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Abstract. By presenting linear and nonlinear gyrokinetic studies, based on a

balanced neutral beam injection deuterium discharge from the DIII-D tokamak, we

demonstrate that impurities alter the scaling of the transport on the charge and mass

of the main species, and even more importantly, they can dramatically change the

energy transport even in relatively small quantities. A poloidally varying equilibrium

electrostatic potential can lead to a strong reduction or sign change of the impurity

peaking factor due to the combined effect of the in-out impurity density asymmetry and

the E×B drift of impurities. We present an approximate expression for the impurity

peaking factor and demonstrate that impurity peaking is not significantly affected by

impurity self-collisions.

1. Introduction

Several models have been proposed to explain the favorable isotope mass scaling of

the energy confinement in tokamaks [1, 2, 3, 4, 5], yet a commonly accepted and

robust theoretical explanation of the isotope effect which is consistent with the other

experimentally established parameter scalings [6, 7, 8, 9] is still lacking. When the

turbulent energy transport is determined by the properties of the main ion species,

dimensional considerations suggest that the charge and mass scaling of the heat

diffusivities, χ, should follow the gyro-Bohm scaling, χgB ∼ ρ2i vi/a ∝ √
mi/Z

2
i , where

vi = (2Ti/mi)
1/2 is the ion thermal speed, a is the plasma minor radius, ρi = vi/Ωci

is the ion thermal Larmor radius, with the cyclotron frequency Ωci = ZieB/mi of an

ion of charge number Zi and mass mi, and B is the magnetic field strength. Studies of

charge and mass effects on the turbulent energy transport in DIII-D tokamak plasmas

show that the presence of impurities can contribute to deviations from a pure gyro-

Bohm scaling [11]. In this paper we use the expression “pure gyro-Bohm” if differences

in the turbulence between similar plasmas with different main species can be exactly

transformed out by normalizing temporal and spatial scales to a/vi and ρi, respectively.
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In the first part of the paper we present similarity studies, that is, a series of gyrokinetic

(GK) simulations with gyro [10] where the local geometry and profile parameters –

taken from a deuterium discharge studied in Ref. [11] – are kept fixed while the ion

composition is artificially changed from case to case. First the effect of impurities (in

particular, carbon or deuterium) on energy transport in hydrogen isotope and helium

plasmas is studied. Then we investigate the role of the main species on impurity

transport, and conclude that impurity transport does not follow the pure gyro-Bohm

scaling (based on the properties of the main ion species) so closely as the energy

transport.

One of the ways to reduce impurity accumulation in tokamak cores is to apply

central radio frequency (RF) heating [12, 13, 14, 15]. RF-heating can generate poloidal

impurity density asymmetries [16] and if the asymmetry is sufficiently strong, it can lead

to a sign change in the impurity peaking factor [17, 18]. Recently it was shown that a

sign change of the impurity peaking factor can happen at much weaker (that is, realistic)

asymmetry strengths than were considered in Ref. [18] if the Eθ×Bφ drift of impurities

in the poloidally varying equilibrium electrostatic field is taken into account [19]. In the

second part of this paper, we extend the work of Ref. [19], by including parallel dynamics

and finite Larmor radius (FLR) effects and modeling impurity self-collisions with the

full linearized operator for impurity self-collisions to derive an improved approximate

expression for the impurity peaking factor.

2. Charge and mass effects on turbulent transport

In this section we study how the charge and mass scalings of the energy transport

are affected by the presence of impurities, through linear and nonlinear GK similarity

studies with gyro, based on local profile and magnetic geometry data from an L-mode

phase of a weakly rotating DIII-D deuterium discharge (129135, 1250-1300 ms). For

detailed information on the resolution of the simulations and on the studied discharge

we refer the reader to Ref. [11]. The dominant impurity in the discharges studied

in Ref. [11] was carbon, and the hydrogen and helium discharges had a significant

deuterium fraction present; this motivates our choice of impurities in the simulations

presented in this section. We neglect particle flows within the flux surface and to model

different ion compositions we keep the electron density profile fixed and assume constant

ion concentrations. For different main species with the same charge the results of local

GK simulations – normalized to main ion species units – should exactly coincide when

impurities and collisions are neglected and adiabatic electron response is assumed [11].

Thus we normalize growth rates, γ to csi/a, where csi = (Te/mi)
1/2, binormal wave

numbers ky to 1/ρsi = Ωci/csi, and fluxes to gyro-Bohm units QgBi = neTecsi(ρsi/a)
2,

ΓgBi = necsi(ρsi/a)
2 ∝ m

1/2
i /Z2

i .

In Figs. 1 (a,b) the growth rate of linear modes at kyρsi = 0.3 (at r/a = 0.55)

is shown as a function of carbon concentration nC/ne. The local geometry and profile

parameters, in the notation of Ref. [10], are: q = 1.78, s = 0.75, κ = 1.34, δ = 0.11,
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a/Ln = 0.68, a/LT i = 1.89, a/LTe = 2.69, Ti/Te = 0.82, νei = 0.14 cs/a. The solid

line corresponds to a deuterium plasma, the dashed is a hydrogen and the dotted

is a helium plasma. We also show simulations for diluted deuterium plasma (long

dashed lines), i.e., the deuterium concentration is decreased to the value that would

correspond to the given carbon concentration (according to ni/ne = 1 − ZCnC/ne),

but the carbon has no response to fluctuations (the carbon density is set to zero in

the simulation). Fig. 1 (a) shows the simulation results with adiabatic electrons. The

decrease in the growth rates with increasing carbon concentration is practically linear.

For lower carbon concentrations the slope of the γ curves is the same in main ion

species units, independently of the mass or charge of the main species. For higher

carbon concentrations a small difference between hydrogen isotopes and helium appears

regarding the slopes, but the deuterium and hydrogen curves still overlap almost exactly,

in spite of the difference between the mC/mi mass ratios. Noticeable deviations between

growth rates in different hydrogen isotope plasmas appear only at higher wave numbers;

noting that 1/ρsC ≈ 2.45/ρsi.

Figure 1 (b) shows trapped electron (TE) mode growth rates in a collisionless drift-

kinetic electron simulation. The TE modes are weakly destabilized as the impurity

concentration is increased and this effect is somewhat stronger in hydrogenic plasmas.

This destabilization is due to the increased weight of trapped-electrons in the Poisson

equation due to the diluting effect of impurities (similarly, the stabilizing effect of

impurities on ITG modes mentioned before is mostly due to the decreased weight of

ions). But it has to be noted that these TE modes are strongly stabilized when electron-

ion collisions are introduced in the simulation, and the stabilizing effect of increasing

Zeff appearing in the electron-ion collision frequency can be much stronger than the

destabilizing effect observed in the collisionless case.

Finally, we compare the deuterium plasma simulations with the correct physics

(solid lines) to the model where only the diluting effect of impurities is taken into account

(long dashed lines). The presence of carbon contributes to a further stabilization of the

ITG modes, and this contribution is comparable to the effect of the dilution of the main

species. However, for the TE mode, the presence of carbon has almost negligible effect

compared to that caused by the dilution of the main species.

Moving on to nonlinear simulations, the curves in Figs. 1 (c-f) represent the

distribution of energy (or particle) fluxes over poloidal wave numbers; the kθρsi integral

of the curves give the fluxes in gyro-Bohm units; the corresponding flux values are

given in the plot legends. The nonlinear simulations include kinetic electron response

and electron-ion collisions and they are based on the local parameters of the studied

deuterium plasma at r/a = 0.65 (q = 2.08, s = 1.1, κ = 1.36, δ = 0.14, a/Ln = 0.79,

a/LT i = 1.94, a/LTe = 3.07, Ti/Te = 0.91, νei = 0.23 cs/a).

First, we study the respective and combined effects of the carbon and deuterium

impurities on energy transport. Figure 1 (c) shows the total ion energy flux in species

units for a pure hydrogen plasma (solid curve), in hydrogen plasmas with carbon

(dashed) and deuterium (dash-dotted) impurities, and with both carbon and deuterium



Turbulent transport of impurities 4

(a) (c) (e)

(b) (d) (f)

Figure 1. (a,b) Growth rates of the kyρsi = 0.3 mode as a function of carbon

concentration. Solid: main ion species is deuterium, dashed: hydrogen, dotted: helium,

long dashed: diluted deuterium (no carbon, non-quasineutral). (c,d) Ion energy flux

spectra [in D units] of pure plasmas (solid), with carbon (dashed), with deuterium

(dash-dotted), and with carbon and deuterium impurities. (c): main ion hydrogen,

(d): helium. (e) and (f): carbon and deuterium particle flux spectra.

impurities (dotted); nC/ni = 0.04167 corresponding to Zeff = 2 in hydrogenic plasmas,

and nD/ni = 1/3. The stabilizing effect of carbon on ITG modes, seen also in the linear

simulations, appears as a strong reduction (by 51%) of the ion energy fluxes that acts

at all wave numbers (we note that TE modes are stabilized by collisions). The presence

of deuterium slightly reduces the transport at higher wave numbers (this feature is

consistent with corresponding linear simulation results, not shown here). Interestingly,

when there is carbon impurity in the plasma, the presence of a deuterium minority does

not reduce the absolute value of the transport, only the spectrum gets shifted slightly

towards lower wave numbers. The effect of these impurities is qualitatively the same

on the electron energy flux, the difference is that the reduction in the electron energy

transport is not as strong as in the ion energy transport (only 35%). Figure 1 (d)

shows how the presence of D and C affects the energy transport in a helium plasma.

The effect of a C impurity is considerably weaker in a helium plasma than in hydrogen

isotope plasmas and it is concentrated to lower wave numbers. The fact that we kept

nC/ni fixed in the simulations [shown in Figs. 1 (c) and (d)] instead of nC/ne is part

of the reason why we find a weaker effect of carbon in the simulation with helium than

with hydrogen main ions, since then carbon density is smaller in the helium plasma.

However, even if we kept nC/ne fixed, looking at Fig. 1 (a) we expect to have a weaker

impact of the carbon impurity on transport because the relative change in the linear
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growth rates (compared to the pure plasma case) for given carbon concentration is

smaller in a helium plasma than in hydrogen. While both carbon and deuterium act to

reduce the energy transport in the helium plasma (compare the gyro-Bohm normalized

fluxes in the legend of Fig. 1 (d)), interestingly, when both impurities are present the

absolute value of the transport remains almost the same as in the pure plasma, however

the shape of the energy flux spectra changes somewhat, being more peaked around its

maximum.

In Figs. 1 (e,f) the carbon and deuterium particle fluxes are shown in impure

hydrogen and helium plasmas, respectively (positive sign corresponding to an outward

particle flux). In species units the magnitude of the carbon particle flux is the same in

a hydrogen and a helium plasma when the ratio nC/ni is kept fixed; compare the solid

and dash dotted curves in Fig. 1 (e). The shape of the carbon particle flux spectra are

similar to the ion energy flux spectra in the hydrogen and helium plasmas [H+C and

He+C curves in Figs. (c,d) compared to those in Fig. (e)], however, the magnitude

of Qi is smaller in the H+C than in the He+C plasma. It is also interesting to note,

that in the hydrogen plasma the carbon particle flux remains almost unaffected when a

deuterium minority is introduced; in contrast to the helium plasma, where the carbon

flux drops dramatically (by 63%) in the presence of deuterium; a trend opposite to what

was found for ion energy fluxes.

Figure 1 (f) shows that the deuterium particle fluxes in species units appear to be

almost three times higher in a helium plasma than in a hydrogen plasma, even if the

nD/ni values are held constant, so the number of deuterium particles is half as many

in the helium plasma as in the hydrogen plasma. In spite of the fact that the linear

growth rates and the energy transport are reduced when carbon impurity is present, the

deuterium particle fluxes increase both in a H(+D) and a He(+D) plasma when carbon

impurity is introduced.

3. Impurity peaking factor in the presence of poloidal asymmetries

In this section we calculate the zero flux density gradient (peaking factor) of trace

impurities under the effect of a poloidally varying equilibrium electrostatic potential φE

that can arise due to e.g. the presence of a species with strong temperature anisotropy

[20]. Especially, in case of RF heating on the outboard side, the trapped population of

the heated particle species increases in the vicinity of the resonance position [21, 16].

The peaking factor depends on the linear mode characteristics and on the form of φE.

Here, we neglect effects caused by a radial electric field, such as toroidal rotation.

We assume e∆φE/Tj ≪ 1, where ∆φE refers to the poloidal variation of φE, so

that poloidal asymmetry effects on the main species can be neglected; this assumption

is needed to justify the use of gyro simulations to obtain the linear mode characteristics.

However, we allow for Ze∆φE/Tz = O(1).
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3.1. Perturbed impurity distribution

We consider the particle transport driven by a single, representative, toroidal mode.

The impurity peaking factor is calculated by requiring the linear impurity flux Γz ≡
ℑ〈−kyn̂zφ

∗/B〉 = ℑ
〈

−ky
∫

d3vJ0(zz)gzφ
∗/B

〉

to vanish (steady state is assumed and

impurity sources are neglected). Here 〈·〉 denotes a flux surface average, n̂z is the

perturbed impurity density, gz the non-adiabatic part of the perturbed impurity

distribution function, J0 is the Bessel function of the first kind, zz = k⊥v⊥/ωcz,

k⊥ = (1 + s2ϑ2)
1/2
ky, and the rest of the notation is standard. The species indexes

z, e and i refer to impurities, electrons and main ions.

The linearized GK equation is to be solved to obtain the non-adiabatic part of the

impurity distribution function gz,

v‖
qR

∂gz
∂ϑ

∣

∣

∣

∣

E,µ

− i(ω − ωDz − ωE)gz − C[gz] = −iZefz0
Tz

(

ω − ωT
∗z

)

φJ0(zz), (1)

where ϑ is the extended poloidal angle, ω = ωr + iγ is the mode frequency, fz0(ψ, E) =
nz0(ψ)[mz/2πTz(ψ)]

3/2 exp[−E/Tz(ψ)] is the equilibrium Maxwellian distribution. µ =

mzv
2
⊥/ (2B), E = mzv

2/2 + ZeφE, ω
T
∗z = ω∗z [1− LnzZe∂r(φEeφE/Tz − 3/2)Lnz/LTz]

with ω∗z = −kyTz/ZeBLnz, Lnz = − [∂r (lnnz)]
−1 and LTz = − [∂r (lnTz)]

−1.

Furthermore, ωDz = −2ky/mz(E − ZeφE − µB/2)D(ϑ)/ωczR, where D(ϑ) = cosϑ +

sϑ sinϑ. The E × B drift frequency in the equilibrium electrostatic field is ωE =

ky [∂rφE − sϑ∂ϑ(φE)/r] /B. Our ordering ZeφE/Tz ∼ O(1) requires that ωE/ω is

formally ∼ 1/Z small; this requirement is mostly satisfied for experimentally relevant

poloidal asymmetries. We consider ion scale modes, zi . 1, and we allow the parallel

streaming term of main ions to be comparable to the mode frequency. In the following we

perform a perturbative solution of the impurity GK equation (1) in the small parameter

Z−1/2 ≪ 1. We assume that impurity self-collisions dominate over unlike-particle

collisions, requiring nzZ
2/ne = O(1), thus we model only impurity-impurity collisions

with the full linearized collision operator C
(l)
zz [·].

Keeping in mind that ωE/ω, ωDz/ω, ω
T
∗z/ω, and J0(zz) − 1 ≈ −z2z/4 are all

∼ 1/Z small, the lowest order equation −iωg0 − C
(l)
zz [g0] = −iωZeφfz0/Tz for gz =

g0 + g1 + g2 + . . . is satisfied by g0 = Zeφfz0/Tz, since C
(l)
zz [g0 ∝ fz0] vanishes. To first

order in Z−1/2, we have v‖∂ϑ(g0)/(qR)− iωg1 −C
(l)
zz [g1] = 0. Using C

(l)
zz [g1 ∝ v‖fz0] = 0,

and ∂θ(fz0)|E = 0, we obtain g1 = −iZefz0v‖∂ϑ(φ)/(TzωqR). To next order, the GK

equation reads

−iωg2 − C(l)
zz [g2] = −i(ωDz + ωE)g0 − v‖∂ϑ(g1)/(qR) + iZeφfz0(ωz

2
z/4 + ωT

∗z)/Tz. (2)

Using that mzv‖∂ϑ(v‖)|E,µ = −µ∂ϑB −Ze∂ϑφE, the parallel compressibility term in the

right hand side of Eq. (2), can be expressed as

− v‖
qR

∂g1
∂ϑ

= i
Zefz0
ωTzq2R

{

v2‖
∂

∂ϑ

(

1

R

∂φ

∂ϑ

)

− 1

R

∂φ

∂ϑ

[

v2⊥
2

∂ lnB

∂ϑ
+
Ze

mz

∂φE

∂ϑ

]}

. (3)
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We decompose the magnetic drift frequency and the FLR parameter as ωDz = ωDx+ωD‖

and z2z = z2x−z2‖ , where ωDx and z
2
x are proportional to v

2 and ωD‖ and z
2
‖ are proportional

to v2‖. Also, we write g2 = ĝ2 + g̃2, where ĝ2 has contributions proportional to fz0 and

v2fz0, thus C
(l)
zz [ĝ2] = 0. The collisionless, isotropic part of Eq. (2) is solved by

ĝ2 =
ωDx + ωE

ω
g0 −

Zeφ

Tz
fz0

ωz2x/4 + ωT
∗z

ω
+

Zefz0
ω2Tzq2R2

∂φ

∂ϑ

[

v2

2

∂ lnB

∂ϑ
+
Ze

mz

∂φE

∂ϑ

]

. (4)

Then g̃2 should satisfy the remaining part of Eq. (2) which, upon division by −iω reads

g̃2 −
i

ω
C(l)

zz [g̃2] =
ωD‖

ω
g0 +

Zeφ

Tz
fz0

z2‖
4

−
Zev2‖fz0

ω2Tzq2R

{

∂

∂ϑ

[

1

R

∂φ

∂ϑ

]

+
1

2R

∂φ

∂ϑ

∂ lnB

∂ϑ

}

. (5)

Equation 5 can be written as g̃2 − i
ω
C

(l)
zz [g̃2] − Xv2‖fz0 = 0, where X is independent of

velocity. The solution can be written in the form g̃2 = Ξ(v)fz0, where Ξ can incorporate

any nontrivial velocity dependence. Taking the density moment of Eq. (5)

∫

d3v
[

g̃2 − iC(l)
zz [g̃2]/ω −Xv2‖fz0

]

= 0. (6)

Since
∫

d3vC
(l)
zz [Ξ(v)fz0] =

∫

d3vΞ(v)C
(l)
zz [fz0] = 0, Eq. (6) can be reduced to

∫

d3v
[

g̃2 −Xv2‖fz0

]

= 0.

Since we are only interested in the density moment of the perturbed distribution

function needed to evaluate the impurity peaking factor, instead of solving the

complicated collisional equation (5) unnecessarily, we derive a substitute function g̃2s
that has the same density moment as g̃2; we choose g̃2s = Xv2fz0/3.

We introduce a substitute function for gz, denoted by gs, with the property
∫

d3vJ0(zz)gs =
∫

d3vJ0(zz)gz +O(Z−2); we define it as gs = g0 + ĝ2 + g̃2s, that reads

gsTz
Zefz0

= φ

[

1 +
4ωDx/3 + ωE − ωT

∗z

ω
− z2x

6

]

− v2z
3(ωqR)2

[

x2z
∂2φ

∂ϑ2
− 3

2

∂φ

∂ϑ

∂

∂ϑ

(

ZeφE

Tz

)]

,

(7)

where xz = v/vz, with vz = (2Tz/mz)
1/2. It is important to emphasize, that gs is not

an approximate solution to Eq. (1), but merely a function that has the same density

moment as the solution. Taking other velocity moments of this function would give

erroneous results, and gs cannot be used to proceed with the perturbative solution.

3.2. Zero flux impurity density gradient

To calculate the impurity peaking factor we assume a simple sinusoidal poloidal

asymmetry of the form ZeφE/Tz = −κ cos(θ − δ) where κ is the asymmetry strength

and δ determines the poloidal position of the impurity accumulation. When evaluating

the density moment of Eq. (7), we keep the O(Z−1) correction from J0(zz) where it

multiplies g0. Also, we neglect O(ǫ) corrections when solving for a/L0
nz, the value of
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a/Lnz where 〈Γz〉 = 0, to find

a

L0
nz

= 2
a

R0

〈D〉φ +
a

r
sκ〈θ sin(θ − δ)〉φ −

2avi
(qR0)2kyρi

Zmi

mz

ωr

ω2
r + γ2

〈

∣

∣

∣

∣

∂φ

∂θ

∣

∣

∣

∣

2

/ |φ|2
〉

φ

, (8)

where ρi = vimi/eB0, and 〈. . . 〉φ = 〈. . .N|φ|2〉/〈N |φ|2〉, with N = exp[κ cos(θ − δ)].

The FLR terms do not appear in a/L0
nz, since their imaginary part is zero. The

first and second terms of Eq. (8) represents the contributions from ωD and ωE,

respectively. Since the last term of Eq. (8) contains only non-negative quantities,

except ωr, impurity parallel dynamics acts to increase(decrease) the impurity peaking

if ωr is negative(positive). Note, that we use the sign convention of gyro; ωr is

negative for modes propagating in the ion diamagnetic direction. The impurity parallel

compressibility term introduces a dependence on mode frequency, and also on the charge

to mass ratio, consistently with Ref. [22].

(a) (b)

Figure 2. (a) Shear dependence of the impurity peaking factor. Thin solid line

represents the poloidally symmetric case; the corresponding gyro results are shown

with red diamonds. Thick solid line represents an in-out asymmetry, κ = 0.5. The

contributions from the different terms in Eq. (8) are also plotted; dashed line: magnetic

drifts, dash-dotted: E × B drifts, dotted line: parallel compressibility. (b) Shear

dependence of ωr and γ from gyro.

The shear dependence of the peaking factor of a fully ionized Nickel impurity

calculated from Eq. (8) is shown in Figure 2(a). The local profile and geometry

parameters assuming a circular model Grad-Shafranov equilibrium are: r/a = 0.3,

R0/a = 3, kθρs = 0.3, q = 1.7, a/Lne = 1.5, Ti/Te = 0.85, a/LTe = 2 and a/LT i = 2.5,

and collisions are switched off in the simulations to avoid discrepancies due to the

different collision operators in this paper and in gyro. The poloidally symmetric case

is shown with thin solid line and shows a relatively good agreement with the exact values

obtained from gyro simulations represented by the diamond markers; the differences

towards higher magnetic shear appear as a result of an overestimation of the parallel

compressibility term due to the approximations done in the derivation of Eq. (8). A

scenario with in-out impurity asymmetry for the asymmetry strength κ = 0.5 is also

plotted with thick solid line, together with the contributions from the different terms
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in Eq. (8). Around s = 0 the contribution from ωE (dash-dotted line) vanishes, and in

this specific case the parallel compressibility term (dotted line) is also small due to the

small value of ωr; the peaking factor is dominated by ωD (dashed line). If |ωr|/γ ≪ 1,

that happens for lower shear in the case studied here [see Fig. 2 (b)], the frequency

dependent part of the third term in Eq. (8) is small, thus parallel compressibility effects

do not play an important role; see the dashed curve in Fig. 2 (a).

As the magnetic shear increases the ωE term starts to reduce the peaking factor,

since 〈θ sin(θ−π)〉φ is negative for moderately ballooning eigenfunctions. In Eq. (8) the

shear dependent part of D, and the ωE term can be combined as (as/R0)〈θ sin θ〉φ(2±
κ/ǫ), where ǫ = r/R0, and the plus(minus) sign applies for out-in(in-out) impurity

asymmetry. Thus, if φ(θ) and ω are only weakly dependent on shear, increasing shear

is expected to reduce the impurity peaking in the in-out asymmetric case when 2 < κ/ǫ

[for our simulation parameters κ/ǫ = 5]. From Eqs. (10) and (12) in Ref. [19] one can

estimate the ratio of the asymmetry strength and the inverse aspect ratio; assuming

Te ≈ Ti ≈ Tz, and taking the limits αT ≫ 1 and ǫ ≪ 1 so that ǫαT is also small we

obtain κ/ǫ ≈ αTZXm/(1 +Zeff), where αT is the minority temperature anisotropy, and

Xm is the minority fraction.

4. Conclusions

In the present paper we first study how impurity transport is affected by the charge and

mass of the main ion species and the ion composition, and what impact the impurities

have on energy transport, then we consider the effect of a poloidally varying equilibrium

potential on impurity peaking.

Linear gyrokinetic analysis shows that for increasing impurity concentration the

growth rates change in a linear fashion; in main ion species units the change in the

growth rates when increasing impurity concentration to a given value – i.e. the slope of

the γa/csi(nC/ne) curves – is almost independent of the charge and mass of the main

species. In the studied case, based on local profile and geometry data in a deuterium

discharge from DIII-D, for ITG modes carbon impurity has a strongly stabilizing,– for

TE modes (when neglecting collisions) a weak destabilizing – effect. For TE modes

the effect is almost purely due to plasma dilution, for ITG modes the presence of the

impurity itself has a comparable effect to the dilution that still dominates. The strong

stabilizing effect of carbon in hydrogenic plasmas appears in nonlinear simulations as a

strong reduction of energy transport, the relative change in the energy fluxes being even

higher than that of the linear growth rates. The effect of impurities on energy transport

is smaller in a helium plasma, due to the higher species units growth rates and the

lower main ion concentration. The presence of deuterium mainly just changes the shape

of the energy flux spectrum, although slightly reduces the transport in a hydrogen

plasma. In general the presence of impurities, even in relatively small quantities, can

cause significant deviations from a pure gyro-Bohm mass and charge scaling of energy

fluxes. (Again, by “pure gyro-Bohm scaling” we refer to the situation when differences
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in the turbulence between similar plasmas with different ion composition can be exactly

transformed out by normalizing temporal and spatial scales to a/vi and ρi, respectively.

We do not mean that the transport is not gyro-Bohm in the general sense.)

We conclude that, while the apparent deviations from a pure gyro-Bohm scaling,

– due to charge, electron-to-ion mass ratio or collisional effects, and importantly due

to the presence of impurities, – can mostly be explained and understood from a linear

analysis of the underlying microinstabilities, impurity transport do not follow these

naive expectations. In particular, if we would normalize the impurity fluxes to ion

energy fluxes we would get significantly different values in plasmas with different main

ion species. Thus we might expect that the steady state impurity profiles would also vary

in these plasmas (especially when impurity sources and neoclassical impurity transport

are accounted for), causing further deviations from a pure gyro-Bohm scaling.

A poloidally varying electrostatic field, appearing due to e.g. a poloidally

asymmetrically distributed RF heated particle species, even if being too weak to modify

the dynamics of the main species, can essentially change impurity transport compared

to a poloidally symmetric situation. We show that the combined effect of the arising

poloidally asymmetric impurity distribution and the Eθ × Bφ drift of impurities can

lead to a reduction or even a sign change in the impurity peaking factor. The effect

becomes important at high impurity charge, when the magnetic and diamagnetic drifts

(proportional to 1/Z) become as small as the Eθ × Bφ drift in the poloidally varying

equilibrium potential. We demonstrate that to lowest order in 1/Z finite Larmor

radius effects and impurity collisions do not affect impurity peaking driven by ion scale

microinstabilities as long as the impurity collisions are dominated by self-collisions and

the impurity collision frequency is not much larger than the mode frequency. We present

and analyze a simple analytical expression for the impurity peaking factor including

contributions from the Eθ ×Bφ drift and parallel compressibility, and depending on the

linear mode characteristics. We find that to get sign change in the impurity peaking

factor, a necessary criterion is that the ratio of the asymmetry strength κ and the inverse

aspect ratio ǫ is larger than two.
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[17] T. Fülöp and S. Moradi, Phys. Plasmas 18, 030703 (2011).
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