraries. 

FISH was used in Papers III and IV. In Paper III FISH was used as a comparison to the 

obtained community structures with the two different primer pairs. In Paper IV we used FISH 

to confirm the presence of Archaea in the activated sludge, to localize the Archaea and to 

investigate if there was any structural differences between flocs with and without Archaea. 

Image analysis was carried out using ImageJ (version 1.44p, Wayne Rasband, National 

Institute of Health, Bethesda, MD, USA, available at the public domain at 

http://rsb.info.nih.gov/ij/index.html), daime (Daims et al. 2006) and ComStat (Heydorn et al. 

2000). 
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RESULTS AND DISCUSSION 

DESCRIPTIONS OF MICROBIAL DIVERSITY 

BACTERIA 

The bacterial communities in activated sludge have been described for a large number of 

wastewater treatment plants with different configurations, located in different parts of the 

world (Juretschko et al. 2002; Wells et al. 2011; Wang et al. 2012). Bacteria of phyla 

Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria and 

Verrucomicrobia are generally among the most abundant in surveys of activated sludge, but 

the proportions vary. The type of treatment process is an obvious factor for the composition of 

the bacterial community, since it defines the conditions to which the bacteria must adapt. For 

example, the Rya WWTP is designed to have nitrification in biofilm communities in trickling 

filters, and phosphate removal is done by precipitation via addition of iron. Consequently, 

neither nitrifiers nor polyphosphate-accumulating bacteria were found in the gene libraries 

from the Rya WWTP in Paper V. Likewise, in WWTPs with biological phosphate removal, 

polyphosphate-accumulating actinobacteria are abundant (Mielczarek et al. 2013a), as the 

design allow them to proliferate. In recent years, facilitated by the advances in DNA-

sequencing technology, several comparative studies of WWTPs from different locations and 

with different configurations have been made. The factors that have been shown to contribute 

to differences in community composition between WWTPs are geographical location (Xia et 

al. 2010; Wang et al. 2012; Zhang et al. 2012), wastewater characteristics (Xia et al. 2010) 

and process type (Hu et al. 2012). However, bacteria of the same genera have also been 

observed in many WWTPs, despite differences in configurations and location. For example, 

both Wang et al. (2012) and Zhang et al. (2012) found sequences of Zoogloea, 

Dechloromonas and Acidobacteria GP4 and GP6, in several WWTPs with different 

configurations, in both China and North America. Zoogloea was also found to be one of the 

genera that was present at all times in all WWTPs in a longitudinal study of a large number of 

Danish WWTPs (Mielczarek et al. 2013b). Several of the genera found in many of the 

WWTPs investigated by Wang et al. (2012) and Zhang et al. (2012) and identified as core 

species in the Danish WWTPs (Mielczarek et al. 2013b) were also found in the Rya WWTP 

(Papers III and V), including Zoogloea, Dechloromonas, Geothrix and Rhodobacter.  

To further grasp the differences and similarities between WWTPs with different 

configurations in different parts of the world a literature survey was conducted and is 

presented here. Data was obtained from 20 gene library surveys of 16 different WWTPs 

(Snaidr et al. 1997; LaPara et al. 2000; Layton et al. 2000; Juretschko et al. 2002; Bramucci et 

al. 2003; Chouari et al. 2005; Figuerola and Erijman 2007; Kong et al. 2007; Del Casale et al. 

2011; Jin et al. 2011; Wells et al. 2011; Yang et al. 2011), 2 pyrosequencing studies of 29 

WWTPs (Wang et al. 2012; Zhang et al. 2012), and a longitudinal study of 26 WWTPs using 

FISH (Mielczarek et al. 2013b). The WWTPs were located in four continents and had a wide 

range of different configurations. The combined data was analyzed to see if there were 

significant differences in community composition between the WWTPs with respect to 

location, configuration and methodology (Figures 2-3 and Table 1). The community 
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composition in WWTPs in Asia was significantly different from WWTPs in both Europe and 

North America, but there was no significant difference between WWTPs in Europe and North 

America. The difference between Asian and North American WWTPs was also observed in 

the original study by Zhang et al. (2012) where 11 Asian and 3 North American WWTPs were 

compared. There was no significant difference in community composition between WWTPs 

operated using anaerobic/anoxic/aerobic (A/A/O), A/A/O + membrane bioreactor (MBR) or 

anoxic/aerobic (A/O) configurations. However, the community composition in WWTPs with 

conventional activated sludge (CAS), oxidation ditch (OD) or other configurations were 

significantly different from the community composition in WWTPs with some of the A/O and 

A/A/O configurations. This seems reasonable, as the conditions in the OD and CAS systems 

are more static than in the A/A/O and A/O configurations, which may benefit a different set of 

bacteria. The methods used to generate the data also had a great effect on community 

composition, as there was a significant difference between the WWTPs that had been studied 

using gene libraries and WWTPs that were studied using pyrosequencing. There was no 

significant difference between the WWTPs investigated using gene libraries generated with 

different primers. However, the difference between the WWTPs studied by Wang et al. 

(2012) and the WWTPs studied by Zhang et al. (2012) was significant, even though both 

studies included similar WWTPs in China. Both Wang et al. and Zhang et al. used 

pyrosequencing, the same primers and classified the sequences by the same criteria. However, 

they used different DNA-extraction methods, which seem to have had an effect on the 

observed bacterial community composition. The apparent impact of the methodology used 

suggests that comparisons of results obtained using different methods may be misleading. 

This is in accordance with the results presented in Paper III, where gene libraries obtained 

from a single sample with two different primer pairs were found to be significantly different.  

 



15 
 

Table 1 Analysis of similarity between different categories of WWTPs 

Location/Configuration/Method 

Number of data 

sets Significantly different from* 

Asia 31 Europe and North America 
Europe 8 Asia 
North America 10 Asia 
A/A/O 15 CAS, OD and Other configuration 
A/A/O + MBR 4 - 
A/O 10 CAS and OD 
CAS 8 A/A/O, A/O and OD 
OD 4 A/A/O, A/O and CAS 
Other configuration 9 A/A/O 
27F&1492R 12 Wang and Zhang 
Other primers 8 Wang and Zhang 

Wang 14 
27F&1492R, Other primers and 
Zhang 

Zhang 15 
27F&1492R, Other primers and 
Wang 

An analysis of similarity (ANOSIM) was carried out using the relative abundances of bacterial phyla and the 

Proteobacteria classes from 20 gene library surveys of 16 different WWTPS (Snaidr et al. 1997; LaPara et al. 

2000; Layton et al. 2000; Juretschko et al. 2002; Bramucci et al. 2003; Chouari et al. 2005; Figuerola and 

Erijman 2007; Kong et al. 2007; Del Casale et al. 2011; Jin et al. 2011; Wells et al. 2011; Yang et al. 2011 and 

Paper III in this thesis), 2 pyrosequencing studies of 29 WWTPS (Wang et al. 2012; Zhang et al. 2012) and a 

longitudinal study of 26 WWTPs using FISH (Mielczarek et al. 2013b). The analysis was based on Bray-Curtis 

similarities, excluding the unclassified fraction (category “Other” in Figure 2) and grouping based on location, 

configuration or the methods used to obtain the data. 1000 Monte Carlo permutations were done to determine the 

significance of the differences between the groups. The analysis was carried out using the software PAST 

(Hammer et al. 2001). * Indicates a p-value below 0.05 for the comparison of the two groups.  

 



16 
 

 

Figure 2 Bacterial community composition in activated sludge from different locations 

The relative abundances of bacterial phyla and the Proteobacteria classes from 20 gene library surveys of 16 

different WWTPs (Snaidr et al. 1997; LaPara et al. 2000; Layton et al. 2000; Juretschko et al. 2002; Bramucci et 

al. 2003; Chouari et al. 2005; Figuerola and Erijman 2007; Kong et al. 2007; Del Casale et al. 2011; Jin et al. 

2011; Wells et al. 2011; Yang et al. 2011 and Paper III in this thesis), 2 pyrosequencing studies of 29 WWTPS 

(Wang et al. 2012; Zhang et al. 2012) and a longitudinal study of 26 WWTPs using FISH (Mielczarek et al. 

2013b) are given together with information regarding location and the method used to generate the data. For 

each data set the first author of the corresponding paper is given. In the cases where several data sets are from 

the same paper, additional information regarding WWTP name, sample time or method is also given. The gene 

library surveys were divided in two categories based on the primers that were used: “27F&1492R” or “Other 

primers”. Wang et al. (2012) and Zhang et al. (2012) both used pyrosequencing with the same primers but 

different DNA-extraction methods. The category “Other” on the x-axis includes the fraction of unclassified 

sequences. 
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Figure 3 NMDS analysis of bacterial 

community composition data 

The relative abundances of bacterial phyla and the 

Proteobacteria classes from 20 gene library 

surveys of 16 different WWTPS (Snaidr et al. 

1997; LaPara et al. 2000; Layton et al. 2000; 

Juretschko et al. 2002; Bramucci et al. 2003; 

Chouari et al. 2005; Figuerola and Erijman 2007; 

Kong et al. 2007; Del Casale et al. 2011; Jin et al. 

2011; Wells et al. 2011; Yang et al. 2011)(and 

Paper III in this thesis), 2 pyrosequencing studies 

of 29 WWTPS (Wang et al. 2012; Zhang et al. 

2012) and a longitudinal study of 26 WWTPs 

using FISH (Mielczarek et al. 2013b) were 

analyzed using NMDS based on Bray-Curtis 

similarities. The unidentified fraction (category 

“Other” in Figure 2) was excluded from the 

analysis. Panel A, B and C show the best 2-D 

configuration of 250 iterations. The data points 

were divided in groups based on the location of the 

WWTP (panel A), the method used to obtain the 

data (panel B) and the configuration of the WWTP 

(panel C). In panel A squares with the same color 

were samples from the same WWTP either from 

different dates or analyzed using different primer 

pairs. The group Asia included 30 WWTPs from 

China and 1 from Singapore. In panel B the group 

“Other” were gene library analyses using primer 

pairs other than 27F&1492R. Wang et al. (2012) 

and Zhang et al. (2012) both used pyrosequencing 

with the same primer pairs but different DNA-

extraction methods. The NMDS analysis was 

carried out using the software Primer 6 (Primer-E). 



18 
 

ARCHAEA 

Archaea in activated sludge WWTPs have mainly been studied with respect to their 

involvement in nitrogen removal. The presence of archaeal ammonia monooxygenase subunit 

A (amoA) genes has been demonstrated world-wide , sometimes in lower (Wells et al. 2009; 

Rodriguez-Caballero et al. 2012) and sometimes in greater (Kayee et al. 2011; Bai et al. 2012) 

numbers than the bacterial amoA genes. A relation between ammonia concentration and 

abundance of archaeal amoA genes have been proposed, with increasing abundance of 

archaeal amoA genes with decreasing ammonia concentrations (Limpiyakorn et al. 2013). 

However, although it has been demonstrated that amoA encoding Archaea oxidize ammonium 

in cultures and enrichments (Jung et al. 2011; Martens-Habbena and Stahl 2011), it remains to 

be demonstrated in activated sludge (Mussmann et al. 2011). 

Paper IV in this thesis is to date the most extensive description of the Archaea community 

composition in a WWTP. The presence of Archaea in activated sludge had been reported 

previously (Gray et al. 2002; Hagman et al. 2008; Sánchez et al. 2011), but was not 

thoroughly described. The composition of the Archaea community in the activated sludge of 

the Rya WWTP, mainly methanogens, suggested that they were fed to the activated sludge 

with the recycled water from an anaerobic digester. Methanogens are strictly anaerobic and 

activated sludge is highly aerated. However, the oxygen concentration decreases inside the 

activated sludge flocs (Daigger et al. 2007) and anoxic zones can exist (Schramm et al. 1999) 

where anaerobic microorganisms can thrive. The abundance of Archaea in the activated 

sludge of the Rya WWTP was estimated using FISH to be 1.6%. This is lower than some 

other studies where the abundance of Archaea has been estimated to be as high as 10% 

(Hagman et al. 2008; Daims et al. 2009). This difference may be attributed to the differences 

in the type of WWTP, the type of Archaea that are present and the methods that were used. In 

anaerobic wastewater treatment reactors, the Methanosaeta, which was the most abundant 

genera in the Rya WWTP, has been shown to be important for granule structure and stability 

(Zheng et al. 2006). However, no difference in apparent structure was seen between flocs with 

or without Archaea in the activated sludge of the Rya WWTP. 

DYNAMICS OF BACTERIAL AND ARCHAEAL COMMUNITIES 

In order to understand the dynamics of microbial communities one must first consider the 

factors that shape the composition of the communities. These factors can be considered 

stochastic or deterministic, where stochastic factors includes chance and random immigration 

while deterministic factors are specific environmental parameters. Both types of factors have 

been shown to be of importance for the dynamics of microbial communities in activated 

sludge (Ofiteru et al. 2010; Ayarza and Erijman 2011). The deterministic factors, i.e. the 

environmental parameters, in a wastewater treatment system are often dynamic, due to 

seasonal variations in temperature or characteristics of the incoming wastewater (Wilén et al. 

2010). The bacterial community composition in the incoming wastewater, which is the pool 

from where immigrating species are drawn, can also be expected to be dynamic (Novo et al. 

2013). Dynamic patterns can therefore be expected independent of which processes that 

dominate the assembly of the microbial community in activated sludge: either stochastic, 

deterministic or both.  
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Microbial population dynamics in activated sludge has been widely investigated, both in lab- 

or pilot-scale reactors (Kaewpipat and Grady 2002; Lee et al. 2003; Gentile et al. 2007) and in 

full-scale WWTPs (Wang et al. 2010; Wells et al. 2011; Kim et al. 2012; Valentín-Vargas et 

al. 2012; Yang et al. 2012; Mielczarek et al. 2013b). The communities are often reported to be 

highly dynamic while the process performance remain stable (Fernandez et al. 1999; 

Kaewpipat and Grady 2002; Wang et al. 2010) which can be explained by the concept of 

functional redundancy (Briones and Raskin 2003) where a range of different taxa have the 

ability to carry out the same functions. The performance of a system with high functional 

redundancy is likely less affected by changes in environmental parameters than a system with 

low functional redundancy, where the loss or reduced activity of single taxa lead to loss of 

function. The T-RFLP analysis of the bacterial community in the activated sludge of the Rya 

WWTP indicated highly dynamic behavior with marked changes in composition between 

summer, autumn and winter (Paper V). However, the gene library analysis and the 

identification of the T-RFs showed that some of the changes were due to successions of T-

RFs which all represented Rhodobacterales and Rhizobiales species. Assuming that the 

similarity in phylogeny between these species also indicate similar functional traits, the 

functional capacity may have been stable, due to a high functional redundancy, although the 

community composition was variable. However, functional traits can vary between genera, 

and as no actual experiments were carried out to determine the activity and function of the 

species present in the activated sludge, the observation of functional redundancy remain 

speculative.  

In lab-scale reactors, temperature (Nadarajah et al. 2007), sludge retention time (Akarsubasi et 

al. 2009) and reactor configuration (Pholchan et al. 2009) have been identified as strong 

drivers of bacterial community composition. Temperature was also identified as an important 

factor for the dynamic behavior of the bacterial community in the Rya WWTP (Paper V). 

Werker found that temperature variations could explain the seasonal patterns in fatty acid 

composition in a Canadian WWTP (Werker 2006) and Mielczarek et al. also identified 

temperature as important for the dynamics of some species of filamentous bacteria in Danish 

WWTPs (Mielczarek et al. 2012). Common to these three examples where temperature appear 

to affect the bacterial community dynamics, is marked seasonal variations in temperature and 

low temperatures during winter. In WWTPs in locations with higher temperatures and less 

yearly variations, e.g. Puerto Rico (Valentín-Vargas et al. 2012) and California (Wells et al. 

2011), seasonal patterns in community composition were absent or less pronounced. That 

reactor configuration affects the community composition was also suggested in the data from 

the Rya WWTP (Paper V) where the by-passing of the primary settlers due to maintenance 

work coincided with changes in community composition. Thus, from a practical point of 

view, both factors that can be managed, such as WWTP configuration, and uncontrollable 

parameters, such as temperature, appear to be factors shaping the bacterial community in the 

Rya WWTP.  



20 
 

SUMMARY AND FUTURE DIRECTIONS 
The archaeal and bacterial communities in the activated sludge of the Rya WWTP in 

Gothenburg, Sweden, were studied using a range of DNA-based methods including cloning 

and sequencing, T-RFLP and FISH. The methods applied, both the choice of PCR primers 

and T-RFLP data analysis methods, were evaluated and shown to have an impact on the 

results and subsequent conclusions. Thus, while the final results obtained are not un-biased, 

the method evaluations identified some of the biases and enabled a more accurate 

interpretation of the results. Alphaproteobacteria and Betaproteobacteria were the two most 

abundant bacterial phyla found in the Rya WWTP, which is in line with many other surveys 

of bacterial community composition in WWTPs. The bacterial community was dynamic and 

showed seasonal periodicity, although some of the changes were due to successions of 

bacteria of the same order. Temperature and a configurational change were the two factors 

that appeared to affect the community the most. The Archaea community, which was less 

diverse than the Bacteria community, was more static, although at two occasions major 

changes were observed. The archaeal community was dominated by Methanosaeta, which are 

methanogens commonly found in anaerobic bioreactors, and was determined to be present in 

low numbers compared to Bacteria. Variations in the composition of both the bacterial and 

archaeal communities coincided to some extent with observed variations in effluent water 

characteristics and floc properties. However, further studies are required to determine if these 

observations were due to causal relationships.  

The work presented in this thesis is descriptive and based on analysis of the 16S rRNA gene. 

The functions of different observed bacterial groups can therefore only be inferred by 

comparison with similar 16S rRNA genes from characterized bacteria and remain speculative 

and imprecise. Even so, the data obtained is informative and served to answer the questions 

regarding community composition and dynamics which were derived from the aims of the 

thesis. However, without more precise functional information the results have limited 

practical value. The next step would therefore be to combine the phylogenetic information 

with functional information. This could be done by combining the analysis of a marker gene 

with analyses of functional genes or by combining functional experiments of sludge samples 

with identification, for example using FISH. A longitudinal study using metagenomic 

analyses, which includes both phylogenetic and functional information in the form of genetic 

potential, would also be valuable. Metagenomic analyses are typically only done on single 

samples (e.g. (Sanapareddy et al. 2009; Albertsen et al. 2012; Yu and Zhang 2012)), but as the 

cost of metagenomic analyses decreases and the tools for the analysis are improved, this may 

become feasible. The use of next generation sequencing technologies may also be valuable 

since it enables rare bacteria to be detected and included in the analysis. It is possible that 

consortia of rare bacteria, which previously have gone undetected, also have important roles 

in the bacterial communities in activated sludge.  
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