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Spectral footprints of impurity scattering in graphene nanoribbons
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We report a detailed investigation of the interplay between size quantization and local scattering centers in
graphene nanoribbons, as seen in the local density of states. The spectral signatures, obtained after Fourier
transformation of the local density of states, include characteristic peaks that can be related to the transverse
modes of the nanoribbon. In armchair ribbons, the Fourier transformed density of states of one of the two
inequivalent sublattices takes a form similar to that of a quantum channel in a two-dimensional electron gas,
modified according to the differences in band structure. After addition of the second sublattice contribution,
a characteristic modulation of the pattern due to superposition is obtained, similar to what has been obtained
in spectra due to single impurity scattering in large-area graphene. We present analytic results for the electron
propagator in armchair nanoribbons in the Dirac approximation, including a single scattering center within a
T -matrix formulation. For comparison, we have extended the investigation with numerics obtained with an
atomistic recursive Green’s function approach. The spectral signatures of the atomistic approach include the
effects of trigonal warping. The impurity induced oscillations in the local density of states are not decaying at
large distance in few-mode nanoribbons.
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I. INTRODUCTION

In graphene, scattering centers such as impurities, defects,
adatoms, and substrate inhomogeneities greatly influence the
local electronic properties.1 In some samples, the material
quality is so high that a single or a few such scattering centers
can influence the whole device. This may degrade device
function, but can also be taken advantage of by making various
sensing devices.2,3 Great attention has therefore been focused
on understanding the influence of scattering on the electronic
properties of graphene.4

In this context, the scanning tunneling microscope (STM)
is becoming of increasing importance.5,6 By utilizing its
various modes of operation, the STM can be used to map
out topography, local density of states, local charge density,
and more. In this way, a variety of properties of graphene have
been revealed. A few examples include perturbations in the
local density of states around impurities7,8 or near step edges
in the substrate,9 charge puddle formation caused by molecules
trapped between graphene flakes and the SiO2 substrate,10 and
resistance caused by steps11,12 in the substrate or multilayer
regions13 in epitaxial graphene on silicon-carbide.

At the same time, encouraging progress has been
achieved with fabrication of graphene nanostructures. Top-
down approaches include nanolithography,14 scanning probe
methods,15 etching with metal nanoparticles along certain
crystal directions,16 and utilization of the transmission electron
microscope (TEM) to simultaneously image and sculpture
graphene.17 A bottom-up approach based on chemical synthe-
sis has also been demonstrated.18 Another approach involves
unzipping of carbon nanotubes.19 With that method, the
theoretically predicted zero-energy (midgap) edge states of
nanoribbons with zigzag edges20,21 were directly mapped
out by scanning tunneling spectroscopy (STS).22 Theory
also predicts that by controlling the width and edges of
nanoribbons, a band gap can be opened up at the Dirac
point through quantum confinement (see the review23). With
further progress it may soon become possible to study in much

greater detail the interplay between quantum confinement and
impurity scattering in graphene nanoribbons.

Many theoretical studies of graphene nanoribbons have
been reported in the literature, see the collection of review
articles in Ref. 24. The effect of impurity scattering and
the effects of edge disorder on electron transport have been
reported in several numerical works. In an effort to simulate
the typical experimental situation, random disorder is included
and the scaling behavior of resistivity with length of the ribbon
is studied, revealing different transport regimes depending on
ribbon width and disorder properties. Here, we go back to the
well-defined problem of a single impurity in order to study in
detail the effects on the Fourier transformed local density of
states (FT-LDOS).

In this paper we present results for the spectral signa-
tures of a local scattering center in graphene, taking into
account quantum confinement in a nanoribbon geometry. This
study generalizes the consideration of FT-LDOS of a single
impurity in bulk graphene25,26 to the case of nanoribbons.
We focus the analytic analysis on armchair ribbons in the
Dirac approximation (linearization around the K points in
the graphene band structure), for which the wave functions
and propagators for clean ribbons are known, and solve the
impurity problem in a T -matrix formulation. Thereby we
obtain the electron propagator for an armchair nanoribbon
including the effects of a local scattering center. The FT-LDOS
is then obtained and explained in terms of scattering processes
of Dirac quasiparticles confined in the ribbon. We extend
the analysis to an atomistic tight-binding model of graphene,
utilizing a numerical recursive Green’s function approach.
The main effect of going beyond the Dirac approximation
is trigonal warping, which shows up as a triangular distortion
of the FT-LDOS patterns.

For comparison we include an analysis of the FT-LDOS in
a quantum ribbon in a two-dimensional electron gas (2DEG).
Many features of the FT-LDOS patterns in graphene ribbons
can be understood from the somewhat simpler case of a 2DEG,
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and the new features special for graphene can be highlighted.
These include a more complicated band structure due to the two
inequivalent K points, trigonal warping, as well as interference
effects due to the bipartite lattice of graphene.

The outline of the paper is as follows. In Sec. II we discuss
the Fourier transform STS method and illustrate the basic
scattering processes at play in a nanoribbon. In Sec. III we
present results for the FT-LDOS in a 2DEG quantum channel.
In Sec. IV we report our results for the FT-LDOS in an
armchair graphene nanoribbon within the Dirac approximation
and compare with the 2DEG case. In Sec. V we present results
of numerical simulations of a tight-binding model, including
also zigzag nanoribbons as well as effects of edge disorder on
the FT-LDOS. In Sec. VI we summarize the paper and give
some conclusions and an outlook. Most technical results of the
analytic analysis have been collected in the appendixes.

II. FOURIER TRANSFORM SCANNING TUNNELING
SPECTROSCOPY

A scattering center induces a perturbation of the local den-
sity of states in its vicinity. For elastic scattering, the impurity
scatters electrons between states �k1 → �k2 with ε�k1

= ε�k2
, i.e. on

a contour of constant energy E. This leads to interference and a
wave pattern in the local density of states near the impurity with
wave vectors �q = �k2 − �k1. After Fourier transformation of the
local density of states ρ(�r,E) → N (�q,E), the wave vectors of
the interference pattern are highlighted. The resulting pattern
inN (�q,E) can then be used to infer the band dispersion ε�k . For
instance, this has been done for metal surfaces.27 This method
has also become a valuable tool for probing the properties of
high-Tc superconductors.28

It is worth mentioning that, neglecting electron-electron
interactions, the interference patterns in the local density
of states discussed above are related to the Friedel oscilla-
tions in the electron density n(�r) through integration over
energy including the Fermi-Dirac distribution function, n(�r) =
−e

∫
ρ(�r,E) f (E)dE.

By using the STM, the local density of states can be
extracted as function of energy by applying a finite voltage
between tip and sample, i.e., by employing STS. By combining
Fourier transformation with STS, the band dispersion can be
studied in the vicinity of the Fermi energy. This method has
therefore become a valuable spectroscopic tool sometimes
called Fourier transform scanning tunneling spectroscopy
(FT-STS). In graphene, the Fermi energy itself is tunable by a
back gate voltage on the substrate that graphene is resting on.
Thereby, FT-STS is potentially a valuable tool for studies of
graphene. Indeed, experiment reproduces the graphene band
structure.8

STS bears similarities with angle-resolved photoemission
spectroscopy (ARPES). STS is ideal for spatially inhomoge-
neous systems, while ARPES relies on large-area spatially
homogeneous samples. Indeed, STS measures the spatially
resolved spectral function, i.e., local density of states ρ(�r; E),
while ARPES measures the momentum-space spectral func-
tion A(�k; E). By generalizing STS to FT-STS, i.e., Fourier
transforming ρ(�r; E) → N (�q; E), a spectroscopy has been
introduced that can be used to study materials, although we
should remember that N (�q; E) is not equal to A(�q; E).
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FIG. 1. An electron quasiparticle initially in mode m, with
longitudinal wave vector κm may be backscattered by an impurity
at �ri into mode n. The local density of states at �r is changed due to
interference of the initial and final waves. This leads to an interference
pattern around �ri .

One advantage of FT-STS is the possibility to study
nanoscale systems with high spatial resolution. In this paper
we investigate the consequences of quantum confinement on
impurity scattering in graphene, as seen in FT-STS.

In Fig. 1 we display a cartoon of a typical scattering
process that contributes to the correction to the local density of
states in a quantum ribbon with one impurity. For simplicity
we here discuss the situation in a 2DEG quantum channel.
Quasiparticles occupying for instance mode m, propagating
in the positive y direction with wave number κm, passes
the probing position �r = (x,y), after which they can be
backscattered by the impurity at �ri into mode n with wave
number κn and propagate back to the probing position �r . In
this example we neglect evanescent modes for simplicity. The
contribution to the full propagator from this scattering event
will be proportional to the free propagators before and after
scattering and the potential strength γ ,

G̃nm(�r,�r; E) = −i
μ

h̄2

eiκn|yi−y|

κn

χn(x)χn(xi)

× γ

(
− i

μ

h̄2

)
eiκm|y−yi |

κm

χm(x)χm(xi),

where χn(x) = √
2/W sin(nπx/W ) is the transverse wave

function in mode n � 1, and μ is the electron effective mass.
Taking into account multiple scattering by the impurity, the
potential strength γ is replaced with a T matrix. When we take
the imaginary part of the propagator to get the local density of
states, we get spatially oscillating terms

∝ cos[(κn + κm)|y − yi |]
and

∝ sin[(κn + κm)|y − yi |],
since the T matrix is a complex number due to multiple
scattering. After Fourier transformation, we find peaks at qy =
±(κn + κm) and at qx equal to combinations of n and m times
π/W . Thus, in a FT-STS picture of a quantum channel, there
will be a discrete number of peaks that reflect the available

205431-2



SPECTRAL FOOTPRINTS OF IMPURITY SCATTERING IN . . . PHYSICAL REVIEW B 87, 205431 (2013)

modes. We also note that the Friedel oscillations (neglecting
electron-electron interactions) will at low temperature oscillate
without decay far from the impurity site.

To probe a 2DEG quantum channel with an STM in the
way described here will be challenging since the channel is
typically hidden deep down in a semiconducting heterostruc-
ture. Graphene, on the other hand, is 100% surface and directly
accessible.

III. FT-LDOS: RIBBON IN A 2DEG

In this section we improve the above discussion to the
general case of multiple scattering in a multimode 2DEG
quantum channel of width W with a single impurity scattering
center at �ri . The results of this section will be referenced in
the following sections on graphene in order to highlight the
distinguishing features of confined Dirac quasiparticles.

Consider the probability amplitude for an electron in the
channel to propagate from one point �r ′ to another point �r . For
free propagation in mode n, the amplitude is given by the free
propagator (unperturbed Green’s function), gn(�r,�r ′; E). In the
presence of the impurity an electron initially in mode m may
be scattered into mode n. The effect of such an extra process
will modify the propagator by adding a second term,

G̃nm(�r,�r ′; E) = gn(�r,�ri ; E)T (�ri ; E)gm(�ri,�r ′; E), (1)

so that the new Green’s function will be

Gnm(�r,�r ′; E) = gn(�r,�r ′,E)δnm + G̃nm(�r,�r ′; E). (2)

The factor T (�ri ; E) [see Eq. (A10)] includes multiple scat-
tering by the impurity. The full probability amplitude for
propagation from �r ′ to �r is given by summing over all mode
indices,

G(�r,�r ′; E) =
∑
nm

Gnm(�r,�r ′; E). (3)

We may now proceed with the local density of states
(LDOS). The correction to the LDOS by impurity scattering
can be written as

ρ̃(�r; E) = − 1

π

∑
nm

Im G̃nm(�r,�r; E)

= − 1

π

∑
nm

Knm(E)ρ̃x
nm(x; E)ρ̃y

nm(y; E), (4)

where the expressions for the factors Knm(E), ρ̃x
nm(x), and

ρ̃
y
nm(y; E) are given in Appendix A. The FT-LDOS can now

be computed as

Ñ (�q; E) = − 1

π

∑
nm

Knm(E)Ñ x
nm(qx)Ñ y

nm(qy ; E), (5)

where

Ñ x
nm(qx) =

∞∑
l=−∞

δ

(
qx

π
− l

W

) ∫ W

−W

dx

2W
e−i π

W
lx ρ̃x

nm(x)

=
∞∑

l=−∞
δ

(
qx

π
− l

W

)
Ñ x

nm(l) (6)

and

Ñ y
nm(qy ; E) =

∫ ∞

−∞

dy

2π
e−iqyy ρ̃y

nm(y; E). (7)

The function ρ̃x
nm(x), originally defined on the interval [0,W ],

is extended to [−W,W ] and assumed to be even with respect
to the origin. Due to the finite width, 2W , of the integration
interval, the spectral x component is fixed to be integer
multiples of π/W . This is a trick to be able to resolve
the minimum change of transverse momenta, π/W , when
scattering between two different modes.

It is important to realize that both propagating and
evanescent modes play a role in this scattering problem.
The longitudinal momentum is κn =

√
2μE/h̄2 − (nπ/W )2,

where μ is the electron mass and n � 1 is the integer mode
index. At the bottom of a subband, κn → 0, and the evanescent
mode extends far from the impurity and play an important role.
On the other hand, for energies far from any subband bottom,
the LDOS is only affected by the evanescent mode in a small
region near the impurity. In the discussion of the FT-LDOS
we can then safely neglect evanescent modes in the sums in
Eq. (5). The evanescent modes are still taken into account in
the scattering processes at the impurity through the T -matrix
equation, where intermediate modes can be evanescent, while
initial and final modes are propagating. In all of our numerical
calculations, we include ten evanescent modes. Adding even
more evanescent modes does not qualitatively change our
results. As has been shown, a δ-shaped impurity with a finite
number of evanescent modes will model an s-like scatterer.29

We can now find the different components of the FT-LDOS
to be

Ñ x
nm(l) = 1

2W
(δl,n−m + δ−l,n−m − δl,n+m − δ−l,n+m) (8)

and

Ñ y
nm(qy) = e−iyiqy

2π
[Sy(κn + κm + qy) + Sy(κn + κm − qy)],

(9)

where

Sy(a) = lim
ε→0+

σpε − a(1/γ + σe)

ε2 + a2
(10)

and where σp/e are positive, �q-independent constants defined
in Eq. (A11).

The factor Knm(E) is given by

Knm(E) = 1

(1/γ + σe(E))2 + σ 2
p(E)

(
μ

h̄2

)2
χn(xi)χm(xi)

κn(E)κm(E)

(11)

and depends on the scatterer strength γ and the transversal
wave functions χn(x) = √

2/W sin(nπx/W ).
Together, these components give rise to a number of

selection rules that govern the modification of the FT-LDOS by
impurity scattering. To illustrate, we select a narrow channel
W = 50a0, where a0 defines the unit of length, and consider
a low-energy E = 0.02τ , where τ = h̄2/(2μa2

0) is the unit of
energy, such that only a total of three propagating modes are
open. The scattering FT-LDOS |Ñ (�q; E)| for the case of the
impurity in the middle of the ribbon (xi = W/2,yi = 0) is
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FIG. 2. (Color online) (a) FT-LDOS of a 2DEG ribbon of width W = 50a0 at energy E = 0.02τ , with three open (propagating) modes.
(b) Energy contour of the 2DEG dispersion. The symbols indicate the allowed momentum values between which scattering can potentially
take place (circles, diamonds, and squares correspond to n = 1, n = 2, and n = 3, respectively). The two arrows in figure (b) illustrates two
possible scattering processes that gives rise to the two encircled dots in figure (a). The impurity is placed at xi = W/2 and the n = 2 subband
is not scattered by the impurity because the impurity has been located at a node of the corresponding transverse wave function.

displayed in Fig. 2(a). Since the scattering is elastic, energy
conservation requires that the transverse and longitudinal
momenta, both before and after scattering, satisfy the relation
2μE/h̄2 = k2

x + κ2
n(E), which is the circle shown in Fig. 2(b).

In the channel, the transverse momentum is quantized, kx →
kn = nπ/W , and the only allowed momentum values between
which the electrons can scatter are indicated by dots and
squares on this circle. The FT-LDOS is therefore nonzero only
at a few, finite number of �q points. All of these points lie inside
the dotted circle of radius 2

√
2μE/h̄2 shown in Fig. 2(a).

The impurity scattering strength γ can be either positive
or negative, corresponding to a repulsive or attractive impurity
potential. For the FT-LDOS, the sign of γ does not play a major
role. In Fig. 2 and below, we choose a repulsive γ = 10τ .

The factor Knm(E) will be nonzero only if the transverse
wave functions of mode n and m have a finite overlap at the
position of the impurity. Since we have positioned the impurity
at xi = W/2, Knm(E) will in this example be nonzero only if
n and m are both odd integers since all the wave functions
with even indices will have a node at x = xi . Thus, modes
with even number n are not scattered by the impurity in this
example.

To understand the exact locations of the �q points, we start
by looking at the case qx = 0 (i.e., l = 0). Since all mode
indices have to be odd, the term Ñ x(l = 0) will be nonzero
only when n = m, i.e., when (n = 1,m = 1) or when (n =
3,m = 3). This tells us that the points along qx = 0 are all
due to intraband scattering. The factor Ñ y(qy ; E) peaks when
qy = ±2|κ1| or when qy = ±2|κ3|. These are the four points
we see along the line l = 0.

When qx = π/W (l = 1), at least one of the indices n and
m will be even, and the factor Knm(E) is zero. This is why
we see no bright points along this line. This also happens for
l = 3 and l = 5.

Along the line qx = 2π/W , we have that Ñ x(l = 2) is
nonzero only when (n = 1,m = 1), (n = 1,m = 3) or when

(n = 3,m = 1). The factor Ñ y(qy ; E) peaks at qy = ±2|κ1|
or when qy = ±|κ1 + κ3|, and we see that we have spots at
these locations along l = 2 in the figure.

At l = 4 we must have (n = 3,m = 1) or (n = 1,m = 3),
which tells us that qy = ±|κ3 + κ1|. At l = 6, we must have
(n = 3,m = 3) and qy = ±2|κ3|. A similar argument can be
made for l < 0, and we can therefore say exactly which
scattering processes contribute to each dark spot in Fig. 2(a).

If the impurity is not located exactly at the middle of the
ribbon, the even subbands will also be part of the scattering
process. This is illustrated in Fig. 3, where we have numbered
the subband transitions corresponding to each bright point.

In Fig. 4, we show the result for a wider ribbon calculated
both analytically and by doing a recursive tight-binding
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FIG. 3. (Color online) The first quadrant of the FT-LDOS of the
same ribbon as in Fig. 2, but with the impurity placed at xi = 2W/7.
The numbers indicate the modes that gives rise to the different points.
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FIG. 4. (Color online) (a) Analytical FT-LDOS of a 2DEG ribbon of width W = 200a0 and energy E = 0.05τ . (b) FT-LDOS taken from a
numerical tight-binding simulation of a ribbon of width W = 200a0 and energy ET B = −3.9τ . The energies are adjusted such that each ribbon
has a total of 20 propagating modes open.

simulation. In the analytic model (which has a parabolic
dispersion), setting the energy to E = 0.05|τ | gives us a total
of 20 open propagating modes. In the tight-binding model (see
Sec. V), whose first subband is located around E = −4|τ |
(if we set the on-site energy to zero everywhere), we must
instead choose the energy to be ET B = −3.9|τ | in order to
have the same number (20) of open modes. We see that the
main features of our analytical calculation and the numerical
simulation coincide.

IV. FT-LDOS: RIBBONS OF GRAPHENE

The procedure of calculating the effect of a single impurity
(located on the A sublattice) on the LDOS in a graphene

q
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FIG. 5. (Color online) Analytic FT-LDOS, M̃(�q; E), of an
AGNR having a width W = 203a (≈50 nm), E = 0.4h̄vf /a0, γ =
10h̄vf /a0 and 60 propagating channels.

armchair nanoribbon (AGNR) follows closely that used for
the 2DEG case. Due to the bipartite structure of the graphene
honeycomb lattice, the propagator G̃(�r,�r ′; E) is a 2 × 2
matrix in sublattice space, denoted by A and B. We therefore
start by finding the impurity contribution to the LDOS on
each sublattice. The resulting expressions for the A- and
B-sublattice LDOS can be written as

ρ̃A/B(�r; E) = − 1

π

∑
dc

∑
nm

Im G̃
AA/BB

dncm (�r,�r; E)

= − 1

π

∑
dc

∑
nm

KA/B

dncm(E)ρ̃x
nm(x; E)ρ̃(A/B)y

dncm (y; E),

(12)

where G̃
AA/BB

dncm (�r,�r; E) are the two diagonal components of
the propagator matrix G̃dncm(�r,�r; E). The summation over
the variables c and d are added to account for scattering
between different sets of nonequivalent Dirac cone pairs �K±

c

and �K±
d . A further elaboration on this is found in Appendix B,

together with derivations of the expressions for ρ̃x
nm(x; E) and

kx

ky

kx

ky-m mn-n

-K1x K1x

m
-n

m+n -m-n

-m
+n

FIG. 6. (Color online) Schematic picture of one possible scat-
tering process in AGNRs. Here, the electron (initially in mode m,
represented by the red dots), is scattered into mode n (green squares).
The FT-LDOS will be finite at the �q values illustrated by the solid
[qx = (m ± n)π/W ] and dotted [qx = −(m ± n)π/W ] arrows.
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FIG. 7. (Color online) Magnifications of the central circular feature of Fig. 5 showing (a) the combined A- and B-lattice contributions and
(b) the A lattice alone. When adding the two lattices together, the outer circle is attenuated by destructive interference between the two lattice
contributions, M̃(A/B)y(qy ; E), to the total FT-LDOS.

ρ̃
(A/B)y
dncm (y; E). As discussed in Sec. III, we only need to sum

over propagating incoming and final transverse modes, labeled
by m and n.

We compute the FT-LDOS on each sublattice as

M̃A/B(�q; E) = − 1

π

∑
nm

M̃x
nm(qx ; E)M̃(A/B)y

nm (qy ; E). (13)

The total FT-LDOS is found as a superposition of the two
sublattices

M̃(�q; E) = M̃A(�q; E) + e−ia0qyM̃B(�q; E), (14)

where the extra phase-shift is introduced since the two sublat-
tices are spatially separated by the carbon-carbon distance a0

in the y direction.
Since the transverse wave functions, χn(x) =√

1/W sin(nπ/Wx), in our AGNR differ from those
of the 2DEG only by a factor of 1/

√
2, we have that

M̃x
nm(qx ; E) = Ñ x

nm(qx ; E)/2, as defined in Eqs. (6) and (8).
The longitudinal FT-LDOS expressions for each sublattice

are given by

M̃(A/B)y
nm (qy ; E)

= e−iqyyi

2π

3∑
c=1

KA/B
cncm(E)[S(A/B)y(�cncm(E) − qy)∗

+ S(A/B)y(�cncm(E) + qy)] + e−iqyyi

2π

2∑
d=1

3∑
c=d+1

KA/B

dncm(E)

× [S(A/B)y(�cndm(E) − qy)∗ + S(A/B)y(�dncm(E) − qy)∗

+ S(A/B)y(�cndm(E) + qy) + S(A/B)y(�dncm(E) + qy)],

(15)

where �dncm(E) = sgn(E)[κdn(E) + κdm(E)] + K
y

d − K
y
c .

The two �q-independent constants are found to be

KA
dncm(E) = 1

[1/γ + σe(E)]2 + σ 2
p(E)

( |E|
(h̄vf )2

)2

× χn(xi)χm(xi)

κdn(E)κcm(E)
(16)

and KB
dncm(E) = −(h̄vf /|E|)2KA

dncm(E). The transverse and
longitudinal momenta are now cone set dependent and change
to kdn = nπ/W − Kdx and κdn(E) =

√
[E/(h̄vf )]2 − k2

dn, re-
spectively. Here, SAy(a) = Sy(a) is the same function as used
in the 2DEG case and defined in Eq. (10), and SBy(a) =
fdncm(E)Sy(a), where fdncm(E) = [−knkm + κn(E)κm(E)] +
isgn(E)[knκm(E) + kmκn(E)]. The S-terms for the AGNR A
lattice have the exact same form as the corresponding terms in
the 2DEG, while the B lattice terms are scaled by a complex
mode dependent prefactor. This is a consequence of our choice
of impurity potential: an impurity fully localized on one A
atom; see Eq. (B11).

In Fig. 5, we plot |M̃(�q; E)| for a semiconducting AGNR
of width W = 203a (≈50 nm, a = √

3a0), where E =
0.4h̄vf /a0 such that 60 channels are propagating. Note that
the natural energy scale for Dirac electrons are h̄vf /a0. The
positions, outer shapes, and sizes of the circular features [of
radius 2E/(h̄vf )] are the same as those found when studying
a sharp impurity in bulk graphene and are due to the graphene
band structure. In addition to the bulk graphene features,
we also see an added rich inner structure due to transverse
confinement in the nanoribbon. Each peak corresponds to
scattering processes that change the transverse momentum
by integer multiples of π/W , and change the longitudinal
momentum such that the arguments of at least one of the many
Sy terms in Eq. (15) vanishes.

A schematic illustration of one such scattering process is
shown in Fig. 6. An electron, initially in cone pair c = 1 and
mode m, is described by a plain wave with momentum −κ1m
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m Kdx

Kcx kdn

n

n′
kdn′

m-Kdx

-Kcxkdn

n

n′
kdn′

q+

p+
q-

p-

FIG. 8. (Color online) Schematic picture of scattering processes
conserving mirror symmetry with respect to qx = 0 (solid arrows)
and with respect to qx = ±Kdx (solid + dotted arrows).

in the longitudinal direction and a superposition of two plain
waves with momenta ±k1m in the transverse direction (see
the lower red dots). After scattering (within the same cone
pair) to mode n, the momenta are changed to κ1n and ±k1n

in the longitudinal and transverse directions, respectively (see
the upper green squares). A Fourier transform of the LDOS is
proportional to a product of the electron wave function before
and after the scattering event, where each wave function is a
linear combination of two transverse parts. The FT-LDOS will
therefore be finite at the �q values corresponding to the four
arrows shown in the figure. Here, qy = |κ1n + κ1m|, and qx =
(m ± n)π/W (solid arrows) or qx = −(m ± n)π/W (dotted
arrows). When scattering to a different cone pair d 
= c, we
instead have qy = |�dn1m|, see Eq. (15).

When we zoom in on the circular feature in the middle
[shown in Fig. 7(a)] we see that the outer ring of nonvanishing
�q points in |M̃(�q; E)| appears to be attenuated compared with
what is seen on, e.g., the A lattice alone [|M̃A(�q; E)| shown
in Fig. 7(b)]. This is due to destructive interference when
adding the A- and B-lattice FT-LDOS contributions together,
as done in Eq. (14). The �q points on the outer circle come from
scattering processes which maximize the change in momenta
while still scattering within the same cone pair, i.e., where
d = c and kcm → −kdn and vice versa. In this case, we have
that fdncm = [E/(h̄vf )]2, which tells us that M̃By

nm(qy ; E) =
−M̃Ay(qy ; E) so that when the phase factor e−iqya in Eq. (14)
is close to unity, the contributions from the A and B lattices
will cancel each other out. Similar cancellations may be seen

in Fig 5, e.g., in the circular features to the right and the
left of the central one. For other processes and �q values, the
interference between the two lattice contributions may not play
an important role, or we might have constructive interference
instead.

The FT-LDOS is left-right mirror symmetric around the
line qx = 0; see Fig. 5. This symmetry appears because for
every process adding a component �q+ in the FT-LDOS, there
is another process adding a component �q−, where q−

x = −q+
x ,

see the solid arrows in Fig. 8. After summation of all such
processes, the FT-LDOS acquires the left-right symmetry.

As a consequence, the feature centered around �q = 0 is
always mirror symmetric by the above argument. On the other
hand, there is not necessarily a mirror symmetry within the
other circular features (i.e., mirror symmetry with respect to the
individual cone centers). For metallic AGNRs, the transverse
modes are constructed from wave vectors symmetrically
positioned with respect to the cone center (plus the metallic
mode at the cone center). See, for instance, the two wave
vectors kdn and kdn′ = −kdn in Fig. 8. For semiconducting
AGNRs, the wave vectors are not symmetrically positioned
with respect to the cone center, i.e., kdn′ 
= −kdn for any n′.
Therefore, the inner structure of the circular features centered
at finite �q are symmetric for metallic AGNRs and asymmetric
for semiconducting AGNRs. This is illustrated in Fig. 9 for
the semiconducting and metallic cases in panels (a) and (b),
respectively. We conclude that by looking at what symmetries
there are in the FT-LDOS, one can extract information about
whether an AGNR is metallic or not.

V. NUMERICAL SIMULATIONS OF THE TIGHT-BINDING
MODEL

For our numerical simulations, we use a tight-binding
model described by the Hamiltonian

H =
N∑

i=1

εic
†
i ci +

N∑
i 
=j

tij c
†
i cj , (17)

q
x
W/π

q y a
0

100 150 200

1.4

1.6

1.8
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2.4

2.6

2.8 (a)

q
x
W/π

q y a
0

100 150 200

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8 (b)

FIG. 9. (Color online) Zoom-ins of the north-eastern circular feature in Fig. 5. In (a), the AGNR is semiconducting and the left- and
right-hand side is not mirror-symmetric. In (b), the ribbon is made metallic by removing four rows of carbon atoms, which restores the left-right
symmetry again.
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where c
†
i and ci are creation and destruction operators for site

i. The onsite energy of site i is denoted εi , and the hopping
amplitude between sites j and i is denoted tij . The number
of atoms in the system is denoted N . We assume that tij is
always zero except when the sites i and j are nearest neighbors
where we set tij = −τ . We introduce a δ-like impurity in the
tight-binding model by putting the on-site energy εi equal to
γ at the site of the impurity.

The retarded Green’s function matrix is defined as

G(E) = [(E + iη)1 − H]−1, (18)

where η is a small positive number. Even though the
Hamiltonian is sparse, when written down as a matrix in
site index space, direct inversion is not a viable alternative
when the number of atoms N grows large. Instead of direct
matrix inversion, we use our own implementation of a recent
algorithm30 in which the system atoms are added one by one,
in a recursive manner. This allows us to save both memory
and time, and once we have found all the retarded propagators
between the system leads and atom i we can calculate the
lesser Green’s function, defined as

G<
ii (E) =

∑
l

fl(E)
∑
αlβl

Giαl
(E)[�†

l (E) − �l(E)]αlβl
G

†
βl i

(E),

(19)

where l is the lead number (l = 1,2 in the case of a simple
ribbon), and αl and βl are indices running over all atoms
belonging to the surface of lead l. Here, fl(E) and �l(E)
are the distribution function and the self-energy of lead l,
respectively.

The LDOS on atom i is found from

ρi(E) = − 1

π
ImG<

ii (E), (20)

and the FT-LDOS is given by doing a discrete Fourier
transform over all system atoms,

N (�q; E) = 1

N

N∑
i=1

e−i�ri ·�qρi(E), (21)

where �ri is the real space coordinate vector of atom i.
In Fig. 10(a), the result of such a tight-binding simulation

is shown for a ribbon and setup matching the one used in
Fig. 5, with a δ-like impurity placed in the middle (W =
203a ≈ 50 nm, 60 propagating channels and xi = W/2). Upon
inspection, we notice that the general features are similar
compared with our analytical results. Some points, such as the
outline of the central circle, are attenuated. The tight-binding
ribbon does, however, show clear signs of trigonal warping
due to the dispersion not being perfectly linear. In Fig. 10(b),
we have moved the impurity to the edge of the ribbon and we
notice that the resulting FT-LDOS image is not very different
from the one with the impurity in the middle of the ribbon.
In Fig. 10(c), we have again put the impurity in the middle of
the ribbon, but instead made it Gaussian shaped (with a decay
length that exceeds the spacing between two adjacent carbon
atoms). This (long-range) impurity can be seen to suppress
scattering and attenuate the FT-LDOS features, although not
completely diminish them. For bulk graphene, it is well known
that a long-range impurity cannot scatter between valleys.
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FIG. 10. (Color online) Numerical tight-binding FT-LDOS of
three AGNRs’ (N = 810 atoms in the unit cell) with differ-
ent impurity configurations. (a) Single impurity, (b) edge im-
purity, (c) smooth (Gaussian long-range) impurity, where W =
203a (≈50 nm), γ = 10τ , ET B = 0.4τ , and 60 propagating
channels.
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FIG. 11. (Color online) Numerical tight-binding FT-LDOS of four ZGNRs (N = 468 atoms in the unit cell) with different impurity
configurations. (a) Single impurity, (b) edge impurity, (c) rough edges, (d) smooth impurity (Gaussian long-range), where W = 352a0

(≈50 nm), ET B = 0.45τ , γ = 10τ , and 35 propagating channels.

In the FT-LDOS, the features centered at �q = �Kpm

d are then
absent. This is not the case here, since the armchair nanoribbon
has only one cone in its band structure.31

In Fig. 11, we present results for the FT-LDOS of zigzag
graphene nanoribbons (ZGNRs). In this simulation the ribbon
has N = 468 atoms in its unit cell (W = 352a0 ≈ 50 nm),
γ = 10τ , and E = 0.45τ . This gives 35 propagating modes.
In Fig. 11(a), the impurity is located in the middle of the ribbon
and we see a pattern very similar to that of the same impurity
configuration in an armchair ribbon, but with all features
rotated 90◦ due to the different ribbon alignment (for ZGNRs,
ky is quantized instead). The result of a single impurity on the
edge is shown in Fig. 11(b), and in Fig. 11(c) we show the
spectra for a ribbon also having rough edges. In the last figure,
Fig. 11(d), we have again used a Gaussian-shaped (long-range)
impurity located in the center of the ribbon, and we here see
clearly that intervalley scattering is now fully supressed.32

Indeed, since the ZGNR has two cones in its band structure,
this case is similar to bulk graphene.

VI. SUMMARY

In summary, we have presented results for the FT-LDOS
of graphene nanoribbons with local scattering centers. The
interplay between size quantization and scattering leads to
characteristic peaks that can be related to the transverse
modes of the nanoribbon. The main features include ringlike
structures, analogous to the case of an infinite 2D graphene
sheet with a single scattering center. Inside the ringlike
structure, new peaks appear that are related to inter- and
intraband scattering in the ribbon. We have presented analytic
results for the electron propagator in armchair nanoribbons
in the Dirac approximation, including a single scattering
center within a T -matrix formulation. We have also extended
the investigation with numerics obtained with an atomistic
recursive Green’s function approach. The spectral signatures
of the atomistic approach include the lifting of degeneracies
of transverse modes in the Dirac approximation, as well as
effects of trigonal warping. The impurity induced oscillations
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in the LDOS are not decaying at large distance in few-mode
nanoribbons.

Future extensions of this work could involve consideration
of bilayer graphene ribbons, as in Ref. 33, or more realistic
modeling of the impurity potential, as considered, for instance,
in Refs. 34 and 35.
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APPENDIX A: NANORIBBON IN A 2DEG

1. Unperturbed Green’s function

For a 2DEG confined in the x direction, creating a ribbon
of width W , the wave functions can be written as

φn(�r) = eikyyχn(x), (A1)

where �r = (x,y) and n is the mode number associated with the
transverse eigenfunctions (assuming infinitely high confining
walls at x = 0 and x = W ) given by

χn(x) =
√

2

W
sin(knx), (A2)

with the corresponding eigenenergies

εn(ky) = h̄2

2μ

(
k2
n + k2

y

)
. (A3)

Here, kn = nπ/W is the transverse momentum, ky the longitu-
dinal momentum, and μ the electron mass. Using these wave
functions we may construct the free propagator, or Green’s
function, of an electron (having energy E+ = E + iη, in the
limit η → 0+) between the points �r ′ and �r as

g(�r,�r ′; E) =
∑

n

∫ ∞

−∞

dky

2π

φn(�r)φ∗
n(�r ′)

E+ − εn(ky)

=
∑

n

χn(x)χn(x ′)�n(y,y ′; E)︸ ︷︷ ︸
=gn(�r,�r ′;E)

, (A4)

where

�n(y,y ′; E) =
∫ ∞

−∞

dky

2π

eiky (y−y ′)

E+ − h̄2

2μ

(
k2
y + k2

n

) . (A5)

This integral can be evaluated using standard contour integra-
tion techniques,36 giving us that

�n(y,y ′; E) =
⎧⎨
⎩−i

μ

h̄2
eiκn (E)|y−y′ |

κn(E) if E > En,

− μ

h̄2
e−κn (E)|y−y′ |

κn(E) if E < En,
(A6)

and

κn(E) =
√

2μ

h̄2 |E − En|, (A7)

where En = (h̄2/2μ)k2
n.

2. Green’s function, one impurity

We introduce a single impurity modeled by an impurity
potential V (�r) = γ δ(�r − �ri), where �ri is the position of
the impurity and γ the impurity strength. The perturbed
propagator for an electron going from position �r ′ to �r can
then be written using the Dyson equation as37

G(�r,�r ′; E) = g(�r,�r ′; E)

+
∫

d�r ′′g(�r,�r ′′; E)V (�r ′′)G(�r ′′,�r ′; E)

= g(�r,�r ′; E) + g(�r,�ri ; E)γG(�ri,�r ′; E)

=
∑
nm

[gn(�r,�r ′; E)δnm

+
∑

l

gn(�r,�ri ; E)γGlm(�ri,�r ′; E)

︸ ︷︷ ︸
=G̃nm(�r,�r ′;E)

]

=
∑
nm

Gnm(�r,�r ′; E). (A8)

The perturbed matrix element of the Dyson equation can be
rewritten on the T matrix form

G̃nm(�r,�r ′; E) = gn(�r,�ri ; E)T (�ri ; E)gm(�ri,�r ′; E), (A9)

where

T (�ri ; E) = γ + γ

[ ∑
l

gl(�ri,�ri ; E)

]
T (�ri ; E)

= γ

1 − γ
∑

l gl(�ri,�ri ; E)

= 1

1/γ + σe(E) + iσp(E)
(A10)

and

σe/p(E) = μ

h̄2

∑
l∈e/p

χ2
l (xi)

κl(E)
. (A11)

Here, e and p are the sets of all evanescent (E < El) and
propagating (E > El) modes. Inserting the above expression
for T (�ri ; E) back into Eq. (A9) allows us to solve for
G̃nm(�r,�r ′; E) and consequently for Gnm(�r,�r ′; E).

3. Fourier transformed density of states

Once the perturbed propagator is known, the change in the
LDOS due to scattering is given by

ρ̃(�r; E) = − 1

π

∑
nm

Im[G̃nm(�r,�r; E)]

= − 1

π

∑
nm

Knm(E)ρ̃x
nm(x)ρ̃y

nm(y; E), (A12)

where

Knm(E) =
(

μ

h̄2

)2 1

(1 + σe(E))2 + σ 2
p(E)

χn(xi)χm(xi)

κn(E)κm(E)
,

(A13)

ρ̃x
nm(x) = χn(x)χm(x) (A14)
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and

ρ̃y
nm(y; E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−fsc(κn(E),κm(E)) if n,m ∈ p,

fcs(κn(E),0)e−κm(E)|y−yi | if n ∈ p,m ∈ e,

fcs(0,κm(E))e−κn(E)|y−yi | if n ∈ e,m ∈ p,

−σp(E)e−(κn(E)+κm(E))|y−yi | if n,m ∈ e,

(A15)

where

fcs(κ1,κ2) = (1 + σe) cos[(κ1 + κ2)|y − yi |]
+ σp sin[(κ1 + κ2)|y − yi |] (A16)

and

fsc(κ1,κ2) = (1 + σe) sin[(κ1 + κ2)|y − yi |]
− σp cos[(κ1 + κ2)|y − yi |]. (A17)

When taking the Fourier transform of the scattering LDOS,
we want to be able to resolve differences in x momenta equal
to or greater than π/W (since this is the separation in kx , or kn,
between two adjacent subbands). This requires us to integrate
over the interval [−W,W ] and we extend the function ρ̃x

nm(x)
such that it is even with respect to the origin. The Fourier
transform is then defined as

Ñnm(�q; E) = Knm(E)
∞∑

n′=−∞
δ

(
qx

π
− n′

W

)

×
∫ W

−W

dx

2W
e−iqxx ρ̃x

nm(x)

×
∫ ∞

−∞

dy

2π
e−iqyy ρ̃y

nm(y; E), (A18)

where the comb function fixes qx to multiples of π/W . The x

part of the Fourier integral is∫ W

−W

dx

2W
e−iqxx ρ̃x

nm(x)

= 1

2W
(δl,−n−m + δl,n+m − δl,−n+m − δl,n−m), (A19)

independent of whether n and m are evanescent or propagating
modes.

The y part will depend on mode types. We have already
shown what happens when n,m ∈ p. In addition, if n,m ∈ e

we get that∫ ∞

−∞

dy

2π
e−iqyy ρ̃y

nm(y; E)

= −e−iqyyi
σp

π

κn(E) + κm(E)

q2
y + (κn(E) + κm(E))2 . (A20)

If n ∈ p,m ∈ e then∫ ∞

−∞

dy

2π
e−iqyy ρ̃y

nm(y; E) = e−iqyyi

2π

[
Sy

pe(κn(E) − qy,κm(E))

+ Sy
pe(κn(E) + qy,κm(E))

]
,

(A21)

where

Sy
pe(a,b) = (1/γ + σe(E))b + σp(E)a

b2 + a2
. (A22)

If n ∈ e,m ∈ p we just need to interchange the n and m in the
expression above.

APPENDIX B: ARMCHAIR GRAPHENE NANORIBBON

In this Appendix we first derive an analytic expression for
the Green’s function of an armchair nanoribbon with a single
impurity. For the geometry, see Fig. 12(a). We then derive the
Fourier transformed density of states.

1. Unperturbed Green’s function

The first Brillouin zone (1BZ) of graphene contains one
pair of inequivalent Dirac cones. It is necessary, however,
to include three pairs of cones [see Fig. 12(b)] in order to
incorporate all scattering events. The cones are located at
�K±

1 = (±Kx,0), �K±
2 = (±Kx/2,Ky), and �K±

3 = (±Kx/2, −
Ky), where Kx = 4π/3a and Ky = 2π/3a0. The distance
between two neighboring atoms is denoted a0, while the
lattice constant is denoted a = √

3a0. This gives us three sets
(d = 1,2,3) of wave function spinors,38

��dn(�r) =
(

�A
dn(y)

�B
dn(y)

)
χdn(x), (B1)

where the longitudinal wave function components are

�A
dn(y) = λ

(ky + ikdn)√
k2
y + k2

dn

ei(Kdy+ky )y, (B2)

�B
dn(y) = iei(Kdy+ky )y, (B3)

and the transverse wave function is

χdn(x) = 2C sin[(Kdx + kdn)x]. (B4)

The integer number n labels the quantized transverse momen-
tum kdn = nπ/W − Kdx in cone pair d. For each mode n,
we have positive and negative energy subbands εdnλ(ky) =
λh̄vf

√
k2
y + (kdn)2 labeled by λ = ±1. The Fermi velocity

is vf = 3a0τ/2, where τ gives the nearest-neighbor tight-
binding hopping energy in Eq. (17). The wave functions
have been normalized through a normalization constant C =√

1/4W found from the condition
∫ W

0 dx|χdn(x)|2 = 1/2.
Thus, χdn(x) = χn(x) = √

1/W sin(nπ/Wx).

K+1K-1

K+2K-2

K+3K-3

(b)

W

(a)

FIG. 12. (Color online) (a) The geometry of the armchair nanorib-
bon. (b) The first Brillouin zone with three sets of Dirac cones.
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The free propagator for band n (in cone pair d) is computed
as

gdn(�r,�r ′) =
∑
λ=±1

∫ ∞

−∞

dky

2π

��dn(�r) ��†
dn(�r ′)

E+ − εdnλ(ky)

= χn(x)χn(x ′)
(

�AA
dn (y,y ′; E) �AB

dn (y,y ′; E)

�BA
dn (y,y ′; E) �BB

dn (y,y ′; E)

)
,

(B5)

where

�
AA/BB

dn (y,y ′; E) = 2EeiKdy (y−y ′)

×
∫ ∞

−∞

dky

2π

eiky (y−y ′)

(E+)2 − (h̄vf )2
(
k2
y + k2

dn

) ,

(B6)

and

�
AB/BA

dn (y,y ′; E) = ∓2ih̄vf eiKdy (y−y ′)

×
∫ ∞

−∞

dky

2π

(ky ± ikdn)eiky (y−y ′)

(E+)2 − (h̄vf )2
(
k2
y + k2

dn

) .

(B7)

After contour integration, we find the final form to be

�
AA/BB

dn (y,y ′; E) = −i
|E|

(h̄vf )2
eiKdy (y−y ′) e

isgn(E)κdn(E)|y−y ′ |

κdn(E)
,

(B8)

and

�
AB/BA

dn (y,y ′; E) = − 1

h̄vf

eiKdy (y−y ′)

×
[
isgn(E)kdn

κdn(E)
± sgn(y − y ′)

]
× eisgn(E)κdn(E)|y−y ′ |, (B9)

where

κdn =
√∣∣∣∣ E

(h̄vf )2
− k2

dn

∣∣∣∣. (B10)

In the above formulas, we have assumed that n is a propagating
mode (e.g., |E/(h̄vf )| > |kdn). If mode n is evanescent

(|E/(h̄vf )| < |kdn|), we have to modify the longitudinal
momentum so that κdn → isgn(E)κdn.

2. Green’s function, one impurity

For the graphene armchair ribbon, we select an impurity
fully localized on the A sublattice,

V(�r) = γ

(
1 0

0 0

)
δ(�r − �ri), (B11)

where γ is the impurity strength. The T -matrix equation
is written in analogy to the 2DEG case, but for graphene
it acquires a 2 × 2 matrix structure. For the potential in
Eq. (B11), we get

T(�ri ; E) = γ

(
1 0

0 0

)
+ γ

(
1 0

0 0

)

×
[ ∑

d

∑
l

gdl(�ri,�ri ; E)

]
T(�ri ; E)

= 1

1/γ + σe(E) + iσp(E)

(
1 0

0 0

)
, (B12)

where

σp(E) = |E|
(h̄vf )2

∑
d

∑
l∈p

χ2
l (xi)

κdl(E)
(B13)

and

σe(E) = E

(h̄vf )2

∑
d

∑
l∈e

χ2
l (xi)

κdl(E)
. (B14)

The letters e and p denote sets of evanescent and propagat-
ing modes, respectively. The Dyson equation for the Green’s
function can now be written as

Gdncm(�r,�r ′) = gdn(�r,�r ′)δnm + G̃dncm(�r,�r ′), (B15)

where

G̃dncm(�r,�r ′; E) = gdn(�r,�ri ; E)T(�ri,�ri ; E)gcm(�ri,�r ′; E).

(B16)

The scattering part G̃dncm(�r,�r ′; E) takes the form

G̃dncm(�r,�r ′; E) = 1

1/γ + σe(E) + iσp(E)

(
gAA

dn (�r,�ri ; E)gAA
cm (�ri,�r ′; E) gAA

dn (�r,�ri ; E)gAB
cm (�ri,�r ′; E)

gBA
dn (�r,�ri ; E)gAA

cm (�ri,�r ′; E) gBA
dn (�r,�ri ; E)gAB

cm (�ri,�r ′; E)

)

= χn(x)χn(xi)χm(xi)χm(x ′)
1/γ + σe(E) + iσp(E)

(
�AA

dn (y,yi ; E)�AA
cm (yi,y

′; E) �AA
dn (y,yi ; E)�AB

cm (yi,y
′; E)

�BA
dn (y,yi ; E)�AA

cm (yi,y
′; E) �BA

dn (y,yi ; E)�AB
cm (yi,y

′; E)

)
. (B17)

For the computation of the LDOS, we need the two diagonal components. Their explicit forms (n,m ∈ p) are

G̃AA
dncm(�r,�r ′; E) = − 1

1/γ + σe(E) + iσp(E)

( |E|
(h̄vf )2

)2

χn(x)χn(xi)χm(xi)χm(x ′)

× eiKdy (y−yi )eiKcy (yi−y ′) e
isgn(E)(κdn(E)|y−yi |+κcm(E)|yi−y ′ |)

κdn(E)κcm(E)
(B18)
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and

G̃BB
dncm(�r,�r ′; E) = 1

1/γ + σe(E) + iσp(E)

1

(h̄vf )2
χn(x)χn(xi)χm(xi)χm(x ′)eiKdy (y−yi )eiKcy (yi−y ′)eisgn(E)(κdn(E)|y−yi |+κcm(E)|yi−y ′ |)

×
[
isgn(E)kdn

κdn(E)
− sgn(y − yi)

][
isgn(E)kcm

κcm(E)
+ sgn(yi − y ′)

]
. (B19)

3. Density of states

The scattering correction to the LDOS can be computed
separately for the two sublattices, and is given by

ρ̃A/B(�r; E) = − 1

π

∑
dc

∑
nm

Im
[
G̃

AA/BB

dncm (�r,�r; E)
]

= − 1

π

∑
dc

∑
nm

KA/B

dncm(E)ρ̃x
nm(x)ρ̃(A/B)y

dncm (y; E),

(B20)

where ρ̃x
nm(x) = χn(x)χm(x). The A/B sublattice corrections

are found by substituting Eq. (B18) and Eq. (B19), respec-
tively, in Eq. (B20). The results are very similar (the A
correction being almost identical) to the 2DEG case, and for
n,m ∈ p we find that

KA
dncm(E) = 1

(1/γ + σe(E))2 + σ 2
p(E)

( |E|
(h̄vf )2

)2

× χn(xi)χm(xi)

κdn(E)κcm(E)
, (B21)

KB
dncm(E) = −(h̄vf /|E|)2KA

dncm(E), (B22)

ρ̃
Ay

dncm(y; E) = σp(E)Fc
dncm(y − yi ; E)

− (1/γ + σe(E))F s
dncm(y − yi ; E), (B23)

and

ρ̃
By

dncm(y; E) = {σp(E)( − knkm + κn(E)κm(E))

+ (1/γ + σe(E))sgn(E)sgn(y − yi)(knκm(E)

+ kmκn(E))}Fc
dncm(y − yi ; E)

+{σp(E)sgn(E)sgn(y − yi)(knκm(E)

+ kmκn(E)) − (1/γ + σe(E))sgn(E)

× sgn(y − yi)(knκm(E) + kmκn(E))}
×F s

dncm(y − yi ; E), (B24)

where

Fc
dncm(y; E) = cos[sgn(E)(κdn(E) + κcm(E))|y|

+ (Kdy − Kcy)y] (B25)

and

F s
dncm(y; E) = sin[sgn(E)(κdn(E) + κcm(E))|y|

+(Kdy − Kcy)y]. (B26)

The Fourier transform of each component is carried out exactly
as for the 2DEG, using Eq. (A18), and the results for the AGNR
are shown in Sec. IV.
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