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Land Allocation in the Presence of Estimation Risk

Sergio H. Lence and Dermot J. Hayes

Estimation risk occurs when parameters relevant for decision making are uncertain. Bayes'
criterion is consistent with expected-utility maximization in the presence of estimation risk.
This article examines optimal (Bayes') land allocations and land allocations obtained using
the traditional plug-in approach and two alternative decision rules. Bayes' allocations are
much better economically than the other allocations when there are few sample observations
relative to activities. Calculation of certainty equivalent returns (CERs) with estimation risk
is also discussed and illustrated. CERs are typically (and incorrectly) calculated with the
plug-in approach. Plug-in CERs may be extremely misleading.
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Introduction

Whenever economic analysis involves incorporating estimated parameters into theoretically
derived decision rules, the optimal outcome depends on the estimation procedure. This
problem is called estimation risk (Bawa, Brown, and Klein). Typically, estimation risk is
ignored and sample parameter estimates are directly substituted for the true but unknown
parameters in theoretical decision rules. This method is called the plug-in approach. The
plug-in approach has no axiomatic foundations and is not consistent with the expected-util-
ity-maximization paradigm (Klein et al.; Bawa, Brown, and Klein). In the presence of
estimation risk, Bayes' decision rule is consistent with expected-utility maximization
(DeGroot; Berger).

Estimation risk is ever-present in economic problems; for example, it appears in decisions
regarding optimal levels of export taxes, quotas, output, resource allocation, and research
and development expenditures. Furthermore, some problems (e.g., the ex ante value of
information) cannot be solved properly without accounting for estimation risk. Several
studies have analyzed the effects of estimation risk in the financial literature (e.g., Brown;
Boyle and Ananthanarayanan; Bawa, Brown, and Klein; Coles and Loewenstein; Chen and
Brown; Jorion; Frost and Savarino 1986a; Lence and Hayes 1994a). But despite the
pervasiveness of estimation risk, the problem has been largely ignored in agricultural
economics until recently. Exceptions are Chalfant, Collender, and Subramanian (CCS),
Collender, and Lence and Hayes (1994b).

This article has three interrelated objectives. The first objective is to show, by means of
an everyday example, how important estimation risk can be in the analysis of applied
decision making in agriculture. The second objective is to determine the differences among
land allocations obtained from alternative decision rules in the presence of estimation risk.
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The third objective is to discuss and illustrate the calculation of certainty equivalent returns
(CERs) with estimation risk.

The first section of this article reviews briefly the theory of optimal decision making in
the presence of estimation risk, followed by a typical application in agricultural economics.
The example is that of a farmer deciding how to allocate his land to various enterprises based
on the risk-and-return information that is typically available to producers at planting time.
This particular example was chosen because CCS recently developed a non-Bayesian
solution to the land-allocation problem in the presence of estimation risk. Also, the example
allows us to compare the allocations from (a) the traditional plug-in approach, (b) the CCS
rule, (c) the Bayes' criterion, and (d) an approximate Bayes' decision rule used by Brown.

The most important features of the CCS solution are that it is unbiased and that it is no
more difficult to implement than the plug-in approach. The approximate Bayes' decision
rule presented by Brown is of interest because it relies on Bayesian principles, and like the
CCS approach, it is no more difficult to use than the plug-in decision rule. Therefore, the
approximate Bayes' decision rule also eliminates the main advantage of the plug-in approach
over Bayes' criterion, that is, simplicity.

The example presented reveals that the plug-in, CCS, and approximate Bayes' land
allocations may be quite different from the Bayes' land allocations under common agricul-
tural situations. Important differences in allocations, however, need not be economically
significant. To assess their economic significance, it is necessary to use some measure of
the ex ante utility arising out of each decisi criterionte. Therefore, the third section of this
article discusses and illustrates the computation of CERs in the presence of estimation risk.
CERs reveal that the plug-in, CCS, and approximate Bayes'allocations ma llc y be economically
much inferior to the Bayes' allocations. Given the pervasiveness of estimation risk in
agriculture and the typical (but usually unacknowledged) use of the plug-in approach, our
results imply that CER estimates commonly reported in the literature are often unreliable.

Decision Making in the Presence of Estimation Risk

Consider a decision maker characterized by a von Neumann-Morgenstern utility function
of terminal wealth [U(n ), U' > 0, U" < 0]. Let wealth be a function of a vector of random
variables x and a decision vector / [i.e., n (x, 1)]. According to the expected-utility paradigm,
the optimal decision vector 1 is the solution to

(1) max,eA Ex (U) maxA J U[nI(x,l)]fxp (xlO)dx,
x

where A denotes the set of all possible decisions, E,l0(*) represents the expectation with
respect to x given 0, Xis the domain of x,fXl1 (x\O) is the probability density function (pdf)
of x given 0, and 0 is a known vector of parameters that characterizes the pdf.

As long as the parameter vector (0) is known, the decision vector that maximizes expected
utility ( ) can be computed from (1). If 0 is unknown, however, the optimization stated in
(1) cannot be performed because, generally, there is no decision vector that maximizes the
expected-utility function for all possible values of 0. In this situation, there is estimation
risk.
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In the presence of estimation risk,' the standard approach to optimization is the plug-in,
by which sample estimates are substituted for the true but unknown parameters in the
objective function, that is:

(2) max,^ E 10 (U) -max,^, U[c(x, l)]fxlo (xlJ = O)dx,
x

where 0 is the vector of sample parameter estimates. The plug-in objective function (2)
yields 1 / *(0 = 0), as the decision vector under estimation risk. This approach has the
advantage of simplicity, but it ignores estimation risk and is not consistent with expected-
utility maximization (Klein et al.; Bawa, Brown, and Klein).

With estimation risk, the method by which the optimal decision can be obtained in a
manner consistent with expected-utility maximization is Bayes' decision criterion (Klein et
al.; DeGroot; Berger). Bayes' decision criterion can be summarized as follows. Lety (y,,
.. , y,) denote a sample of size n that is generated by the same process that generates x and
is available at the time of decision making. Letfp(,)(0[y) be the agent's believed pdfregarding
the parameter vector (0), after seeing the sample data (y) but before making the decision.
Then, Bayes' decision vector (IB) is the solution to the objective function:

(3) maxtE Ep(Oly)[ExIO (U)] maxEA {J U[7 (x, )]f, 10 (x1O)dx}fp(o ) (0e )d0,
o x

where © is the domain of 0. Comparison of (1) and (3) reveals that they are entirely
analogous. In (1) expectations are taken to eliminate the random vector x. Whereas in (3),
expectations are additionally taken to eliminate the agent's uncertainty regarding the true
but unknown parameter vector 0. The Bayesian approach is appealing relative to the plug-in
and to other methods that do not explicitly model the producer's decision through expected-
utility maximization.

In a recent article, CCS showed that the plug-in decision vector (P1) is a biased estimator
of the optimal decision vector without estimation risk (1). Hence, they proposed the unbiased
decision vector

(4) 1' C - Ep(o y)[l* (0)]

as an alternative to 1". CCS proved that lCC S yields greater expected utility than does 1P' and
showed that lCCS has a closed-form solution for the standard land-allocation problem which
is as easy to compute as p1. These two properties make ifC more desirable than i". However,
CCS decision rule shares with the plug-in approach the undesirable characteristic of not
being consistent with expected-utility maximization.

The main disadvantage of Bayes' criterion is its computational complexity. To overcome
this problem, Brown derived an approximate Bayes' decision vector (1A ) for the special case
of negative exponential utility and random variables (x) following a multivariate normal pdf.

'As pointed out by an anonymous reviewer, another way to view estimation risk is that the decision maker (farmer) faces an
uncertain (unknown distribution) situation while the analyst incorrectly assumes that decision is risky (known distribution).

Closed-form solutions for I1 and IcCS are reported in the appendix.
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His approach consists of approximating the Bayesian objective function (3) so as to obtain
a closed-form solution for the decision vector AB.3 Therefore, this method is meant to
combine the nice properties of the plug-in and Bayes' approaches (i.e., simplicity and
consistency with expected-utility maximization, respectively).

Land Allocation in the Presence of Estimation Risk

The purpose of this section is to apply the decision criterion that is consistent with
expected-utility maximization (i.e., Bayes' criterion) to the standard land-allocation problem
and to compare it with the solutions from the plug-in, CCS, and approximate Bayes'
procedures.

In the standard land-allocation problem, it is assumed that the decision maker has a
negative exponential utility function, U[n(x,l)] = -exp[-rB(x,l)], where r denotes the
Arrow-Pratt coefficient of absolute-risk aversion. Terminal wealth [i(x,l) = 1] equals the
sum of the product of returns per acre times the corresponding acres planted with each crop.
The random vector of next period's returns per acre [x = (x, ... , xk)'] is assumed to
follow a k-variate normal distribution with mean vector ,t and covariance matrix Z [6fle(xlO)
= Nk(xlU, S)]. The decision vector [I = (, ... , Ik)'] is composed of the land allocated to
each crop. The set of feasible land allocations is A= (1: Al < b}, where A is an (m x k) matrix
and b is an m-vector of constraints. Typical restrictions on the decision vector are (a) the
total number of acres planted cannot exceed the total farm acreage (L), and (b) the number
of acres planted with each crop cannot be negative. In such a case, b = (L, 0,...,)', and

(5) A = t
--I

where t
k is a k-vector of ones, and Ik is a (k x k) identity matrix. Finally, the (k x n) matrix

Y = (Y , , n )' contains n past observations on the vector of crop returns.
Under the stated assumptions, the optimization problem (1) takes the following form:

(6a) maxlE^ Ex (U) = maxl^ = Jl:A<b} f [-exp(-rx'l)]Nk(xli, ) dx
x

12
(6b) = max/^A=1: A<b}[-exp(-rtl + - r )],

2

where expression (6b) is derived from (6a) by completing squares in the exponent (Freund).
The land-allocation vector that maximizes the objective function in (6b) (1 ) has a closed-
form solution. Therefore, the plug-in land allocation (I1) is obtained by replacing the true
(but unknown) mean vector (ii) and covariance matrix (E) with their sample estimates ( t
and , respectively) in the expression for 1. Similarly, CCS land allocation ( CC) is derived
as the unbiased estimate of I . The closed-form solutions for I, iP, and 1CCS are reproduced
in the appendix.

3The closed-form solution for 4B is reproduced in the appendix.
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Bayes' criterion requires us to postulate a prior pdf for the unknown parameters. To
simplify the exposition and to avoid criticisms regarding the reasonability and subjectivity
of any particular informative prior, a "noninformative" or "diffuse" prior for p and Z is
assumed throughout. 4 This is equivalent to hypothesizing that the decision maker has no
information (or beliefs) about the parameters, other than that provided by the n past
observations on the vector of crop returns (y).5 Under the stated assumptions, the optimiza-
tion problem (3) becomes

(7) maxlEA Ep(o y)[E(Xo)(U)] = maxA=: Alb} J [-exp(-rx'l)]Sk(xl, , n - k) dx,
x

where Sk(xl ,O°, n-k) is the k-variate Student-t pdf, and S° _ (l+l/n)(n-1)l(n-k)2 .6 The
decision vector that solves (7) is Bayes' land allocation (/B). Bayes' land allocation has no
closed-form solution and must be solved numerically.

The approximate Bayes' land allocation (/B) is obtained by approximating the k-variate
Student-t pdf Sk(XI , °, n-k) with the k-variate normal pdf Nk[xI , (n-k)/(n-k-2) 0].

Doing so yields an approximation to Bayes' objective function (7) that has the same form
as (6b), in which case the optimal land allocation (IAB) has a closed-form solution (see
appendix).

Simulation Procedures

In order to illustrate the impact of estimation risk on land allocations and the differences
among the four alternative solutions, simulations were performed using two well-known
data sets. One data set is the following mean vector and covariance matrix estimates used
by Freund in his classical paper on quadratic programming:

(8) 4L=[83.403, 72.359, 36.023, 207.469]' and

5081.166 545.492 -206.924 -3221.9971
545.492 324.704 -122.807 165.780

(9) [ -206.924 -122.807 145.940 561.040
-3221.997 165.780 561.040 15880.968

Estimates (8) and (9) are meant to be representative of an eastern North Carolina farm where
possible activities are potatoes, corn, beef, and cabbage, respectively. Freund provided
almost no detail about the estimation, but he mentioned that state averages were used to
obtain (8) and (9) due to lack of data for individual farms.

4 mplicitly, CCS criterion also assumes a (diffuse) prior.
5 The inclusion of any nondiffuse prior would serve only to improve the relative performance of the Bayesian solution (as

mesured by CERs). This assertion is true as long as (a) the nondiffuse prior is true, or (b) performance is measured by subjective
performance.

6Expression (7) is obtained from (3) by noting that

J [J U()f.p(xle)dxlfp(oLV)(Oly)dO = J U(.)[fl t;p(xl)( 01,)(o(y)dO] dx= f U(.)f,(xly)dx,
0 X X X

wherefqy[(x[y) is the predictive pdf of x given y.
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The other data set is Hazell's mean vector and covariance matrix estimates:

(10) =[253, 443, 284, 516]', and

11264 -20548 1424 -156271
-20548 125145 -27305 29297

(11) [ 1424 -27305 10585 -10984
-15627 29297 -10984 93652

Hazell obtained (10) and (11) using six annual observations on gross margins of an actual
fresh market vegetable farm in Florida. The respective activities are carrots, celery, cucum-
bers, and peppers.

Simulations were performed for four levels of estimation risk involving 7, 10, 15, and
25 annual observations (n) for each of the activities. The allocation vectors for the plug-in,
CCS, and approximate Bayes' criteria were obtained from their respective closed-form
solutions (see appendix). The allocation vectors for Bayes' criterion were calculated with
Monte Carlo integration because the objective function (7) involves integration over four
variables and exceeded the computing capacity available. More explicitly, Bayes' allocations
were obtained as the solution to the objective function:

1 25000
(12) maxlA={l: Al 25000 [- exp(-rx'l)],

i=125000 j=

where x, is a 4-vector obtained from the ith random draw from the 4-variate Student-t pdf
S4(x\I ,Z°, n - 4). The 25,000 random draws from the 4-variate Student-t pdf were generated
with the method described by van Dijk and Kloek (p. 315), modified to include antithetic
replications in order to improve convergence (Geweke).7

Coefficients of absolute-risk aversion were standardized to achieve consistency with
the analyses of Kallberg and Ziemba and Markowitz, Reid, and Tew. The argument of the
exponential utility function can be rewritten as rx'l = -aR, where a = rw, R - x'l / w, and
w is initial wealth. Kallberg and Ziemba show that if gross returns per dollar of initial wealth
(R) are around unity, then moderate risk aversion corresponds to a values between 2 and 4.
In the present simulations, w was set equal to the simple average of the corresponding sample
means, and risk-aversion levels were defined as moderate-to-low (a = 1) and moderate-to-
high (a = 3).

Simulation Results

Simulation results are summarized in tables 1 and 2 for the Freund and Hazell data sets,
respectively. Crop allocations are reported as percentages of total acreage or, alternatively,
as number of acres per crop assuming that a total of 100 acres is being allocated.

Tables 1 and 2 show that the plug-in allocations are not affected by the number of
observations available to the decision maker. In contrast, the other three decision rules yield
allocations that change with the number of sample observations. This result highlights a

7Antithetic replication means that a second draw is obtained from each original random draw by assigning an opposite value.
For example, if an original random draw from the standard univariate normal pdf equals 0.52, its antithetic replication equals
-0.52.
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Table 1. Land Allocations for Alternative Decision Rules -Freund Data

Land Allocation (percentage of total acreage)
Number of Risk Approx.
Observations Aversion Activity Bayes Bayes CCS Plug-in

7 Mod./Lowa Potatoes 14.7 49.9 39.6 24.5
7 Mod./Low Corn 71.1 0.0 0.0 0.0
7 Mod./Low Beef 0.0 0.0 0.0 0.0
7 Mod./Low Fall Cabb. 14.2 50.1 60.4 75.5

.............................................................................................................................................................................

10 Mod./Low Potatoes 54.1 42.3 34.6 24.5
10 Mod./Low Corn 0.0 0.0 0.0 0.0
10 Mod./Low Beef 0.0 0.0 0.0 0.0
10 Mod./Low Fall Cabb. 45.9 57.7 65.4 75.5

.............................................................................................................................................................................

15 Mod./Low Potatoes 36.3 36.4 31.0 24.5
15 Mod./Low Corn 0.0 0.0 0.0 0.0
15 Mod./Low Beef 0.0 0.0 0.00
15 Mod./Low Fall Cabb. 63.7 63.6 69.0 75.5

.............................................................................................................................................................................

25 Mod./Low Potatoes 31.0 31.7 28.3 24.5
25 Mod./Low Corn 0.0 0.0 0.0 0.0
25 Mod./Low Beef 0.0 0.0 0.0 0.0
25 Mod./Low Fall Cabb. 69.0 68.3 71.7 75.5

............................................................................................................................................................................

7 Mod./High Potatoes 0.0 0.0 0.0 34.5
7 Mod./High Corn 58.4 86.6 80.1 28.4
7 Mod./High Beef 41.6 0.0 0.0 0.0
7 Mod./High Fall Cabb. 0.0 13.4 19.9 37.2

............................................................................................................................................................................

10 Mod./High Potatoes 10.1 0.0 21.2 34.5
10 Mod./High Corn 82.7 81.8 54.1 28.4
10 Mod./High Beef 0.0 0.0 0.0 0.0
10 Mod./High Fall Cabb. 7.2 18.2 24.7 37.2

............................................................................................................................................................................

15 Mod./High Potatoes 22.4 21.3 26.0 34.5
15 Mod./High Corn 52.9 53.8 44.9 28.4
15 Mod./High Beef 0.0 0.0 0.0 0.0
15 Mod./High Fall Cabb. 24.7 24.8 29.2 37.2

............................................................................................................................................................................

25 Mod./High Potatoes 30.2 26.6 29.5 34.5
25 Mod./High Corn 39.3 43.7 38.0 28.4
25 Mod./High Beef 0.0 0.0 0.0 0.0
25 Mod./High Fall Cabb. 30.5 29.7 32.5 37.2

aMod./Low risk aversion corresponds to r= 0.0100187.
bMod./High risk aversion corresponds to r = 0.0300561.
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Table 2. Land Allocations for Alternative Decision Rules -Hazell Data

Land Allocation (percentage of total acreage)
Number of Risk Approx.
Observations Aversion Activity Bayes Bayes CCS Plug-in

7 Mod./Lowa Carrots 20.3 0.0 0.0 0.0
7 Mod./Low Celery 16.9 18.5 19.3 21.3
7 Mod./Low Cucumbers 38.3 55.8 41.2 6.0
7 Mod./Low Peppers 24.5 25.7 39.5 72.6

10 Mod./Low Carrots 0.0 0.0 0.0 0.0
10 Mod./Low Celery 18.4 19.3 26.9 21.3
10 Mod./Low Cucumbers 36.6 40.8 0.0 0.0
10 Mod./Low Peppers 45.0 39.9 73.1 72.6

15 Mod./Low Carrots 0.0 0.0 0.0 0.0
15 Mod./Low Celery 19.3 20.0 25.6 21.3
15 Mod./Low Cucumbers 19.6 29.3 0.0 6.0
15 Mod./Low Peppers 61.1 50.8 74.4 72.6

25 Mod./Low Carrots 0.0 0.0 0.0 0.0
25 Mod./Low Celery 19.5 20.5 24.6 21.3
25 Mod./Low Cucumbers 12.1 20.0 0.0 6.0
25 Mod./Low Peppers 68.4 59.5 75.4 72.6

.................................................................................................. ............................................................................

7 Mod./Highb Carrots 41.5 30.5 0.0 5.9
7 Mod./High Celery 17.8 14.7 18.0 18.1
7 Mod./High Cucumbers 30.9 44.6 64.6 47.4
7 Mod./High Peppers 9.8 10.3 17.4 28.6

10 Mod./High Carrots 19.9 23.1 0.0 5.9
10 Mod./High Celery 15.9 15.7 18.2 18.1
10 Mod./High Cucumbers 44.3 45.4 60.7 47.4
10 Mod./High Peppers 19.9 15.8 21.1 28.6

15 Mod./High Carrots 12.3 0.0 0.0 5.9
15 Mod./High Celery 16.7 18.2 18.3 18.1
15 Mod./High Cucumbers 46.1 60.6 57.9 47.4
15 Mod./High Peppers 24.9 21.2 23.7 28.6

25 Mod./High Carrots 9.0 0.0 0.0 5.9
25 Mod./High Celery 17.1 18.4 18.5 18.1
25 Mod./High Cucumbers 46.6 57.6 55.8 47.4
25 Mod./High Peppers 27.3 24.1 25.7 28.6

aMod./Low risk aversion corresponds to r = 0.0026738.
bMod./High risk aversion corresponds to r = 0.0080214.
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allocations that change with the number of sample observations. This result highlights a
basic problem with the plug-in approach, which is that it ignores the degree of confidence
in the available data. Intuitively, it is unreasonable to ignore the accuracy of the parameter
estimates.

The figures reported reveal striking differences among the allocations obtained from the
four alternative decision rules when the number of observations is small (i.e., when there is
low confidence in the information available). For example, table 1 indicates that for
moderate-to-low risk aversion Bayes' criterion allocates 71.1% of the total acreage to corn.
In contrast, all three of the other decision criteria indicate that corn should not be grown at
all. Similarly, for moderate-to-high risk aversion, Bayes' criterion assigns 41.6% of the land
to beef and 0% to cabbage, as opposed to the other three criteria that allot 0% to beef and
sizable percentages to cabbage.

The reason for the allocation differences can be understood by noting that cabbage and
potatoes have a relatively larger expected return per unit, but also are considerably more
risky than corn and beef. In the traditional plug-in approach, it is assumed that the producer
uses seven years of data to derive the exact first and second moments of returns, that is, he
"plugs in" the sample estimates into the first-order conditions as if they were the true
parameters. In the Bayes' solution, the producer realizes that with only seven years of data
the estimates of the mean, variances, and covariances themselves are quite uncertain. This
additional source of uncertainty causes the producer to grow much more corn and beef and
much less cabbage and potatoes than the levels prescribed by the plug-in approach. Like
Bayes' criterion, both the CCS and the approximate Bayes' approaches also account for the
additional uncertainty, but neither of them seem to stress it enough.

These results suggest a possible explanation of an apparent contradiction in the original
data.8 If farmers' decisions were reasonably modeled by the plug-in, CCS, or approximate
Bayes' criteria, potatoes and cabbage production (corn and beef) should have been much
more (less) popular than actually observed. But potatoes and cabbage have high returns
because few farmers are prepared to accept the risk involved in growing them. Had farmers
responded according to the approximate Bayes', CCS, or plug-in approaches by reducing
beef or corn production, returns on these activities should have been higher than observed
(i.e., the low returns in beef and corn would not have been in equilibrium).9

This finding suggests that, in the presence of scarce information about the mean vector
and the covariance matrix, implications about land allocations derived from the plug-in
approach or from CCS and approximate Bayes' criterion are likely distorted. This observa-
tion is of particular relevance in agriculture. In contrast to the large data sets available for
the analysis of portfolios of stocks and bonds, real-world farming decisions may often be
based on seven annual observations or fewer for each activity. For example, farmers may
forget how prices covaried eight to ten years ago, or the farm may change hands, or the
farmer may believe that the process generating the revenue distribution has changed. This
latter effect could be due to changes in government policy, trade distortions, technology, or
consumer tastes.

8Given the simplifications made in the simulations to focus on estimation risk, this dicussion should not be construed as the
only possible, or even the most important, explanation of the apparent contradictions in the original data.

91t is tempting to stretch this analogy further and to attempt to infer the number of annual observations used by an average
producer when making planting decisions. However, doing so would overestimate the completeness of the information set used
in the model. For example, it would be necessary to assume that the producer indeed maximizes expected utility, that there are
no other important financial or technological constraints, and that the model captures all of the uncertainties of the system (such
as the shape of the statistical distribution, the form of the utility function, and the values of other relevant parameters).
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Tables 1 and 2 also show that the alternative allocations tend to converge relatively fast
as the number of observations increases. Although this finding weakens the case for
explicitly accounting for estimation risk, two important qualifications should be mentioned.
First, the results reported reveal that even with twenty-five annual observations-a situation
not frequent in agriculture-there are some noticeable differences among allocations.
Second and more important, the simulations were performed for the choice among only four
activities because of the nature of the Freund and Hazell data sets. Frost and Savarino (1986b)
have found that the problem of estimation risk depends on both the number of observations
and the number of activities, and that the impact of estimation risk is about the same for all
cases in which the ratio of the sample observations to the number of activities is constant.
Although space prevents us from analyzing this issue more in depth, increasing the number
of activities while holding the number of observations constant will clearly worsen the
problem of estimation risk. This assertion is true because doing so reduces the degrees of
freedom of the k-variate Student-t pdfin (7), thereby increasing the uncertainty faced by the
decision maker.

Certainty Equivalent Returns

A value often computed in studies regarding uncertainty is the CER of a decision I [CER(l)].
CER(l) is the return on a risk-free investment that leaves the decision maker indifferent
between selecting the risky payoff from decision / and accepting the riskless payoff CER(1).
CERs bear a monotonically increasing relationship with expected utility, that is, CER('1) >
CER( ), if and only if, 1 yields greater expected utility than does 1". Hence, CERs allow us
to draw inferences about the expected utility of alternative decisions. Furthermore, CERs
are measured in monetary units and therefore indicate the economic significance of the
differences among alternative allocations.

In the absence of estimation risk, CER(1) is obtained as the root of

(13) U[CER" (1;)] = ExIo {U[n (x, )] },

which we will call CER"(l; 0) (the superscript n standing for "no" estimation risk). For the
land-allocation example analyzed in the previous section, we have

(14) CER" (l*;4, .)= '/* - rl* l
2

as the CER corresponding to the optimal decision vector in the absence of estimation risk
( t).

In the presence of estimation risk, however, CERs cannot be calculated from expression
(13) because such an expression depends on the true but unknown parameter vector 0. If
CER"(I; 0) were the CER in the presence of estimation risk, it would imply that 0 is also
known with certainty, thereby contradicting the definition of estimation risk. CER in the
presence of estimation risk [CERe(l; y)] is the root of

(15) U[CERe (l;y)] = Ep(o l) {ExI, [U(0 (x, 1))] }

as opposed to (13).
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Simulation Procedures

CERs were calculated for each of the four alternative approaches used to solve the standard
land-allocation problem. Simulations were performed for the same data sets, estimation risk
levels (n), and risk-aversion levels (r) as in the previous section. Monte Carlo integration
was used in all instances because (15) has no closed-form solution. More specifically, CERs
were calculated as:

I I 25000

(16) CER(l;y)= log { 1 2 exp( '1)]},
r 25000 ) },

where log(-) denotes the natural logarithm operator, and xi is a 4-vector obtained from the

ith random draw from the 4-variate Student-t pdf S4(xl Zi, oS, n-4).

Simulation Results

CER results are reported in tables 3 and 4 for the Freund and the Hazell data sets, respectively.
The first thing to note from both tables is that the highest CERs correspond to Bayes'
allocations. For example, for moderate-to-low risk aversion and seven observations, table 3

shows that Bayes' allocation has a CER of $79,667 compared to CERs of -$359,257;

-$1,041,400; and -$2,048,093 for the approximate Bayes', CCS, and plug-in approaches,
respectively. ° The superiority of Bayes' criterion in terms of CERs is not surprising because
it is the optimal decision rule by construction.

What is surprising, however, is the large difference between the CERs of Bayes'
allocations and the CERs of the suboptimal decision criteria when the number of observa-
tions is small. In this scenario, Bayes' criterion outperforms the approximate Bayes'
allocation, the CCS rule, and the plug-in approach. The approximate Bayes' allocation and
the CCS rule substantially outperform the plug-in approach. These results suggest the use
of either the approximate Bayes' criterion or the CCS rule over the plug-in approach when
there are computing limitations. But the land allocations from the approximate Bayes'
criterion or the CCS rule are so inferior relative to the Bayes' allocations that it seems wise
to always use the latter when information is scarce.

The differences among CERs for alternative allocations tend to disappear rapidly as the
number of sample observations increases. For example, for twenty-five annual observations
the largest difference between Bayes' CER and any of the suboptimal rules' CERs is less
than 2%. In assessing the potential relevance of estimation risk for a particular situation,
however, it is important to consider the results by Frost and Savarino (1986b) mentioned in
the previous section. That is, increasing the number of activities while holding the number
of observations constant will clearly worsen the problem of estimation risk.

!°The negative CERs of the suboptimal allocations should be interpreted with caution. In this example, negative CERs arise
because suboptimal allocations are extremely risky, and agents with exponential utility put great weight on the potential negative
outcomes. A literal interpretation of a negative CER is that the decision maker is willing: to pay (rather than charge) a certain
amount to give up the risky payoff. This situation can only occur if the agent is forced to adopt the suboptimal allocation;
otherwise, he would be better off by leaving the land idle. Negative CERs should therefore be seen as demonstrating the
suboptimality of the alternative allocations rather than as accurate estimates of their value. Ingersoll (pp. 102-4) discusses this
issue more in depth, and Tew and Reid present other relevant arguments.
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Table 3. Certainty Equivalent Returns for Alternative Decision Rules - Freund Data

Certainty Equivalent Return ($)
Number of Risk Approx.

Observations Aversion Bayes Bayes CCS Plug-in

7

10

15

25

00

Mod./Lowa

Mod./Low

Mod./Low

Mod./Low

Mod./Low

79,667

111,968

127,696

132,486

136,422

- 359,257

100,425

127,695

132,478

136,422

-1,041,400

71,821

127,058

132,353

136,422

-2,048,093

-5,304

124,509

131,729

136,422

................................................................................................................................................ .........................

7 Mod./Highb 48,770 -219,271 - 482,575 - 684,096

10 Mod./High 70,373 14,077 -30,211 -153,783

15 Mod./High 86,199 86,187 85,321 77,752

25 Mod./High 91,007 90,920 90,842 89,464

oo Mod./High 94,403 94,403 94,403 94,403

aMod./Low risk aversion corresponds to r = 0.0100187.
bMod./High risk aversion corresponds to r = 0.0300561.

Table 4. Certainty Equivalent Returns for Alternative Decision Rules - Hazell Data

Certainty Equivalent Return ($)
Number of Risk Approx.

Observations Aversion Bayes Bayes CCS Plug-in

7

10

15

25

00

Mod./Lowa

Mod./Low

Mod./Low

Mod./Low

Mod./Low

90,370

99,304

103,972

106,233

107,700

87,748

99,041

103,377

105,875

107,700

62,844

69,526

101,748

105,511

107,700

- 695,284

80,086

102,892

106,057

107,700

....................................................................................................................... '...................................................

7 Mod./High b 78,983 7,122 -124,306 -144,237

10 Mod./High 88,083 87,514 85,497 76,230

15 Mod./High 89,977 89,398 89,570 89,476

25 Mod./High 90,921 90,616 90,715 90,838

0o Mod./High 91,595 91,595 91,595 91,595

aMod./Low risk aversion corresponds to r = 0.0026738.
bMod./High risk aversion corresponds to r = 0.0080214.
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As discussed earlier, in the presence of estimation risk CERs must be obtained from (15)
as opposed to (13). Yet, estimation risk is typically not acknowledged and the plug-in
approach is generally used to calculate CERs along with decision vectors. CERs are usually
obtained by plugging-in the vector of sample estimates (0) for the true but unknown
parameter vector (0) in (13), which yields CER(1; 0) - CER'(1; 0= 0). For example, the
CER of the plug-in land allocation is typically calculated as

(17) CERI (lP ; , I; )= 'P ' -r rl P I'l

The row corresponding to infinite observations in tables 3 and 4 reveals how misleading
the plug-in approach to CER calculation can be. For example, table 3 shows that the plug-in
CER would erroneously lead one to conclude that the CER of the plug-in allocation for seven
observations and moderate-to-low risk aversion is $136,422, when in fact its actual CER is
-$2,048,093. Furthermore, in this scenario the plug-in CER approach indicates that the
maximum attainable CER is $136,422 (obtained from the plug-in land allocation). Such a
figure grossly overestimates the actual maximum attainable CER, which is only $79,667
(obtained from Bayes' land allocation).

Consistent with the definition of CERs, Bayes' CERs decrease monotonically as risk
aversion increases. In contrast, for the other three decision criteria, CERs may go up as risk
aversion rises. As an illustration, table 4 shows that for seven observations increasing risk
aversion causes CER to fall from $90,370 to $78,983 for Bayes' allocation, but causes CER
to increase from -$695,284 to -$144,237 for the plug-in allocation. This result can occur
only because the decision vectors from the plug-in, CCS, and approximate Bayes' ap-
proaches are suboptimal.

Summary and Conclusions

Estimation risk exists whenever parameters of importance for decision making must be
estimated. In the presence of estimation risk, decisions are subject to an additional source
of risk related to the accuracy with which parameters are estimated. Bayes' criterion is the
decision procedure consistent with expected-utility maximization in the presence of estima-
tion risk. Typically, however, estimation risk is neglected and the plug-in decision criterion
is used. The plug-in approach is suboptimal but requires considerably less computation than
Bayes' criterion. There are also two alternative decision rules advocated in the literature that
have the same computational requirements as the plug-in approach and in addition take
estimation risk into account.

This article reexamines the land-allocation problem in the presence of estimation risk.
Land allocations obtained with the optimal (Bayes') decision rule are strikingly different
from land allocations obtained from the plug-in and the other two alternative decision
criteria. As with land allocations, CERs are typically (and incorrectly) calculated with the
plug-in approach. Plug-in CERs may be extremely misleading when there are few annual
observations relative to land activities. First, plug-in CERs greatly overestimate the true
value of plug-in land allocations. Second, plug-in CERs exaggerate the actual maximum
attainable CER.

Estimation risk is relevant in situations characterized by few sample observations relative
to the number of activities that the decision maker must choose from. Such situations are
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common in agriculture, which indicates that (a) results and conclusions of the previous
literature in this area should be qualified, and that (b) future research should either account
explicitly for estimation risk or assess its potential impact.

[Received May 1993;final version received March 1995]
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Appendix

The term within brackets in (6b) is monotonically increasing in (u'l - rl'l1 / 2). Therefore,
the optimal land vector obtained from (6b) is the same as the optimal land vector obtained
from

(18) max L>0 - - rl'l + h(Al - b)],
2

where X is the m-vector of Lagrangian multipliers corresponding to the m acreage restric-
tions. Following Best and Grauer, the land-allocation vector that solves (18) is

(19) 1 =C 1 L+D*b
r

t f

where C* S~1 - D* A* 1, D* E-iA* (A*-iA* )-, A* is a O( x k) matrix whosej rows

are the rows of matrix A pertaining to thej binding constraints, and b* is aj-vector with the
corresponding elements of vector b.

The closed-form solutions for the plug-in, CCS," and approximate Bayes' land alloca-
tions are, respectively:

(20) I= +DPbP,
r

(21) ICCs= (n-k-)= C Ccs + DCCsbcs, and
r (n- 1)

(22) 1AB (n-k-2) CAB +DABbAB
r (1 + 1 / n)(n-1)

where u - y n n, - (y - l)'(y - il) / (n - 1), Cl - -_ D'A'E-',D

- -'A' (A'E-7A' )-, and matrix A and vector bi defined analogous to A and b in (19) for
i= PI,CCS, and AB.

"Strictly speaking, (21) is an approximation because in general CCS allocation has no closed-form solution when there are
nonnegativity constraints on acreage. Expression (21) is employed because it is the solution advanced by CCS.
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