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ABSTRACT

It is well known that the accuracy of classifiers strongly de-
pends on the distribution of the data. Consequently, a versa-
tile classifier with a broad range of design parameters is bet-
ter able to cope with various scenarios encountered in real-
world applications. Kung [1] [2] [3] presented such a classi-
fier named Ridge-SVM which incorporates the advantages of
both Kernel Ridge Regression and Support Vector Machines
by combining their regularization mechanisms for enhancing
robustness. In this paper this novel classifier was tested on
four different datasets and an optimal combination of param-
eters was identified. Furthermore, the influence of the param-
eter choice on the training time was quantified and methods
to efficiently tune the parameters are presented. This prior
knowledge about how each parameter influences the train-
ing is especially important for big data applications where the
training time becomes the bottleneck as well as for applica-
tions in which the algorithm is regularly trained on new data.

Index Terms— Ridge-SVM, unified model for super-
vised learning, training time, parameter tuning, weight-error-
curve (WEC)

1. INTRODUCTION

In the case of supervised learning, a set of training examples
of the form [X ,Y] = {[x1, y1], [x2, y2], [xN , yN ]} is given.
N denotes the number of training examples and xi ∈ RM

are the feature vectors, where M is its dimensionality. yi ∈
{−1, 1} is the teacher for the training vector xi. The aim is
to find a hyperplane which separates the points with yi = −1
and yi = 1 with a maximum margin.

Such a hyperplane can be written as xTw − b = 0. In
the case in which the data is linearly separable one can define
two hyperplanes which choose the largest possible margin to
separate the data, the so-called separation margin. Writing
these two hyperplanes as xTw − b = −1 and xTw − b = 1,
the margin can then be derived as 2

||w|| so that the aim is to
minimize ||w||. Given the test vector x, the optimal linear

discriminant function is then

f(x) = xTw + b. (1)

1.1. Kernel induced vector spaces

By restricting the decision vector w to the form

w =

N∑
i

xiai = Xa, where a ≡ [a1 . . . aN ]T , (2)

it is ensured that the solution is unique and its vector norm is
the smallest among the feasible solutions. In matrix notation
this results in the empirical kernel space:

XTw + eb = XTXa+ eb = Ka+ eb = y. (3)

Unfortunately, in practice the data is often not linearly
separable. In these cases a nonlinear decision boundary needs
to be adopted by defining a new distance metric. In the kernel
approach, a kernel function is used to calculate a nonlinear
inner-product which results in the new distance metric. This
metric is defined over a kernel-based vector space as

K(x,x′) = ~φ(x)T ~φ(x′). (4)

~φ(x) = [φ(1)(x), φ(2)(x), ..., φ(J)(x)]T is the induced vector,
where J is the number of basis functions which can be either
finite or infinite. Note that min(J,N) is generally the rank
of K. Thus K is nonsingular when J > N . Kernel based
discriminant analysis can be found in the literature, e.g. in [3]
[4] and [5].

For all the experiments conducted in this paper a Gaussian
RBF Kernel defined as

K(x,x′) = exp

{
−||x− x′||2

2σ2

}
(5)

was used. It is one of the most popular kernel functions. This
is partially due to the fact that it involves an infinite number
of basis functions (J →∞), and therefore the rank of K will
be N which in turn implies that it will be non-singular.
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1.2. Kernel Discriminant Analysis (KDA)

Eq. 3 can be extended to incorporate nonlinear kernel func-
tions. Through a linear mapping this leads to the decision
function similarly to Eq. 1 of the form

f(x) = uT ~φ(x) + b (6)

=

N∑
i=1

ai~φ(xi)
T ~φ(x) + b (7)

= aT~k(x) + b (8)

with ~k(x) =
[
K(x,x1) K(x,x2) . . . K(x,xN )

]T
.

The decision rule can then be expressed as

sign[f(x)] = sign

[
N∑
i=1

K(x,xi)ai + b

]
. (9)

By definition the decision-hyperplane must be orthogonal
to the decision vector w. If the data-hyperplane is represented
by its normal vector p, and thus XTp = e, then this orthog-
onality implies that wTp = 0, or aTe = 0 in the empirical
kernel space. This is called the Orthogonal-Hyperplane Prop-
erty (OHP).

Minimizing the margin and thus ||u|| in the empirical ker-
nel space, the OHP property and the restriction w = Xa lead
to the kernel-matrix-based optimization formulation

max
a

L(a) = aTy − 1

2
aTKa (10)

subject to aTe = 0. (11)

It can be shown that this optimization problem has the closed
form solution a = K−1(y − be) where b can be derived as
b = yTK−1e

eTK−1e
which is referred to as the Kernel Discriminant

Analysis (KDA).

1.3. Kernel Ridge Regression (KRR)

In order to reduce the sensitivity to random noise of the clas-
sifier, the kernel matrix can be perturbed to K + ρI which is
called Perturbational Discriminant Analysis (PDA) or Kernel
Ridge Regression (KRR) [1]. Intuitively, by adding a con-
stant term to the kernel matrix K, the algorithm becomes less
dependent on the specific training data mitigating the over-
fitting problem. KRR can be written as the solution of an
optimization problem of the following form

max
a

{
aTy − 1

2
aT [K+ ρI]a

}
(12)

subject to aTe = 0 and thus similarly to KDA. The intro-
duced penalty term – controlled by the ridge factor ρ – avoids
the oversubscription of vulnerable and weak components in
the spectral space as shown in [3]. This in turn can prevent
over-fitting.

1.4. Support Vector Machines (SVM)

The objective of Support Vector Machines (SVM), first pre-
sented by Vapnik [6], is to find the optimal vector a for

max
a

{
aTy − 1

2
aTKa

}
(13)

subject to the OHP constraint aTe = 0 and 0 ≤ αi ≤ C with
αi = aiyi. In this case the penalty factor C is the parameter
allowing for a softer separation margin. More specifically, a
small C value will increase the number of support vectors.
Because the final decision boundary depends on a weighted
combination of support vectors a higher number of support
vectors makes the classifier more stable – though at a potential
loss of accuracy.

2. RIDGE-SVM

Noting the similarity between the objective function of KRR
(Eq. 12) and SVM (Eq. 13) Kung [1] [2] [3] presented a
combined classifier Ridge-SVM (formerly PDA-SVM):

a = argmax
a

(
aTy − 1

2
aT (K+ ρI)a

)
(14)

subject to aTe = 0, Cmin ≤ αi ≤ C with αi = aiyi. The
discriminant function is f(x) =

∑N
i=1 aiK(xi,x) + b.

b can be derived according to the KKT conditions. This hy-
brid classifier now combines the parameters from KRR and
SVM so that Cmin, C and ρ can be separately adjusted in or-
der to improve the accuracy. Note that ρ in KRR and C in
SVM complement each other since increasing ρ avoids over-
fitting, whereas decreasing C leads to over-fitting. Further-
more, the variance σ of the non-linear kernel needs to be ad-
justed so that in total four parameters need to be tuned at the
same time. But while this allows for a better fitting to the
structure of the data, one has to search a four dimensional
space for the optimal set of parameters.

3. WEIGHT-ERROR-CURVE DESIGN FOR
RIDGE-SVM

The error margin associated with the i-th training vector is de-
noted as εi = yi−f(xi). Remembering that the classification
reflects a voting on the i-th vector with weight |ai| according
to Eq. 9, the weight-error-curve (WEC) then shows the rela-
tionship between εi and ai. It can be derived that in the case
of KRR the WEC is a straight line with a negative slope con-
trolled by ρ as shown in Figure 1b. For the special case where
ρ = 0, this results in KDA which is shown in Figure 1a. The
main advantage of KRR lies in the smooth transition in the
center region, in comparison to SVM as shown in Figure 1c
where there is an abrupt drop in the WEC. However, the dis-
advantage of KRR lies in the two tail ends where so-called



anti-support vectors are assigned excessively large weights.
SVM in comparison has constant weights in both tails. This
again supports the argument for a hybrid classifier where the
advantages of both classifiers are combined: Figure 1d shows
the WECs for Ridge-SVM which is a combination of all three
WECs.

ai

(a) KDA

ai
ρ−1

(b) KRR

εi = −1 εi = 0

C

ai

(c) SVM

ρ(C −Cmin )

Cmin

C

εi = 0

εi = −1

ai

(d) Ridge-SVM: Cmin ≤ 0

Fig. 1. Weight-error-curves (WECs) for positive training vec-
tors for various classifiers. Ridge-SVM incorporates the ad-
vantages of the WECs of both KRR and SVM.

3.1. Special cases of Ridge-SVM

Since Ridge-SVM is a reunification of KRR and SVM, these
two can be viewed as special cases of Ridge-SVM as shown in
Figure 2. More specifically, when Cmin = −∞ and C = ∞
the optimization formulation reduces to KRR. Additionally
setting ρ = 0 further reduces KRR to KDA. In the same way,
SVM can be seen as a special case of Ridge-SVM where ρ =
0 and Cmin = 0. Note that these special cases can also be
deduced visually from the WEC in Figure 1d by setting ρ, C
and Cmin accordingly.

(ρ,C,Cmin )

Cmin = 0
ρ = 0

ρ = 0

Cmin = −∞
C =∞

Ridge− SVM

KRR

KDA

SVM
(C)(ρ)

Fig. 2. The existing classifiers KRR, KDA and SVM can be
seen as special cases of Ridge-SVM.

4. EXPERIMENTAL RESULTS

In order to show that the additional parameters in Ridge-
SVM lead to an improved accuracy experiments on four UCI
datasets 1 were conducted to find the optimal set of parame-
ters for σ,Cmin, C and ρ through exhaustive search. While
tuning these parameters we noticed a significant change in
training time. Thus we further investigated how, given opti-
mal parameters, changing one of the parameters affects the
training time and the prediction accuracy.

4.1. Optimal parameters

Kung et al. [2] conducted experiments on 6 datasets from the
UCI machine learning repository and on microarray cancer
diagnosis using Ridge-SVM and compared its performance
against SVM, LSS (linear least squares), KDA and KRR. In
these experiments the parameter σ for the RBF kernel was
optimized for the conventional SVM and then applied with
the same value to all other classifiers. The upper bound on
αi was set to 10, so that C = 10. Regarding the prediction
performance, a direct consequence of using such a relatively
small C is that only the most selective subset of training vec-
tors can be retained which will in turn adversely affect the
prediction capability. Using a grid search for ρ ∈ {0, 1, 2}
and Cmin ∈ {±0.1,±0.5,±1} the best combination of pa-
rameters was found.

This very limited grid search on two parameters is ex-
tended in this work. Here all four parameters are varied
extensively to find the optimal combination. Early experi-
ments showed that for all the datasets increasing C beyond
10 yielded no additional improvement and lowering C gener-
ally worsened the accuracy. Thus, for all experiments C was
fixed to 10 as before.

The accuracy of the parameters was measured using a
leave-one-out cross validation to ensure consistency of the
achieved accuracy when repeating the experiments. For
datasets with more than two classes we performed a one-
versus-all scheme as described in [3]: given a k-class prob-
lem, a one-versus-all classifier contains k binary classifiers,
each trained to separate one of the k mutually exclusive
classes from the rest. In other words, for the k-th binary
classifier, patterns belonging to the k-th class are considered
to be positive, while the rest is considered to be negative.
The class which has the highest total score is identified as the
most likely class for the test example.

The features for the wine and liver datasets had to be
normalized as their features differed by several orders of
magnitude which is generally problematic for kernel meth-
ods. In order to preserve the structure of the original data as
much as possible, a log(X+1) normalization was performed
on the two datasets. We compared the results from the exten-
sive parameter tuning of the Ridge-SVM algorithm with those

1http://archive.ics.uci.edu/ml/



from the previous experiments conducted in [2]. As shown in
Table 1, extensive parameter tuning makes even more appar-
ent the advantage of Ridge-SVM over SVM, LSS, KDA and
KRR: for three out of four datasets the accuracy increased
by 8.41%, 0.87% and 0.67% respectively compared to the
previously chosen parameters presented in [2]. Relatively to
the accuracy of SVM, the next best algorithm, Ridge-SVM,
is better for all four datasets by 1.33%, 0.57%, 1.16%, 9.34%
respectively.

Dataset Iris Wine Liver Glass
No. of samples (N) 150 178 345 214
No. of features (M) 4 13 6 9
No. of classes 3 3 2 6
Accuracy [%]
SVM 96.00 98.31 73.04 64.02
LSS* 84.00 96.63 53.33 38.32
KDA* 84.00 92.70 53.33 38.32
KRR 95.33 91.57 72.17 56.07
Ridge-SVM
Parameters from [2] 96.67 98.88 73.33 64.95
New parameters 97.33 98.88 74.20 73.36
Improvement over
parameters from [2] +0.67 +0 +0.87 + 8.41
SVM +1.33 +0.57 +1.16 + 9.34
Improved parameters
Cmin -0.5 -1 -1 -0.125
C 10 10 10 10
ρ 1.5 0.5 0.75 0.0625
σ 1 0.5 1 0.6

Table 1. Ridge-SVM consistently performs better than any of
the existing algorithms. * Note that repeated examples were
removed from the Iris dataset because they cause poor perfor-
mance for LSS and KDA when computing the Kernel inverse.
In order to keep the size of the dataset the same repeated ex-
amples were allowed in the test set for the cross-validation.

4.2. Tradeoff: prediction performance vs. training time

While tuning the parameters for the Ridge-SVM classifier, we
noticed that the choice of the parameters significantly affects
the training time. Especially for big data applications where
the training process is very time consuming, prior knowledge
about how each parameters influences the training time can
significantly reduce the time spent on finding optimal param-
eters. Furthermore, in some applications when the algorithm
has to be trained regularly on new incoming training data,
a slightly worse prediction accuracy can be accepted in ex-
change for a much faster training time.

In this paper we study the relationship between the choice
of parameters and the training time by running experiments
using Matlab. The quadratic optimization problem was solved

using the built in quadprog tool. All experiments were per-
formed using the trust-region-reflective algorithm. Note that,
in terms of the training time, the interior-point-convex and
active-set algorithm yielded results in the same order.

Ridge-SVM can be tuned with three parameters Cmin, C
and ρ. Furthermore, σ, the variance of the kernel can be ad-
justed.

Varying σ: all experiments showed, that even though the
choice of σ significantly affects the accuracy, it does not im-
pact the training time. This is due to the fact that, although
it introduces a new distance metric to allow nonlinear deci-
sion boundaries, it does not put tighter constraints on the op-
timization problem. For all 4 datasets, values for σ in the
range of [0.5 1] yielded the most accurate results. However,
this strongly depends on the structure of the data and can vary
greatly for other datasets.
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Fig. 3. Iris (Cmin = −0.5, ρ = 1.5, σ = 1)

Varying C: somewhat surprisingly for the parameter C,
reducing its value only increased the training time and de-
creased the accuracy in all cases as shown in Figure 3 for the
iris dataset and thus was just kept constant at C = 10 for all
experiments. The tuning of Cmin and ρ are far from being
so straightforward. In the two main experiments, ρ and Cmin

were individually tuned while all other parameters were fixed
to the optimal value as presented in the previous section. We
then compared learning speed and prediction performance as
shown in Figure 4 for Cmin and Figure 5 for ρ.

Varying Cmin: in the case of Cmin, for three out of
four datasets (i.e. except for the glass dataset), a lower value
yielded a better prediction performance. For the iris and liver
dataset Cmin = 0 which equals ρ-adjusted SVM yielded the
highest accuracy. For the glass dataset Cmin > 0 gave the
best accuracy whereas for the wine dataset Cmin < 0 gave
the best accuracy. Thus, Cmin can take both positive and
negative values depending on the structure of the data. In the
same way when Cmin is increased and approaches 0, training
suddenly takes up to 10 times longer. Given the optimization
formulation for Ridge-SVM, this is due to the following fact:
for a fixed C, increasing Cmin tightens the constraints for αi

(given by Cmin ≤ αi ≤ C) and thus limits the choices for
the αi’s which in turn makes the optimization problem more
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(a) Iris (C = 10, ρ = 1.5, σ = 1)
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(b) Wine (C = 10, ρ = 0.5, σ = 0.5)

−1 −0.5 0 0.125
73

73.91

74.21

75

Cmin

Ac
cu

ra
cy

 [%
]

SVM

 

 

−1 −0.5 0 0.125

0.32
0.5

1

1.5

2

2.5

Tr
ai

ni
ng

 ti
m

e 
[s

]

Accuracy
Training time

(c) Liver (C = 10, ρ = 0.75, σ = 1)
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(d) Glass (C = 10, ρ = 0.4, σ = 0.6)

Fig. 4. As C approaches 0, the training time significantly
increases. Except for the glass dataset, a lower Cmin value
yields a better accuracy. Thus, only in the case of the glass
dataset, the user faces a tradeoff between accuracy and train-
ing time.
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(b) Wine (Cmin = −1, C = 10, σ = 0.5)
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(c) Liver (Cmin = −1, C = 10, σ = 1)
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Fig. 5. For each dataset a distinct peak value for ρ yields
the highest accuracy. The training time increases significantly
when ρ approaches 0. For the glass dataset there is a tradeoff
between training time and accuracy.



difficult. In order to explain why the training time suddenly
increases as Cmin increases above zero, we note that this dis-
allows αi from being negative. Recalling that αi = aiyi, in
order to fulfill the OHP constraint that aTe = 0, the signs of
the ai values are fixed based on the training labels. Thus it
restricts the choices for αi much more than in the case where
αi can be positive or negative. Except for the glass dataset,
there is no tradeoff between training time and accuracy and
it is advised to choose a negative value for Cmin to keep the
training time low. In order to be sure that there is no larger
Cmin value for which the accuracy increases Cmin can be
tuned by starting off with Cmin = −∞ and then increasing
the value. If at some point the accuracy drops Cmin should
be kept at a low value. However, if the accuracy suddenly
increases, as in the case of the glass dataset, one faces the
tradeoff between accuracy and training time, especially when
the training dataset is large or there is new training data arriv-
ing frequently and thus the algorithm has to re-run often. In
the case of the glass dataset (Figure 4d) increasingCmin from
−0.375 to−0.125 increases the accuracy by just 0.47% at the
expense of a 25% longer training time. However, if Cmin is
now further increased to 0, the training time is 4 times as long
as for the case where Cmin = −0.375 at no additional accu-
racy. Thus one has to be careful when choosing Cmin so that
the training time does not significantly increase and prefer-
ably keep Cmin < 0.

Varying ρ: in the case of ρ, for all four dataset, there ex-
ists a relatively small region of values for which Ridge-SVM
yields the best prediction performance. If ρ is chosen too
large, the accuracy drops which is due to the fact that the up-
dated kernel matrix K+ ρI is then dominated by ρ which re-
sults in under-fitting. Similarly, if ρ is set to 0, this can lead to
over-fitting so that the accuracy drops. The experimental re-
sults suggest that the training time increases exponentially as
ρ approaches 0 which was consistent across all four datasets.
This is most likely due to the fact that as ρ increases, K+ ρI
is dominated by the identity matrix and thus the inverse can
be calculated faster when solving the quadratic optimization
problem. Thus, it is recommended to start with a relatively
larger value of ρ in the order of 10 − 100 and decrease until
the accuracy stops improving. If ρ has to be decreased too
much to reach the peak accuracy, it can lead to a tradeoff be-
tween accuracy and training time: in the case for the glass
dataset, ρ = 0.0625 yielded the highest accuracy of 73.36%
as opposed to 72.9% with ρ = 0.4 at the expense of a twice
as long training time.

5. CONCLUSION

It is well known that the accuracy of classifiers strongly de-
pends on the distribution of the data. Thus it cannot be known
in advance which learning algorithm and what parameters
yield the highest prediction accuracy. In this paper Ridge-
SVM, a unified model for kernel-based supervised classifica-

tion which allows extensive parameter tuning was applied to
four UCI datasets. The additional parameters come at the ex-
pense of having to spend more time on the tuning. However,
as shown in this paper, it yields a higher accuracy than SVM
and KRR by 1.33 %, 0.57%, 1.16 %, 9.34% respectively. The
influence of the parameter choice on the training time was
quantified and methods to efficiently tune the parameters are
presented. It was shown that when both ρ and Cmin approach
0 the training time significantly increases and often the accu-
racy drops. However, in some cases this extra training time
can result in a better accuracy of the classifier.

In future work, Ridge-SVM should be applied to a wider
range of datasets in order to further demonstrate its flexibility
through the range of parameters to yield a higher accuracy
than SVM and KRR.
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