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Abstract—A simple and effective method for optimal antenna
array thinning employing a broadside-scanned maximum gain
beamformer is presented. Starting from a fully populated λ/2-
spaced regular lattice, the array is thinned by progressively
“turning off” the element(s) with the lowest weight(s) of the
weight vector realizing maximum gain. The accuracy and ef-
fectiveness of the method is validated against a rigorous com-
binatorial search method that can be used to find the optimal
irregular array configuration solution in small to moderate-sized
arrays. Furthermore, to evaluate the robustness of the proposed
approach, the effects of beam steering have been investigated for
linear arrays consisting of 10–40 antenna elements as well. Good
results can be obtained for close to broadside scanned arrays,
which is of importance for the directly radiating arrays that are
currently being considered as modern satellite systems.

Index Terms—array design; sparse arrays; thinning; beam-

forming; signal processing; array configuration optimization

I. INTRODUCTION

Arrays of active antennas have been increasingly employed

in many wireless applications, including radar, radio astron-

omy and satellite communication systems. By deploying a

group of radiating elements and adjusting the contribution for

the elements through digital beamforming, it is possible to

greatly enhance the global antenna performances including

the resulting directivity, sidelobe level, polarization purity

and bandwidth. These properties make the antenna array

technologies very appealing for a new range of applications,

but as new potentialities open to array technology, so do the

challenges.

Thus far, the design of active beamforming arrays represents

a complex and time-consuming problem; the solution space

is very large and requires an appropriate choice of radiating

element types, their number and positions in the array envi-

ronment, as well as the selection of the optimal beamforming

algorithm and its hardware implementation. This problem

is even more challenging for arrays with randomly spaced

elements and thinned arrays. Solving the former category

of problems requires consideration of the whole continuous

space for the element positions. These approaches typically

rely on reference continuous tapering distributions [1] to

position elements accordingly. In array thinning techniques,

the problem is tackled starting from a regular fully populated

array which continues by progressively removing elements

based on some antenna performance criteria for obtaining a

sparse irregular array and determining the optimal excitation

θs

d

0

Fig. 1. Regular linear array with inter element distance d

coefficients. As a full combinatorial search for the optimal

solution is intractable even for moderate sized arrays, several

techniques have been proposed to alleviate this computational

problem.

Some of the earliest techniques addressed the problem

through probabilistic array thinning, while a recent and more

promising line of research is based on the attractive properties

of the binary sequences, named Different Sets [2], [3]. The

binary nature of the problem also encouraged the ample

use of genetic algorithms [4], more recently combined with

deterministic techniques to refine their solutions [5], [6].

While reportedly achieving successful results over previous

generations, these methods are less robust for large array sizes

and tend to provide suboptimal solutions. Another problem

with this approach for large arrays is that the reference solution

leading to the global optimum is difficult – if not impossible

– to obtain; and therefore only relative improvements over

previous results are commonly reported.

In this paper, we present a simple method to find the

optimal solution for the array thinning problem that is based

on the maximum gain beamformer (MaxGain) configured

for a near-broadside-scanned direction and combined with

the minimization of the number of non-zero terms of the

weighting vector. Although the MaxGain beamformer has

no control over the SLL and the overall pattern shape, it

represents an important reference case that can be used to

evaluate the accuracy and efficiency of numerical algorithms

aimed at large array optimization problems. Furthermore, the

performance upper bound (in terms of the gain) can be readily

evaluated over a wide range of scan angles, so as to reduce

the large space of thinning-related design parameters (such

as the minimum aperture area of the array and the minimum

number of elements). As shown in this paper, the proposed

thinning approach has been numerically validated with respect

to the rigorous combinatorial search method and demonstrated



to lead to the same global optimum solution for the array sizes

up to 40 elements (along one direction), within a limited scan

range around the broadside direction. The following results

apply in particular to satellite communication systems, where

directly radiating arrays can consist of 100–1000 elements

having relatively modest scan ranges.

II. PROPOSED APPROACH

The complex-valued array pattern of an N element regular

linear array with inter-element distance d (cf. Fig. 1) can be

defined as [7]

S(θ) =
N
∑

n=1

wnfn(θ)e
jknd sin(θ) (1)

with the weight coefficients {wn}
N

n=1, the vector embedded

element patterns {fn}
N

n=1, the propagation constant k, and

the observation direction θ. Upon assuming that the co-polar

component is dominant, it suffices to consider the scalar em-

bedded element pattern {fn}
N

n=1 and the scalar array pattern

S(θ) instead.

In matrix notation – as is customary in the array signal

processing community – we have that

S(θ) = w
H
v(θ) (2)

where w is the conjugated weighting vector, H the Hermitian

operator, and v(θ) is the array voltage response or steering

vector, i.e.,

v(θ) =











f1(θ)e
jkd sin(θ)

f2(θ)e
jk2d sin(θ)

...

fN(θ)ejkNd sin(θ)











. (3)

The power that is radiated in a given direction is propor-

tional to the square of the absolute value of the array pattern,

and hence, to optimize the gain, it is required to maximize the

power in a given direction θs with respect to the total radiated

power, or, equivalently, to minimize the reciprocal form

w = min
w

wHBw

wHAw
(4)

where

A = v(θs)v
H(θs) (5a)

B =

L
∑

l=1

v(θl)v
H(θl) (5b)

and where A accounts for the power radiated in the scanning

direction θs, and B represents the total radiated power which

is obtained by sampling the array pattern over the field of view

at L points.

The above problem (4) is referred to as the maximum

gain beamformer and can be defined as a linear programming

problem, whose solution can be demonstrated to be [8]

w = principal eigenvector of A−1
B (6)

provided that A is invertible1.

The problem of array thinning can be defined as the

minimization of the ℓ0-norm (the number of non-zero terms of

its argument) of the weighting vector subject to some pattern

constraints, i.e. [9],

min
w

‖w‖ℓ0 subject to a specified pattern mask. (7)

The present maximum gain beamformer does not employ

pattern constraints, so that the problem should be reformulated

as

w = min
w

wHBw

wHAw
subject to ‖w‖ℓ0 = (1− TF )×N (8)

where TF is the thinning factor, defined as the number of

removed elements relative to the number of array elements N
of a fully filled array:

TF =
Nfilled array −Nthinned array

Nfilled array

. (9)

Eq. (8) represents the rigorous formulation of the prob-

lem. The minimization of the objective function is a convex

(linear) problem, however, the ℓ0-norm constraint renders it

nonlinear, so that only global optimization techniques – such

as genetic algorithms – are able to solve the problem. As a

remedy, alternative approaches have been proposed, some of

which adopt a surrogate iterative weighed ℓ1-norm to achieve

sufficiently sparse solutions while preserving convexity [9].

Another approach is the herein proposed numerical technique

as detailed in the next section.

III. NUMERICAL IMPLEMENTATION AND RESULTS

The algorithm commences by applying the maximum gain

beamformer for a given steering direction to a regular fully

populated array of directive elements. The embedded element

patterns are chosen to be of the type cosn(θ), where n is

selected in accordance with the minimum required scan range

of the array. Since the weights with the lowest magnitudes

are expected to have the smallest effect on the solution,

the element with the lowest weight is progressively removed

during the thinning process in ascending order of the absolute

value of the weighting vector.

An illustration of this iterative algorithm is provided in a

stepwise manner in Fig. 2 for an N = 20 element broadside-

scanned regular array with inter-element separation distance

λ/2. The optimally thinned arrays are depicted as combina-

torial reference solutions after each iteration. It is observed

that these optimal solutions for all the thinning factors exactly

match the ones obtained through selecting the elements based

on the magnitudes of the weights.

The proposed approach has been tested for linear arrays

of 10–40 antenna elements, however, to be able to obtain an

optimal combinatorial reference solution for the largest arrays,

only symmetric layouts have been considered. To validate

the performance of the presented algorithm over the range

1If A is singular, one has to consider the principle eigenvector of the gen-
eralized eigenvalue equation Bw = GAw, where G = (wHBw)/(wHAw).



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

T
F

Element #

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

| 
w

 |

Element #

(b)

Fig. 2. (a) The optimal layouts of the linear irregular arrays with the thinning
factor TF varying from 0 to 0.9 (view from top to bottom), as found by
the combinatorial search procedure starting from the regular array of 20 half
wavelength spaced antenna elements (see the red cirular markers for TF = 0)
and maximizing the antenna gain in the broadside direction. (b) The magnitude
of the weighting coefficients (view from bottom to top) of the regular array
and the set of irregular arrays, as optimized by using the proposed thinning
procedure that is based on progressively “removing” the element(s) with the
lowest weights of the weight vector realizing the maximum gain. Note the
agreement between the two optimal solutions.

of the considered array sizes and scan directions, we use

the maximum thinning factor TFmax for which our algorithm

returns the optimal solution as obtained with the reference

method.

While this approach is promising for broadside scanned

beams, it has proved to be inadequate for far off-broadside

steered beams, since the optimal array configuration rapidly

changes when the array is scanned beyond a critical scanning

angle. This behavior is not modeled properly by the proposed

approach since it progressively removes elements without

restoring any afterwards. Fig. 3 presents the results for TFmax

for irregular arrays with 10–40 elements as a function of the

scan angle. As one can see, the proposed approach leads to

the optimal thinning configurations for the broadside scan –

for all tested array configurations. However, and as expected,

for off-broadside direction, the range of the optimal solutions

that our iterative method predicts rapidly decreases.
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Fig. 3. (a) The maximum thinning factor for which the proposed algorithm
returns the optimal array layout solution as a function of scanning angle (in
beamwidths) for different array sizes. (b) The relative gain loss for increasing
thinning factor as obtained with the proposed algorithm starting from the
20-element regular array.

IV. CONCLUSIONS

It has been demonstrated that the proposed method is an

accurate and effective way of synthesizing the optimal thinned

array layout when the maximum gain performance is required

to be near the broadside-scanned direction. While for most

practical applications, additional constraints on the side-lobe

level and pattern shape are commonly imposed, the present

method is simple and easy to implement, and hence, is useful

for studying design trade-offs of large-scale array antennas

– with respect to their minimum size, number of elements

and individual beamformer controls – as well as to serve

as a reference case for testing other optimization techniques

for achieving optimal array configurations. Further research

is ongoing to extend this approach to deal with off-broadside

scanning effects and to allow for asymmetric locations of the

array elements. Also, investigation of the proposed strategy in

combination with more practical beamformers accounting for

SLL constraints and beam shaping is of interest.
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