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The synchrotron radiation emitted by runaway electrons in a fusion plasma provides information

regarding the particle momenta and pitch-angles of the runaway electron population through the

strong dependence of the synchrotron spectrum on these parameters. Information about the

runaway density and its spatial distribution, as well as the time evolution of the above quantities,

can also be deduced. In this paper, we present the synchrotron radiation spectra for typical

avalanching runaway electron distributions. Spectra obtained for a distribution of electrons are

compared with the emission of mono-energetic electrons with a prescribed pitch-angle. We also

examine the effects of magnetic field curvature and analyse the sensitivity of the resulting

spectrum to perturbations to the runaway distribution. The implications for the deduced runaway

electron parameters are discussed. We compare our calculations to experimental data from DIII-D

and estimate the maximum observed runaway energy. [http://dx.doi.org/10.1063/1.4821823]

I. INTRODUCTION

Understanding the process of runaway beam formation

and loss in tokamaks is of great importance, due to the poten-

tially severe damage these electrons may cause in

disruptions. In present tokamaks, runaway electrons have

energies between a few hundred keV and tens of MeV, and

in a next-step device like ITER, they are projected to reach a

maximum energy of up to 100 MeV.1 Runaway electrons

emit synchrotron radiation,2–5 the spectrum of which

depends on the velocity-space distribution of the radiating

particles. Therefore, the spectrum can be used to obtain

information about the departure of the velocity distribution

from isotropy and about the energy of the particles. The

emitted radiation can also be an energy loss mechanism,6

although in tokamaks this loss is not appreciable unless the

electrons have very large energies, above 70 MeV.3

Many theoretical studies of the synchrotron radiation of

the energetic population have been done before, either using

approximate electron distribution functions or assuming

straight magnetic field lines.7–9 In several studies, the syn-

chrotron emission from a single particle is used as an approx-

imation for the entire runaway distribution,4,5 using a

specific momentum and pitch-angle for the electrons, often

identified as the maximum momentum and pitch-angle of the

electrons in the runaway beam. In the present work, we use

an electron distribution function typical of avalanching run-

away electron populations in tokamak disruptions. As we

will show, taking into account the whole distribution is

important, since synchrotron radiation diagnostics based on

single particle emission can give misleading results.

Furthermore, we will illustrate that synchrotron radiation can

be used to detect signs of modification of the electron distri-

bution, which can occur due to for instance wave-particle

interaction.

The structure of the paper is as follows. In Sec. II, we

give several expressions for the radiated synchrotron power,

including the effect of field-curvature. We also discuss the

applicability of these expressions in different contexts.

Section III is devoted to the analysis of the synchrotron radi-

ation spectrum from an avalanching runaway electron distri-

bution. We will describe the parametric dependences on

magnetic field, density, temperature, effective charge, and

electric field. In Sec. IV, we discuss the potential use of syn-

chrotron radiation as a diagnostic. We also present a compar-

ison between the synchrotron spectrum calculated for the

avalanching runaway electron distribution and an experimen-

tally measured synchrotron spectrum from DIII-D. Our

conclusions will be summarized in Sec. V.

II. SYNCHROTRON EMISSION FORMULAS

The power radiated by an electron with Lorentz factor

c� 1 at wavelength k in the case of straight magnetic field

lines is10

PcylðkÞ ¼
1ffiffiffi
3
p ce2

�0k
3c2

ð1
kc=k

K5=3ðlÞdl ; (1)

where e is the electron charge, c is the speed of light, �0 is

the vacuum permittivity, kc ¼ ð4pcmeckÞ=ð3eBc2Þ; cjj ¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

jj=c2
q

; me is the electron rest mass, B is the mag-

netic field, k denotes the component along the magnetic

field, and K�ðxÞ is the modified Bessel function of the sec-

ond kind. The radiation is emitted in a narrow beam in

the parallel direction due to relativistic effects.10 In a

tokamak, the effects of magnetic field line curvature and

curvature drift have to be taken into account. This has

been done in Ref. 11, where the following expression was

obtained:
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where a ¼ ng=ð1þ g2Þ,

n ¼ 4p
3

R

kc3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p ; (3)

g ¼ eBR

cme

v?
v2
k
’ xcR

cc

v?
vk
; (4)

R is the tokamak major radius, J�ðxÞ is the Bessel function,

and J0�ðxÞ its derivative. The integrands in Eq. (2) are highly

oscillatory and the calculation of synchrotron spectra can

become computationally heavy. This motivates examining

more approximate formulas which are less complex, espe-

cially when considering possible diagnostic applications. In

Eqs. (21) and (26) of Ref. 11, two limits of Eq. (2) are given.

These two limits are obtained by first expanding in n� 1,

which can be translated to a condition for the wavelength

k� ð4p=3ÞR=ðc3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
Þ. Then, to obtain the first of the

two expressions, Eq. (2) is also expanded in the smallness of

the argument of the Bessel functions, leading to the condi-

tion ng � 1þ g2. The resulting approximative formula is

Pas1ðkÞ �
ce2

4�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
k5Rc

s
e�n I0ðaÞ þ

4g
1þ g2

I1ðaÞ
� �

; (5)

where I�ðxÞ is the modified Bessel function. Pas1 was the

expression used to calculate the synchrotron radiation of an

avalanching population of positrons in Ref. 12 and in fitting

of the synchrotron spectrum in the optical range in DIII-D in

Ref. 5. The two conditions required for validity of Eq. (5)

can be summarized as g=ð1þ g2Þ�1=n� 1, which leads to

a rather narrow validity range for Pas1. Figures 1(a) and 1(b)

show the range of wavelengths for which Pas1 is valid

(kl � k� ku) for different runaway momenta in DIII-D-size

and ITER-size tokamaks, respectively. Note that the wave-

length should be much smaller than the solid line(s) in the

figure for Pas1 to be valid. It is clear that for wavelengths in

the 0.1–1 lm range (as in the measurements described in

Ref. 5), the approximative formula Pas1 is only valid for

particles with large normalized momenta p ¼ cv=c, and not

necessarily for all values of v?=vk.
To obtain the second limit of Eq. (2) (Eq. (26) in Ref. 11),

k� ð4p=3ÞRg=½c3ð1þ gÞ3� (6)

has to be fulfilled. Equation (2) then simplifies to

Pas2ðkÞ ¼
ffiffiffi
3
p

8p
ce2c

�0k
2R

ð1þ gÞ2ffiffiffi
g
p exp � 4p

3

R

kc3

1

1þ g

� �
: (7)

The condition in Eq. (6) is more strict than the one stemming

from n� 1; it is only necessary to fulfill Eq. (6) for Eq. (7)

to be valid. Figures 2(a) and 2(b) show the upper bound for

the wavelength given by Eq. (6). We conclude that for the

visible part of the spectrum, Pas2 could be a suitable approxi-

mative formula for runaway electron beams with p < 50 and

v?=vjj < 0:1. In the opposite case, when p and v?=vjj are

large then either the full expression Pfull, or in some cases

Pas1, can be used.

In general, the difference between the emitted power

given by Pcyl (valid in the cylindrical limit) and Pfull (includ-

ing field line curvature) is not very large if we consider only

emission by a single particle. Single particle synchrotron

spectra calculated by Pcyl and Pfull, as well as the approxi-

mate formulas Pas1 and Pas2 are shown in Figs. 3(a) and 3(b)

for particles with normalized momentum p¼ 50 (corre-

sponding to a particle energy of roughly 25 MeV) and

v?=vk ¼ 0:1 in two different tokamaks. For such particles,

the peak emission is for wavelengths of a few lm (the near

infrared part of the spectrum). Figure 3(a) shows that for

medium-sized tokamaks (such as DIII-D), Pfull is closely

approximated by Pas2. This is not surprising, as Pas2 is valid

in most of the wavelength range considered (especially for

shorter wavelengths), whereas Pas1 is only valid for longer

wavelengths for these parameters. For large tokamaks (such

as ITER), Pfull is best approximated by Pcyl, as the effects of

field curvature become small for such large major radii.

Figure 3(b) shows that Pas2 is not a good approximation in

this case, which is expected, since Pas2 is not valid in this

region.

Figures 3(c) and 3(d) investigate the energy dependence

of the above conclusions. The quantity plotted is

log10ðPiðkÞÞ. Figure 3(c) confirms that Pas2 is a good

approximation to Pfull in DIII-D for a wide range of runaway

energies. For the highest energies, agreement is still very good

FIG. 1. Upper and lower bounds on the

wavelength k for which Pas1 is valid.

Note the logarithmic scale on the verti-

cal axis. The parameters used are

(a) B ¼ 2:1 T and R ¼ 1:67 m and (b)

B ¼ 5:3 T and R ¼ 6 m.
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for short wavelengths, but less so for longer wavelengths.

This agrees with Fig. 2(a), which indicates that Pas2 is no lon-

ger valid for high energies and long wavelengths. Figure 3(c)

also shows that for a tokamak this size, the difference between

Pcyl and Pfull increases with p, and using Pcyl is not recom-

mended if quantitative agreement is sought. In an ITER-like

device, however, Fig. 3(d) indicates that Pcyl approximates

Pfull very well over the whole energy range considered.

Formally, Pfull reduces to Pcyl when R!1 and ck’ c/v?
(where this latter relation is equivalent to cv? / c� 1).

III. SPECTRUM FROM RUNAWAY ELECTRON
DISTRIBUTIONS

In Refs. 4 and 5, the synchrotron spectrum is calcu-

lated by multiplying the single particle spectrum by the

number of runaways with a specific pitch-angle and

momentum. In this section, we investigate how the syn-

chrotron spectrum changes if we take into account the

whole runaway electron distribution instead of the single

particle approximation considered above. We calculate the

synchrotron emission integrated over a runaway electron

distribution using

PðkÞ ¼ 2p
nr

ð
Rr

fREðp; vÞ Piðp; v; kÞ p2dp dv ; (8)

where fRE is the runaway distribution function, Pi is one

of the single particle emission formulas discussed in Sec. II,

v ¼ pk=p is the cosine of the pitch-angle, and nr is the run-

away electron density. The runaway region of momentum

space Rr is defined by a separatrix ps ¼ ð �E � 1Þ�1=2
such that

all particles with p > ps are considered runaways.13 Here,
�E ¼ Ejj=Ec is the parallel electric field Ejj normalized to the

critical field Ec ¼ mec=ðesÞ, with s ¼ ð4pr2
e nec ln KÞ�1

the

collision time for relativistic electrons, re the classical elec-

tron radius, ne the electron density, and lnK the Coulomb

logarithm. As we normalize to nr; PðkÞ is the average emis-

sion per runaway. The alternative choice of normalizing by

the runaway current Ir was also considered, and it was found

that all results presented below are essentially unchanged

aside from an overall scale factor, since the speed of all run-

aways is nearly c.

In large tokamak disruptions, secondary runaway gener-

ation is expected to dominate over primary generation, in

which case the runaway distribution will grow approximately

FIG. 2. Upper bounds on the wave-

length k for which Pas2 is valid. Note

the logarithmic scale on the vertical axis.

The parameters used are (a) B ¼ 2:1 T

and R ¼ 1:67 m and (b) B ¼ 5:3 T and

R ¼ 6 m.

FIG. 3. Single particle synchrotron

emission from different emission for-

mulas. (a) and (b) show emitted spectra

for particles with v?=vk ¼ 0:1 and

p¼ 50 and tokamak parameters corre-

sponding to (a) DIII-D and (b) ITER.

The solid (blue) line corresponds to

the expression including the field-line

curvature, Pfull. The dotted (black) line

is the cylindrical limit, Pcyl. The

dashed-dotted (red) and dashed (green)

lines correspond to the approximative

expressions Pas1 and Pas2, respec-

tively. (c) and (d) show contours of

log10ðPiðkÞÞ (with Pi in units of

W=lm) for various particle momenta

and compares (c) Pcyl; Pfull, and Pas2

and (b) Pcyl and Pfull.
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exponentially in time: @fRE=@t / fRE. In this case of expo-

nential growth, the electron distribution can be approximated

by14

fREðpk; p?Þ ¼
nrÊ

2pczpklnK
exp �

pk
czlnK

� Êp2
?

2pk

 !
; (9)

where Ê ¼ ð �E � 1Þ=ð1þ ZeffÞ; Zeff is the effective ion

charge and cz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðZeff þ 5Þ=p

p
, and the momentum space

coordinates are related to p and v through pjj ¼ pv and

p? ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
. Derivation of Eq. (9) assumes strong ani-

sotropy (p? � pjj) and high electric field ( �E � 1). In addi-

tion to the lower boundary p ¼ ps of the runaway region, an

upper cut-off p ¼ pmax of the distribution will be introduced.

This cut-off is physically motivated by the finite life-time of

the accelerating electric field and the presence of loss mecha-

nisms, such as radiation and radial transport.

As it was shown in Sec. II, the inclusion of field curva-

ture effects via the use of Pfull rather than Pcyl had little effect

on the synchrotron emission of a single particle in an ITER-

sized device. The effect is larger in smaller devices. When

the complete runaway distribution is taken into account, these

conclusions still hold. Figure 4 shows synchrotron spectra

calculated using Eq. (8) together with the distribution in

Eq. (9) and the emission formulas Pcyl; Pfull; Pas1, and Pas2.

The calculation was performed for both a DIII-D-size and an

ITER-size device, as the field curvature is what separates the

different formulas. The parameters used in the calculation in

Fig. 4 are maximum normalized momentum pmax ¼ 100 (cor-

responding to a maximum runaway energy of roughly

50 MeV), parallel electric field Ek ¼ 2 V=m, effective charge

Zeff ¼ 1, background electron density ne ¼ 3� 1020 m�3,

and background plasma temperature T ¼ 10 eV. The rela-

tively low temperature is what is expected after a thermal

quench in a disruption. In DIII-D, the post thermal-quench

temperature is estimated to be as low as T ¼ 2 eV.15

Figure 4(a) shows that in DIII-D, Pfull is well approxi-

mated by Pas2, especially in the short wavelength slope

region of the spectrum. In ITER, Pcyl is a good approxima-

tion, as shown in Fig. 4(b). This is expected since the field

curvature is much smaller here. These results are consistent

with the conclusion regarding single particles in Fig. 3. For

simplicity, throughout the remainder of this paper, we will

use Pcyl when calculating synchrotron spectra (except for the

comparison with DIII-D data in Sec. IV B). Synchrotron

spectra calculated by Pcyl and Pfull are qualitatively similar

for both small and large machines and are also often quanti-

tatively similar for large machines.

The single particle synchrotron emission formulas are in-

dependent of the plasma temperature, effective charge, den-

sity, and the strength of the electric field. These quantities do

however affect the shape of the runaway distribution, which

in turn affects the synchrotron emission. Figure 5 shows scans

in these parameters, the magnetic field, and maximum mo-

mentum pmax of the distribution. The baseline scenario corre-

sponds to the parameters used in Fig. 4 together with

B ¼ 3 T. Since Pcyl is used, there is no dependence on R.

Figure 5 shows that the average synchrotron emission

increases with B; T; Zeff; ne, and pmax, but decreases with

increasing electric field strength. The dependence on ne and
�E is particularly strong, and we note that the average emis-

sion can vary over several orders of magnitude. This variation

is completely missing from the single particle approximation

used in Sec. II. If, as a disruption mitigation technique, a

large amount of material is injected into the plasma (for

instance in the form of a massive gas injection), the increase

in density would lead to increased synchrotron emission from

the runaways (if the mitigation is unsuccessful). This could

give the impression of an increase in the number of runaways

even though this is not necessarily the case. The figure also

shows that the wavelength of peak emission shifts appreci-

ably with varying parameter values. Generally, an increased

average emission is accompanied by a shift of the peak emis-

sion towards shorter wavelengths. The total synchrotron

emission of a single particle scales roughly as ðcv?=vkÞ2.4

Thus, the most strongly emitting particles are highly ener-

getic with large pitch-angle. These particles emit at shorter

wavelengths, so the shift of the wavelength of peak emission

with increased total emission is expected.

In light of the particle energy dependence of the emitted

synchrotron power, the decrease in emission with increasing

electric field strength may seem a little surprising, as a stron-

ger accelerating field leads to more highly energetic par-

ticles. The explanation can be found in the shape of the

runaway beam. Figure 6 shows the runaway distribution,

Eq. (9), in (pk; p?)-space for three of the parameter sets in

the electric field scan in Fig. 5(b). The figure shows that the

distribution, in addition to being extended in pk, becomes

more narrow in p? as the electric field strength increases.

This leads to lower average-per-particle emission by virtue

of the pitch-angle dependence of Pcyl, despite the presence

of a greater number of highly energetic particles.

FIG. 4. Comparison of the synchrotron

spectrum from a runaway distribution

(Eq. (9)), as calculated using Pcyl;
Pfull; Pas1, or Pas2. Normalizing the

emitted power by the runaway current

Ir instead of by nr gives negligible dif-

ference in these figures or any figures

below (the curves are not even distin-

guishable), since most runaways move

at speed � c.
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FIG. 6. Shape of the analytical ava-

lanche distribution (Eq. (9)) for three

of the parameter sets in Fig. 5(b). The

plot shows contours of the quantity

log10jfRE=nr j.

FIG. 5. Synchrotron spectra calculated using Eq. (8) together with Pcyl and Eq. (9). Note that the spectra are normalized to the runaway density. Unless other-

wise noted, the parameters are pmax ¼ 100; Ek ¼ 2 V=m; Zeff ¼ 1; ne ¼ 3 � 1020 m�3; T ¼ 10 eV, and B ¼ 3 T. For this scenario, Ec ¼ 0:15 V=m.
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Figure 7 shows a comparison of the average synchrotron

spectrum calculated for the runaway distribution Eq. (9) and

for a single particle. The figure clearly shows that using the

single-particle emission overestimates the synchrotron emis-

sion per particle by several orders of magnitude. (Note that

the values for the emitted power per particle were divided by

a large number to fit in the same scale.) The overestimation

is caused by the fact that the single-particle approximation

assumes that all particles emit as much synchrotron radiation

as the most strongly emitting particle in the actual distribu-

tion, as discussed in Sec. I. Furthermore, the wavelength of

peak emission is shifted towards shorter wavelengths when

using this approximation. Using the single-particle approxi-

mation can thus give misleading results regarding both the

spectrum shape and the total emission strength.

IV. SYNCHROTRON RADIATION AS A RUNAWAY
ELECTRON DIAGNOSTIC

The interest in the synchrotron emission of runaways is

primarily motivated by its potential as a runaway diagnostic.

In principle, the distribution can be determined by acquiring

an experimental synchrotron spectrum and comparing it to

calculations using Eq. (8) for a range of pmax, provided all

other relevant parameters are known. There are however sev-

eral problems with this approach. First, the complete syn-

chrotron spectrum is not known. Detectors are only sensitive

in a limited wavelength range, which is likely to also contain

contaminating radiation from other sources in the plasma.

Second, the relevant plasma parameters are not always well

known, especially during disruptions. This can lead to signif-

icant uncertainty in the computed synchrotron spectrum, as

the parameter scans in Fig. 5 indicated. Using a single parti-

cle approximation for the runaway distribution seemingly

avoids the second issue, but as we have seen, it also ignores

factors that can influence the emission by orders of

magnitude.

A. Spectrum slope and maximum runaway energy

Simple measurements of the synchrotron power for dif-

ferent wavelengths on the steep slope of the spectrum have

been used to estimate the runaway energy,4 using the single

particle emission formulas and assuming mono-energetic

runaways with well-defined pitch-angle. In this case, there is

a monotonic relationship between the slope and the particle

energy (as the wavelength of peak emission decreases

monotonically with increasing p). The slope can be obtained

through a relative measurement of the synchrotron power at

two wavelengths, S ¼ Pðk1Þ=Pðk2Þ. However, as the run-

away distribution is sensitive to the plasma parameters,

when taking it into account there is in general no such simple

relationship between the slope of the spectrum and the maxi-

mum runaway energy in the distribution. If all other parame-

ters are fixed the relation still holds, as is shown in Fig. 8(a).

This follows naturally from the relation for single particles,

as when pmax is increased, more particles that emit at short

wavelengths are included, and the average emission corre-

spondingly shifts towards shorter wavelengths, affecting the

slope. But if the plasma parameters are uncertain, the slope

FIG. 7. Synchrotron spectra (average emission per particle) calculated using the runaway distribution in Eq. (9) and Pcyl for DIII-D-like and ITER-like cases.

The synchrotron spectrum from a single particle with p¼ 100 and v?=vjj ¼ 0:15 is also shown. Note that the single particle spectra have been multiplied by a

small factor to fit on the same scale. The parameters used for the distributions are pmax ¼ 100 and A: Ek ¼ 2 V=m; Zeff ¼ 1; ne ¼ 5 � 1019 m�3; T ¼ 2 eV;B :
Ek ¼ 10 V=m; Zeff ¼ 1:5; ne ¼ 1 � 1020 m�3; T ¼ 2 eV;C : Ek ¼ 2 V=m; Zeff ¼ 1; ne ¼ 5 � 1020 m�3; T ¼ 10 eV; D : Ek ¼ 10 V=m; Zeff ¼ 2; ne ¼ 1 � 1021 m�3;
T ¼ 10 eV.

FIG. 8. Spectra calculated using the an-

alytical avalanche distribution Eq. (9)

and Pcyl. In (a), the parameters used are

the same as the baseline scenario in

Fig. 5, but with different maximum par-

ticle momenta. All the curves in panel

(b) have the same slope S, as calculated

with k1 ¼ 1:5 lm, k2 ¼ 2:8 lm. The

plasma parameters that differ between

the curves are indicated in the figure.

The remaining parameter values are

ne ¼ 3 � 1020 m�3 and B ¼ 3 T.
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can be misleading. Figure 8(b) shows multiple spectra with

the same slope S for k1 ¼ 1:5 lm and k2 ¼ 2:8 lm. Using

only a measurement of S in the above range, they cannot be

distinguished, despite the appreciable difference in average

emission. This type of two-point slope measurement can be

performed using physical wavelength filters placed in front

of the detector,4 in which case measurements are constrained

to specific k1 and k2 that cannot be easily changed. The pmax

of the different spectra in Fig. 8(b) range from 50 to 90, with

only modest variation of the plasma parameters E; Zeff , and

T (all of which are hard to estimate during disruptions).

Thus, if the plasma properties are uncertain, there is no clear

correlation between S and pmax of the distribution. Another

weakness of using the slope is the difficulty in asserting that

both measurement points are actually located on the approxi-

mately linear part of the spectrum. As the plasma parameters

change, the peak of the spectrum may shift (as discussed in

connection with Fig. 5). Choosing k1 and k2 that are suitable

for a wide range of different conditions (as when using phys-

ical filters) is not easy. Instead of using the slope directly,

one should calculate the emission for an assumed beam-like

distribution function (e.g., similar to Eq. (9)), and iteratively

find the pmax, which fits the synchrotron spectrum best.

B. Synchrotron emission in DIII-D

It is interesting to investigate how a synchrotron spec-

trum calculated for an avalanching distribution compares

with an experimentally measured synchrotron spectrum from

DIII-D. In the specific experimental scenario we consider

(shot number 146 704 and time t¼ 2290 ms16), the loop

voltage is 7 V, the density 3:9� 1019 m�3, and the plasma

current Ip ¼ 0:15 MA, measured near the end of a runaway

plateau phase. The runaway density can be estimated from

the current using nr ¼ Ip=ðecAreÞ, where Are is the area of

the runaway beam. The runaway beam radius in this case

was around 20 cm. The temperature is assumed to be 1:5 eV

and Zeff ¼ 1. For synchrotron emission by mono-energetic

runaway electrons, the conversion to the measured bright-

ness can be done using Eq. (2) in Ref. 5

Bðk; h; cÞ ¼ Pðk; h; cÞ 2R

ph
nr ; (10)

where R is the major radius (of the runaway beam) and

h ¼ v?=vk is the tangent of the particle pitch-angle. Taking

into account the runaway distribution, we calculate the

brightness as

BðkÞ¼4R

ðvmax

vmin

ðpmax

pmin

1

hðvÞPðk;hðvÞ;cðpÞÞ f ðp;vÞp
2dpdv ; (11)

where hðvÞ ¼ tanðarccosðvÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
=v and cðpÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p
; pmin ¼ ð �E � 1Þ�1=2

and the integration limits

for the pitch-angle are vmin ¼ 0, vmax ¼ 1. Since we consider

the visible part of the spectrum, all pmin below p¼ 50 pro-

duce identical results, as only the highest energy particles

emit in this range. Equation (10) is strictly valid for

1=c� h.5 As we are interested in the complete distribution

with both small c and small h, we use instead the effective

viewing aperture heff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ c�2 þ ðrlens=r0Þ2

q
. Here,

rlens ¼ 2 cm is the lens aperture of the detector and r0 ’ 2 m

is the distance between the detector and the runaway beam.

Introducing heff into Eq. (11), we find

BðkÞ ¼ 4R

ð
Rr

1

heffðp; vÞ
Pðk; v; pÞ f ðp; vÞ p2dpdv : (12)

Figure 9 shows a comparison of spectra calculated using

Eq. (12) together with Pas2 and Eq. (9), and the experimen-

tally measured spectra for different runaway beam radii (the

beam is assumed to have circular cross-section), pmax, loop

voltages, and densities. The good agreement for rre ¼ 20 cm

and pmax ¼ 130 leads us to estimate the maximum runaway

electron energy to be around 65 MeV. This is much larger

than the mean energy of several MeV estimated from other

diagnostics.16

For comparison, we also fit the experimental data with

synchrotron spectra from a mono-energetic runaway popula-

tion (using Eq. (10)), for different particle energies and

pitch-angles. As in Ref. 5, we assume that 1% of the runaway

population (calculated with rre ¼ 20 cm) has the specific

energy considered. The results are shown in Fig. 10. This fit-

ting procedure gives a lower estimate for the maximum run-

away energy, at about 40–50 MeV, depending on pitch-angle.

C. Effect of wave-particle interaction

Another instance where the synchrotron spectrum from

a complete runaway distribution is useful is in investigations

of mechanisms that affect the shape of the distribution itself.

One such mechanism is resonant wave-particle interactions,

and here we consider their effect on the synchrotron spec-

trum through a modification of part of the distribution given

in Eq. (9). A runaway distribution is normally strongly

peaked around the parallel direction (v ¼ 1), i.e., it has a

high degree of anisotropy in momentum space (see for

instance Fig. 6). Wave-particle interaction tends to drive the

distribution towards isotropy through pitch-angle scattering

of electrons with resonant momenta.17 A simple way to sim-

ulate the decrease in anisotropy is to introduce a flat profile

in part of momentum space, as indicated in Fig. 11.

The usual integral for the total emitted power, Eq. (8), is

split up into three regions in momentum-space. The first and

third parts remain unmodified, with the usual distribution

function fRE. In the second (middle) part, the distribution

function is assumed to be flat. We denote the lower and

upper boundaries of this region pL and pU, respectively. The

momentum space volume of the shaded block in the figure

should be the same as that of the part of the distribution it

replaces, which gives us a condition from which to calculate

the appropriate height of the block. The integration of the

normal distribution is taken over the entire v-range

(v 2 ½0; 1�). As the distribution decreases exponentially with

decreasing v, the contribution from particles with low v is

very small. When the modifications are introduced, however,

the contribution could be substantial, and we need to restrict

the extent of the block for the modified part of the
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distribution in v (v 2 ½vmin; 1�). The introduction of vmin can

be seen as a compensation for the fact that in reality the

pitch-angle scattered particles are not evenly distributed in v.

Letting fcðp; vÞ ¼ h be a constant distribution where h repre-

sents the height of the block, and equating the momentum

space volume of the block with that of the part of the distri-

bution it replaces, we have

V¼2p
ð1

0

ðpU

pL

f ðp;vÞp2dpdv¼2p
ð1

vmin

ðpU

pL

fcðp;vÞp2dpdv

¼h �2p
3
ð1�vminÞðp3

U�p3
LÞ: (13)

We may solve this for h, and obtain

h ¼
3

ð1

0

ðpU

pL

f ðp; vÞp2dpdv

ð1� vminÞðp3
U � p3

LÞ
(14)

as the block height that conserves the total number of par-

ticles. We emphasize that the above modification represents

a “worst case scenario” in terms of the effect on the spec-

trum. In a more realistic case, the modifications would be

less severe.

The analytical avalanche distribution (Eq. (9)) was

modified according to the above, with pL ¼ 25 and pU ¼ 35

since this is a typical range where wave-particle interactions

manifest.17 The maximum pitch-angle in the modified region

was set to p?=pk ¼ 0:2 (vmin ¼ 0:98), which is qualitatively

consistent with experimental estimates of the maximum

runaway pitch-angle.4,5 In Fig. 12, modified distribution-

integrated synchrotron spectra are shown and compared with

those of unmodified distributions. From the figure, it is clear

that there is an appreciable increase in the average emission

of the runaways as a result of the modifications to the distri-

bution. Again, this increase is related to the pitch-angle

dependence of Pcyl. The isotropization broadens the distribu-

tion in pitch-angle which leads to a higher average emission.

Due to the difference in the synchrotron spectrum, the onset

of a particle-wave resonance should be detectable. However,

as we have seen before, there are also other changes in

plasma parameters that could have a similar effect on the

synchrotron emission.

Our goal in this exercise is not to explore the parameter

space of artificially modified distributions—the modifica-

tions introduced above are too crude to lead to quantitative

conclusions—but rather to illustrate the sensitivity of the

synchrotron spectrum to the details of the runaway distribu-

tion. The analysis here shows that the spectrum from a

FIG. 9. Measured visible spectrum in

DIII-D during the runaway plateau at

t¼ 2290 ms in shot 146 704. The data

are a superposition of synchrotron

radiation from runaways and line radia-

tion from the background plasma.

Theoretical synchrotron spectra are

also shown for various (a) runaway

beam radii, (b) maximum normalized

momenta pmax, (c) loop-voltages Vloop,

and (d) densities n. Unless otherwise

noted the parameters are pmax ¼ 130;
rre ¼ 0:2 m, n ¼ 3:9� 1019 m�3, and

Vloop ¼ 7 V, which are indicated by the

red (dashed-dotted) lines.

FIG. 10. Measured visible spectrum in DIII-D during the runaway plateau at

t¼ 2290 ms in shot 146 704. Spectra from several mono-energetic popula-

tions calculated using Pas2 are also shown. The number of runaways used to

obtain the spectra was 1% of nr calculated from the runaway current (assum-

ing rre ¼ 20 cm).
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distribution modified by particle-wave interaction can imply

runaway parameters distinctly different from those that are

actually present, especially if only a limited part of the spec-

trum is considered. Failure to include such effects can thus

lead to incorrect conclusions regarding the runaway beam

properties.

V. CONCLUSIONS

The synchrotron emission spectrum can be an important

diagnostic of the runaway electron population. In some pre-

vious work, synchrotron spectra have been interpreted under

the assumption that all runaways have the same energy and

pitch-angle. In practice, however, runaway electrons have a

wide distribution of energies and pitch-angles. When taking

into account the full distribution, the most suitable approxi-

mative emission formula may not be the one that has been

used in previous work (Pas1). Instead, depending on the

major radius of the device and the actual runaway electron

distribution, either Pcyl (for large devices) or Pas2 (for

medium-sized devices) are more suitable. Although the sin-

gle particle synchrotron emission formulas do not depend on

the plasma temperature, effective charge, density or electric

field strength, the total synchrotron emission is sensitive to

these parameters, as they determine the shape of the runaway

distribution.

We have shown that the single-particle emission overes-

timates the synchrotron emission per particle by orders of

magnitude, and the wavelength of the peak emission is

shifted to shorter wavelengths compared with the spectrum

from an avalanching runaway electron distribution. We have

also illustrated that using the slope of the spectrum for esti-

mating the runaway energy can be misleading, and in general

one should calculate the emission from an assumed approxi-

mative distribution and iteratively find the maximum

runaway energy to fit the synchrotron spectrum. Finally,

through a comparison with an experimental synchrotron

spectrum from DIII-D, we have estimated the maximum run-

away electron energy in that particular experimental scenario

to be around 65 MeV.
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FIG. 11. Schematic runaway distribu-

tion with modifications emulating the

effects of wave-particle interaction.

FIG. 12. Synchrotron spectra from unmodified and modified runaway

distributions for different electric field strengths. The parameters used

are pmax ¼ 50; pL ¼ 25; pU ¼ 35; Zeff ¼ 1:6; ne ¼ 3 � 1020 m�3; T ¼ 10 eV,

and B ¼ 3 T. For these parameters, the critical field is Ec ¼ 0:15 V=m. The

maximum pitch-angle for the particles in the modified region was set to

p?=pk ¼ 0:2.
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