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Long range frequency sweeping events are simulated numerically within a one-dimensional,

electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution

accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength,

and it includes three distinct collisions operators: Drag (dynamical friction on the background

electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and

diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-

monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented

solution constitutes a step towards predictive modeling of frequency sweeping events in more

realistic geometries. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799781]

I. INTRODUCTION

Frequency sweeping events are common features of

experimental plasmas. For instance, the nonlinear evolution of

the hot electron interchange instability renders long range fre-

quency sweeping in the Collisionless Terrella Experiment,1

and frequency sweeping of toroidal Alfv�en eigenmodes

(TAEs), fishbone-like energetic particle modes, and compres-

sional and global Alfv�en modes have been reported in

the National Spherical Tokamak Experiment (NSTX).2,3

Likewise, on the Mega Ampère Spherical Tokamak, TAEs

driven unstable by energetic particles generated via neutral

beam injection often exhibit a bursting evolution of the mode

amplitude and a sweep in the mode frequency.4,5

Frequency sweeping can be attributed to the evolution

of coherent structures, holes and clumps, in the fast particle

distribution function.6–9 E.g., in a one-dimensional (1D)

bump-on-tail model, holes and clumps may form from a

marginally unstable plasma mode as a result of an interplay

between phase mixing in the wave field and collisional relax-

ation of the fast particle distribution function. The ensuing

frequency sweep is due to the dissipation in the thermal

background plasma, which forces the holes and clumps to

traverse fast particle phase space and the wave phase veloc-

ity to evolve in time.

Sweeping activity is often associated with anomalous

transport and redistribution of fast particles.10 In particular,

long range frequency sweeping has the capacity to convect

particles over extended regions of phase space, and it was

recently shown that continuous production of holes and

clumps at a single resonance may lead to a global relaxation

of the fast particle distribution function.11 During such long

range sweeping events, however, an important, but often

overlooked, factor is the slow evolution of the wave field

itself. For example, as the carrier frequency of a wave with a

fixed spatial period shifts from the original resonance, a

gradual deviation from the sinusoidal spatial profile of the

linear instability and a corresponding slow change in the

wave amplitude is enforced through the periodicity require-

ments on the mode, while fast particle collisions and sources

modify the hole/clump structures in phase space. Moreover,

as the holes and clumps are conveyed through extended

regions of phase space, any detailed study needs to account

for the corresponding variation of the equilibrium plasma

parameters.

Some important features of long range sweeping have

been addressed in previous investigations, cf., Refs. 12 and

13. The former report pinpointed the importance of the mode

structure dependence on the frequency shift from the linear

resonance. An analytical solution to the 1D bump-on-tail

Poisson-Vlasov system was presented and used to describe

slowly evolving phase space clumps in the absence of fast

particle collisions and sources. In Ref. 13, the analytical

solution was generalized to include two types of simplified

collision operators (drag and Krook) and allow for slow var-

iations in the equilibrium plasma parameters. In particular,

by accounting for a non-constant slope in the fast particle

distribution function, the extended model was able to evolve

both holes and clumps. It is essential, however, that the holes

and clumps in Refs. 12 and 13 are constrained to be of top-
hat (or waterbag) type. Such fast particle distribution func-

tions have uniform, but evolving, depth/height inside the

separatrix, but remain effectively unperturbed outside the

trapping area. While the top-hat assumption enables an ana-

lytical solution of the problem, it generally breaks down

when the evolving wave is allowed to capture new particles.

For this reason, the solutions obtained in Refs. 12 and 13 are

valid only in the absence of velocity space diffusion (which

transports particles through the separatrix) and when the

trapping region does not grow.

In the present paper, we relax the previous top-hat con-

straint and present a self-consistent description of frequency

sweeping based on a numerical solution for the evolving

hole/clump profile in fast particle phase space. This approach

covers particle trapping and detrapping in the wave field due

to separatrix expansion/shrinkage and velocity space

diffusion of fast particles. The presented work builds on the

formalism developed in Ref. 13. As such, it contains nota)robert.nyqvist@chalmers.se
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only diffusive collisions, but also drag and Krook collision

operators, as well as the effects of slow variations in the equi-

librium plasma parameters. The paper is organized as follows:

Model equations are presented in Sec. II, and the numerical

scheme used to evolve the system is outlined in Sec. III. In

Sec. IV, we discuss the effects of particle trapping, velocity

space diffusion and drag collisions on the mode evolution and

frequency shift, including features such as non-monotonic

sweeping patterns and the formation of asymptotically steady

holes. Steady state holes are then further analyzed in Sec. V.

Finally, Sec. VI concludes the presented work.

II. ADIABATIC MODEL (BASIC EQUATIONS)

As in Ref. 13, we employ a 1D bump-on-tail model to

describe the evolution of phase space holes and clumps. We

limit our investigation to the so called adiabatic regime, in

which a single perturbation (with fixed spatial period k)

evolves slowly compared to the fast motion of particles reso-

nant with the wave. Formally, the appropriate ordering is

given by

d ln xB

dt
;

d ln _s

dt

� �
� xB � cL � cd � x � x0; (1)

where the bounce frequency xB of particles trapped in the

wave field serves as a measure of the wave amplitude, _s is

the wave phase velocity, and x ¼ k _s the corresponding

wave carrier frequency (with k ¼ 2p=k the wave number).

The quantities cL and cd denote, respectively, the linear

growth rate due to the positive slope of the unperturbed ener-

getic particle equilibrium distribution and the rate of damp-

ing due to dissipation in the background plasma. The

adiabatic ordering (1) is designed to describe well defined

spectral lines that extend over frequency ranges comparable

to the resonant frequency x0 ¼ k _s0.

The relevant adiabatic equations were derived in Ref.

13. They are to be solved self-consistently for the following

three quantities: 1) the wave field potential Uðn; sÞ, which is

periodic in the wave frame spatial variable n 2 ½0; 1� and a

slow function of normalized time,

s ¼ p
2

16

3p2

� �3 cL0

x0

� �2

cL0t; (2)

as compared to the fast resonant particle motion; 2) the per-

turbed distribution of trapped particles, dFðJ ; sÞ, which

evolves slowly with s and whose phase space profile depends

on the action variable (adiabatic invariant of the trapped par-

ticle motion)

J ðE; sÞ ¼ p

2
ffiffiffi
2
p

ð1�n�

n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Uðn; sÞ

p
dn; (3)

with E ¼ u2=2þ Uðn; sÞ the fast particle energy in the wave

frame and u the corresponding velocity; 3) the wave phase

velocity _sðsÞ. The system of equations13 contains a kinetic

equation for the trapped particles

@ dF
@s
þ ~b dF ¼ �q

d

ds

_s

_s0

� �
þ ~a2

� �

þ ~�3 @

@J J @J
@E

@ dF
@J

� �
; (4a)

a Poisson equation

@2U
@n2
þ 4p2 _s0

_s

� �2

U

¼ 3
ffiffiffi
2
p

p3

ðJ S

J ðE¼UÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðJ Þ � U

p @dF
@J dJ � C1

" #
(4b)

with

C1ðsÞ ¼
ð1

0

ðJ S

J ðE¼UÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðJ ; sÞ � Uðn; sÞ

p @dF
@J dJ dn; (4c)

and a power balance condition,

d

ds

_s

_s0

� �
þ ~a2 ¼ cd

cL0

1ffiffiffi
2
p

C1

_s0

_s

� �3ð1
0

ðUðnÞÞ2dn; (4d)

that equates the energy released by fast particles during fre-

quency sweeping to the dissipation in the background

plasma. In these equations, ~a, ~b, and ~� are normalized colli-

sion frequencies for the simplified drag, Krook, and velocity

space diffusion collision operators (for the sake of simplicity,

these frequencies are assumed constant throughout this arti-

cle, although they generally depend on _s), and the function

qð _sÞ characterizes the local slope of the unperturbed fast par-

ticle distribution. The maxima and minimum of the periodic

potential U, denoted Umax and Umin, are located at the bound-

ary n ¼ 0; 1 and midpoint n ¼ 0:5, respectively, and the

boundary conditions for dF read

dFðJ S; sÞ ¼ 0;
@dF
@J

����
J¼0

¼ 0; (5)

where

J SðsÞ ¼
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UmaxðsÞ � Uðn; sÞ

p
dn (6)

is the action evaluated at the separatrix orbit with E ¼ Umax.

The turning points n� and 1� n� for trapped particles with

energy E are given by Uðn�Þ ¼ E. The relation E ¼ EðJ ; sÞ
is defined implicitly through Eq. (3). Finally, all quantities

denoted with a subscript 0 represent initial values at s ¼ 0.

The reader is referred to Ref. 13 for normalizations and addi-

tional details.

The adiabatic ordering (1) breaks down for particles

near the separatrix, at which the bounce period diverges log-

arithmically and particles formally come to a halt at the turn-

ing points n ¼ 0, 1. In reality, however, particles do not

linger at the separatrix orbit. Instead, they either cross the

separatrix as the mode structure evolves or due to diffusive

collisions or skim the trapping region as a result of frequency
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sweeping or drag. In any case, the adiabatic invariants of par-

ticles with kinetic energies in a thin transition layer centered

at the separatrix experience phase dependent jumps.14,15 It

can be shown, however, that due to the Liouville theorem, it

is possible to describe the integrated effect of these jumps

via proper relabeling of the particle orbits.16 For a uniform

distribution of ambient particles, particle trapping/detrapping

can therefore be modeled, as in Eq. (4a), by simply including/

excluding, to/from the trapping area, thin annuli of phase

space on which the adiabatic invariant and particle distribu-

tion function are constant.

With regards to numerical modeling, a slightly incon-

venient aspect of the separatrix evolution is that the upper

boundary of the trapped particle domain ½0;J SðsÞ� evolves

in time with the mode structure and amplitude, as seen in

Eq. (6). An apparent remedy is to change variable from

J to

EðJ ; sÞ � EðJ ; sÞ � UminðsÞ
2aðsÞ ; (7)

where

aðsÞ � UmaxðsÞ � UminðsÞ
2

(8)

is a measure of the wave amplitude. If we transform the

potential similarly to

yðn; sÞ � Uðn; sÞ � UminðsÞ
2aðsÞ ; (9)

both E and y will be restricted to ½0; 1� at all times, while

Eqs. (4a), (4b), and (4d) transform into

@ dF
@s
¼ ~�3

2a
� dE

ds

� �
@dF
@E
þ ~�3

a
G
@2dF
@E2

� q
d

ds

_s

_s0

� �
þ ~a2

� �
;

(10a)

@2y

@n2
þ 4p2 _s0

_s

� �2

y ¼ 3p3ffiffiffi
a
p

ð1

y

ffiffiffiffiffiffiffiffiffiffiffi
E� y

p @dF
@E

dE� C2

� �
;

(10b)

and

d

ds
_s

_s0

� �
þ ~a2 ¼ cd

cL0

1ffiffiffi
2
p

C1

_s0

_s

� �3ð1
0

½2ayðnÞ þ Umin�2dn:

(10c)

In these equations

GðE; sÞ ¼
ð1�n�

n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� yðn; sÞ

p
dn

ð1�n�

n�

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� yðn; sÞ

p
2
64

3
75
�1

;

(11)

C2ðsÞ ¼
C1ffiffiffiffiffi
2a
p þ 2

3p
Uminffiffiffi

a
p _s0

_s

� �2

; (12)

and Umin is given by the condition that U averages to zero

over the wave spatial period. This constraint ensures that

there is no average space charge in the plasma.

Consequently, integration of Eq. (9) gives

UminðsÞ ¼ �2aðsÞ
ð1
0

yðn; sÞ dn: (13)

The time derivative of the normalized energy, dE=ds, is

determined through the invariance of J ¼ J ðEðsÞ; sÞ,

dJ
ds
¼ @J
@E

dE
ds
þ @J
@s
¼ 0; (14)

giving

dE
ds
¼ � @J

@s
@J
@E

� ��1

: (15)

In terms of E, y, and a, we get

dE

ds
¼

ð1�n�

n�

@y=@sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� yðn; sÞ

p dn� 1

a

da

ds

ð1�n�

n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� yðn; sÞ

p
dn

8><
>:

9>=
>;

�
ð1�n�

n�

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� yðn; sÞ

p
8><
>:

9>=
>;
�1

: (16)

We have deliberately dropped the Krook term in Eq. (10a)

by setting ~b ¼ 0. Since the effect of Krook-type collisions

was thoroughly analyzed in Ref. 13, the present investigation

is devoted to the (more complicated) study of the more real-

istic diffusion operator.

The transformations (7) and (9) also provide a handy

formula for C2 in terms of a; dF , and _s. To see this, we first

multiply Eq. (10b) by @y=@n and integrate from 0 to n.

Incorporating the boundary conditions y ¼ 1 and @y=@n ¼ 0

at n ¼ 0, we obtain

1

2

@y

@n

� �2

þ 2p2 _s0

_s

� �2

ðy2 � 1Þ

¼ 3p3ffiffiffi
a
p � C2ð1� yÞ �

ð1
yðnÞ

ð1
x

ffiffiffiffiffiffiffiffiffiffiffi
E� x
p @dF

@E
dE dx

8><
>:

9>=
>;: (17)

Evaluating Eq. (17) at n ¼ 0:5, where y ¼ @y=@n ¼ 0;
we find

C2 ¼
ð1
0

ð1
x

ffiffiffiffiffiffiffiffiffiffiffi
E� x
p @dF

@E
dE dx� 2

ffiffiffi
a
p

3p

_s0

_s

� �2

: (18)

The integral in Eq. (18) is easy to evaluate numerically.

III. NUMERICAL MODELLING

We split the discussion of numerics into two parts, pre-

sented in Subsections III A and III B. Subsection III A
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focuses on and motivates the initialization of the system.

Subsection III B describes the numerical scheme used to

advance the equations.

A. System initialization

Proper initialization of phase space structures is essen-

tial for the adiabatic description, since spontaneous forma-

tion of holes and clumps from a weakly unstable linear wave

involves an intrinsically non-adiabatic explosive growth.6,17

The system enters the adiabatic phase only after the explo-

sive growth has terminated, due to phase mixing of the

trapped particles, and the hole/clump formation has been

completed. Then, during the early adiabatic phase (but for s
larger than the hole/clump formation time), the frequency

sweep is well described by the square root scaling

ð _s � _s0Þ= _s0 /
ffiffiffi
s
p

, first derived in Ref. 6. A more formal rea-

son to exclude small values of s from the adiabatic modeling

is that the square root scaling renders d ln _s=ds / 1=
ffiffiffi
s
p

,

which obviously violates the adiabatic ordering (1) as s! 0.

We therefore start our simulations with a prescribed hole/

clump structure at some small but finite time si, with corre-

sponding wave phase velocity _si � _sðsiÞ satisfying

ð _si � _s0Þ= _s0 /
ffiffiffiffi
si
p

. The form we choose for the initial

trapped particle perturbed distribution, dFðE; siÞ, is a gener-

alization of the previously used discontinuous top-hat distri-

bution. It now includes a finite-width transition layer with an

adjustable exponential profile that extends inwards from the

separatrix in E-space,

dFðE; siÞ ¼
_s0 � _si

_s0

1� exp
E� 1

wi

� �� �
: (19)

The first factor on the right hand side of Eq. (19) takes into

account that the hole/clump depth/height is initially propor-

tional to the shift in phase velocity from that of the seed lin-

ear wave. One can show13 that to lowest order in

ð _s � _s0Þ= _s0, collisions are unimportant, and the equilibrium

distribution can be regarded as linear, qð _sÞ 	 1. Neglecting

separatrix expansion, the kinetic equation (4a) can then be

immediately integrated to give the uniform level

dF 	 ð _s0 � _sÞ= _s0. The second factor in Eq. (19) describes

the profile of the initial distribution in E-space, with the ad-

justable parameter wi characterizing its gradient. Plots of

dFðE; siÞ for a hole with wi ranging from 0.05 to 0.25 are

shown in Figure 1, and Figure 2 displays the corresponding

structure in ðn; uÞ-phase space when wi ¼ 0:292 (this partic-

ular value of wi will be used extensively in the simulations in

Sec. IV). While the choice of E-space profile in Eq. (19) may

seem arbitrary, it reflects the observation that frequency

sweeping in the adiabatic regime tends to maintain a discon-

tinuous derivative at the separatrix. Moreover, Eq. (19)

closely replicates the type of structures that rapidly emerge

from other initial profiles. In particular, an initial Gaussian

profile centered at E ¼ 1 relaxes to a shape very similar to

Eq. (19) within a few iterations.

From the Poisson equation (10b), we expect the mode

amplitude to vary with dF . The initial mode amplitude

should therefore depend on wi. This dependence can be

obtained from the following approximate relation:13

ffiffiffi
a
p
	 �3p

_s2

_s2 � _s2
0

ð1
0

cos 2pn
ð1

y0ðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� y0ðnÞ

p @dF
@E

dE dn:

(20)

Equation (20) holds for j _s � _s0j= _s0 � 1, i.e., when the mode

structure is nearly sinusoidal, yðnÞ 	 y0ðnÞ � ð1þ cos 2pnÞ=2.

Evaluating Eq. (20) at s ¼ si by substituting the distribution

(19) and _s ¼ _si and then taking the limit si ! 0 (meaning

that _si ! _s0), we find

a0 ¼
9p2I2

1

4
; (21)

where

I1ðwiÞ �
1

wi

ð1
0

cos 2pn
ð1

y0ðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� y0ðnÞ

p
exp

E� 1

wi

� �
dE dn:

(22)

FIG. 1. Initial perturbed fast particle distributions, dFðE; siÞ, for values of

wi ranging from 0.05 to 0.25.

FIG. 2. Initial perturbed fast particle distribution, dFðE; siÞ, for wi ¼ 0:292,

plotted as a function of the phase space variables ðn; uÞ. The separatrix is

highlighted by the red curve.
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Figure 3 shows that a0 is a non-monotonic function of wi:

For small wi, a0 increases from 1 at wi ¼ 0, corresponding to

the previously discussed top-hat distribution, to its maximum

a0 ¼ 1:212 at wi ¼ 0:107. It then decreases monotonically,

passing through unity again at wi ¼ 0:292 and tending

asymptotically to 0 for large wi. Thus, a reduction in dF
close to the separatrix leads to an increase in the wave ampli-

tude, while a more global reduction that covers a larger part

of the trapping area is needed in order to generate an ampli-

tude reduction. This trend was first observed by a different

method18 and then confirmed13 for a step-like (rather than

exponential) profile of dFðE; siÞ inside the separatrix.

Substitution of a0 and y0 in the power balance condition

(10c) then gives, to lowest order in ð _s � _s0Þ= _s0, the square

root dependence

_s= _s0 ¼ 16
cd

cL0

a
3=2
0

2I2

s

" #1=2

; (23)

where

I2ðwiÞ �
1

wi

ð1
0

ð1
y0ðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� y0ðnÞ

p
exp

E� 1

wi

� �
dE dn (24)

and the 6 refers to holes and clumps, respectively. We can

then evaluate _siðwiÞ by substituting si and wi in Eq. (23),

which completes the system initialization in Eq. (19).

As a final remark, we remind the reader that top-hat

holes are only allowed to evolve adiabatically when the slope

of the unperturbed fast particle distribution decreases with

increasing _s sufficiently fast (for _s > _s0).13 In particular,

there exists a critical value

Kc ¼ �2 4� p
2

� 	2

þ 4

p
cL0

cd

~a2

� �
(25)

of

K � _s0

@q
@ _s

����
_s¼ _s0

; (26)

such that for K > Kc, the trapping areas of holes initially

grow and those of clumps shrink, whereas for K < Kc the op-

posite holds. For K ¼ Kc, neither holes nor clumps initially

expand. When top-hat holes are simulated in slopes with

K > Kc, the initial separatrix expansion triggers a non-

adiabatic growth of the trapping area that results in signifi-

cant particle trapping. In our case, however, such a sudden

transition may be avoided by choosing a sufficiently large

value of wi in Eq. (19). This observation further motivates

our use of the form (19), where the value of the adjustable

parameter wi can be tuned to ensure that the system takes off

smoothly.

B. Numerical scheme

Once the system has been initialized in accordance with

Eq. (19), we use the following step-by-step procedure to

determine its evolution:

1. Calculate the frequency sweeping rate from the power

balance condition (10c) and update the wave phase veloc-

ity accordingly.

2. Update the trapped particle perturbed distribution func-

tion (hole/clump profile in phase space) at the new phase

velocity by solving the kinetic equation (10a).

3. Calculate the wave potential profile yðnÞ and amplitude a
by solving the Poisson equation (10b).

4. Repeat from step 1.

A minor point of concern is that Eq. (10a) is solved prior

to Eq. (10b), even though Eq. (10a) requires knowledge of

the updated y and a. This issue is addressed by iterating over

steps 2 and 3 a few times during each time step, until the iter-

ations converge.

The Poisson equation is solved by means of a shooting

method: Given a guessed value of a, we find C2 from Eq.

(18) and then use Eq. (10b) to calculate y step by step from

n ¼ 0 to n ¼ 1. The process is repeated until the resulting

profile exhibits a period of 1, at which point a has been

found. A linear interpolation based on the two preceding val-

ues provides the input guess for a, after which a small inter-

val that brackets the root is created and finally a simple

bisection method is used to ensnare the correct value.

The kinetic equation is advanced in time by means of a

Crank-Nicholson finite difference scheme that incorporates

the boundary conditions (5). Although well suited for the dif-

fusive piece of Eq. (10a), the Crank-Nicholson method is not

optimal for the description of advection. Being a central

scheme, it generates spurious oscillations when used to

advect sharp edges. In our case a sharp edge indeed arises at

the separatrix due to the frequency sweeping or as a result of

a shrinking trapping region. The usual remedy is to introduce

a small amount of artificial, numerical diffusion by adopting

an upwind difference scheme. The present model already

comprises diffusion, however, so it suffices to make sure that

the diffusivity is always large enough to ensure smooth wave

evolution. Moreover, oscillations during the early evolution

FIG. 3. Plot of the initial mode amplitude a0 as a function of wi. For large

wi, the curve tends asymptotically to 0.
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stages are avoided by setting up holes and clumps with

somewhat relaxed gradients @dF=@E, i.e., large enough wi.

As will be discussed in Sec. IV A, most of our simulations

will have wi ¼ 0:292, a value at which no initial oscillations

appear.

We conclude this section with a remark about the terms

dE=ds and GðE; sÞ that appear in Eq. (10a). For E� 1,

direct numerical evaluation of Eqs. (16) and (11) sometimes

generates relatively large errors, arising from numerical inac-

curacies in yðnÞ around its minimum at n ¼ 0:5. These errors

are eliminated by expanding yðnÞ around n ¼ 0:5 to second

order and evaluating the integrals in GðE; sÞ and dE=ds ana-

lytically for 0 < E� 1. Moreover, as some of the integrands

in Eqs. (16) and (11) are singular at n� and 1� n�, we evalu-

ate the turning point contributions to the integrals analyti-

cally for small values of E� yðnÞ.

IV. SIMULATION RESULTS

In this section, we use a MATLAB implementation of the

numerical model in Sec. III to examine the effects of particle

trapping and detrapping on frequency sweeping scenarios.

The evolution of the system is controlled by five input

variables:

1. The slope of the unperturbed fast particle distribution,

qð _sÞ.
2. The rate of drag, ~a.

3. The rate of diffusive collisions, ~� .

4. The initial hole/clump profile in E-space, set by wi.

5. The ratio cd=cL0, which regulates the frequency sweeping

rate through Eq. (10c).

In what follows, all simulations are performed with

cd=cL0 ¼ 1 and wi ¼ 0:292 (except for the runs presented in

Figure 8). We first investigate the effect of particle trapping

due to separatrix expansion in Sec. IV A. These simulations

are performed with ~a ¼ ~� ¼ 0, so that no particles enter the

trapping area due to diffusive collisions, and separatrix

expansion is enforced by adopting a constant slope in the

unperturbed fast particle distribution, qð _sÞ ¼ 1, with

K ¼ 0 > Kc. In fact, for _s > _s0, the constant slope is every-

where greater than the critical slope13

qcð _sÞ ¼
6

pð _s= _s0Þ4
½g� tan g��1 þ tan2g

ð _s= _s0Þ5
½g� tan g��2; (27)

where g � p _s0=2 _s. The critical slope has K ¼ Kc and is

designed so that top-hat structures evolve with a constant

trapping area, J S ¼ 1, when ~a ¼ ~� ¼ 0. The corresponding

critical equilibrium distribution is given by

F 0cð _sÞ ¼ F 0ð _s0Þ þ
2

p
_s0

_s

� �3

½tan g� g��1: (28)

The constant slope is therefore expected to yield an expand-

ing hole separatrix and increasing wave amplitude. We then

address hole/clump evolution in the presence of fast particle

collisions. In Sec. IV B, we investigate the impact of velocity

space diffusion on the lifetimes of holes and clumps. Finally,

Sec. IV C deals with non-monotonic frequency sweeping,

which may arise when ~a 6¼ 0. We discuss when sweep rever-

sal occurs and map domains with different types of mode

evolution onto the ð~a; ~�Þ-plane.

A. Effect of separatrix expansion

As previously discussed in Sec. II, the inclusion of am-

bient particles via a small expansion of the separatrix mainly

affects the trapped particle area in the vicinity of the separa-

trix. As the wave amplitude increases, the particles enter a

narrow layer just inside the separatrix on which the perturbed

distribution dF momentarily vanishes. If the expansion con-

tinues, slowly enough to preserve adiabaticity, the process

results in a reduction of @dF=@E that gradually spreads

inwards. The long term effect of particle trapping due to sep-

aratrix expansion is shown in Figures 4–6, which display the

evolution of _s, a, and dF for a phase space hole simulated

with a constant slope of the equilibrium distribution function,

qð _sÞ ¼ 1, and ~a ¼ ~� ¼ 0. Figures 4 and 5 show how the

growing wave amplitude boosts the frequency sweeping rate

through Eq. (10c). The increased rate of sweeping then

FIG. 4. Frequency evolution of hole with a linear equilibrium distribution

profile, qð _sÞ ¼ 1, and ~a ¼ ~b ¼ ~� ¼ 0. The solid line is the simulation result

and the dashed line, included here for comparison, is the square root scaling

(23).

FIG. 5. Amplitude evolution corresponding to the spectrogram in Figure 4.
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further elevates the amplitude growth in a feedback-like

manner as the hole deepens, cf., Figures 6 and 7. As a result,

the amplitude increases at a roughly steady rate. The particle

trapping progresses as expected, and the overall frequency

sweep is considerably faster than the square root scaling

(23), given by the dashed line in Figure 4.

The choice wi ¼ 0:292 can be motivated by looking

more carefully at the amplitude evolution in Figure 5 for

small values of s. Figure 8 shows the initial amplitude evolu-

tion, 0 
 s 
 0:03, for a series of holes initialized with

wi ¼ 0:02, 0.107, 0.2, 0.292, and 0.4. These values are

chosen so that wi ¼ 0:02 is to the left of the maximum of a0

in Figure 3, wi ¼ 0:107 corresponds to the maximum, and

wi ¼ 0:2 is between the maximum and wi ¼ 0:292, where a0

equals unity. The largest value, wi ¼ 0:4, represents a hole

with a0 < 1. In general, the initial separatrix expansion of

holes in slopes with K > Kc always induces particle trap-

ping, but the effect of the induced particle trapping varies

depending on wi. For wi � 0:107, Figure 3 suggests that the

particle trapping should result in even further amplitude

growth. This expectation is confirmed by the initial fast and

irregular increase of a exhibited by the wi ¼ 0:02-curve in

Figure 8. For wi � 0:107, however, the trapping should

somewhat compensate for the original amplitude increase

associated with K > Kc. This trend is also observed in

Figure 8. At wi ¼ 0:292, we find the smoothest possible

take-off. Then, for wi > 0:292, the induced particle trapping

decreases the amplitude too much, so that its initial evolution

is again irregular. Finally, we note that all the initial irregu-

larities in Figure 8 fade away with time and that the subse-

quent evolution is in fact smooth regardless of the initial

evolution.

B. Effect of diffusion

Velocity space diffusion tends to suppress frequency

sweeping by filling up holes and reducing clumps. This

effect is shown in Figures 9–11, where the solid, dashed, and

dotted lines correspond to ~� ¼ 1:0, 1.2, and 1.4, respectively.

For both holes and clumps, the frequency sweeps in Figure 9

progress at a slower rate and terminate earlier with increas-

ing ~� , which is also reflected in the amplitude plots in

Figures 10 and 11. In order to isolate the effect of diffusion,

we use the critical slope (27) in the simulations of holes,

thereby minimizing the effect of particle trapping due to

FIG. 6. Snapshots of dFðE; sÞ for the hole evolution in Figures 4 and 5. The

curves correspond to, from top to bottom, s ¼ 0:02, 0.05, 0.1, 0.2, 0.5, 1.

FIG. 7. Phase space plot of dF for the hole at s ¼ 1 in Figure 6.

FIG. 8. Initial amplitude evolution for holes with varying wi, simulated with

a constant slope. The dashed line has wi ¼ 0:02, and the solid lines have,

from top to bottom, wi ¼ 0:107, 0.2, 0.292, and 0.4.

FIG. 9. Frequency evolution of holes and clumps in the absence of drag

collisions.
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separatrix expansion. Accordingly, the lifetime of holes in

the presence of diffusion, shown in Figure 12, is found to

conform with the expected analytical scaling sL / ~��3.9 In

contrast to holes, calculations of clump lifetimes would, in

general, require a generalization of our present model to the

case of more than one minimum within the spatial period of

the wave. As noted in Ref. 12, additional minima in yðnÞ
appear at n ¼ 0 and 1 when the wave phase velocity subsides

below _s0=2. These minima form their own regions with

locally trapped particles, which we deliberately refrain from

considering here in order to simplify our numerical proce-

dure. Instead, we use the single-minimum model that still

applies to clumps when the rate of diffusion is sufficiently

large (so that the clumps decay before additional minima

have time to develop). The clump amplitudes in Figure 11

correspond to simulations of this type, performed with the

constant slope qð _sÞ ¼ 1. On the other hand, the constant

slope is known to cause reduction of the wave amplitude

over time, even without diffusive collisions.12 As a result,

the clump lifetime in Figure 12 deviates from the purely dif-

fusive scaling sL / ~��3. For large ~� , however, diffusion

plays the dominant role, and sL tends asymptotically to the

inverse cubic scaling. The composite distribution used in

these simulations of holes and clumps is shown in Figure 13.

C. Interplay of drag and diffusion

Non-monotonic frequency sweeping of holes may arise

in the presence of a drag term in the fast particle collision op-

erator,9 i.e., when ~a 6¼ 0. The turning points, at which the

sweep reverses, are found when ~a2 on the left hand side of

Eq. (10c) balances the right hand side, so that d _s=ds van-

ishes. Figure 14 shows in detail the transition from mono-

tonic to non-monotonic (so called hooked) sweeping pattern,

when the drag collision frequency is set to ~a ¼ 1 and the dif-

fusion collision frequency ~� varies from 2.2 to 2.5. The

hooks are shown for ~� � 2:4, but the actual transition occurs

at ~� ¼ 2:33. The mode amplitudes, shown in Figure 15, also

exhibit a rollover for ~� � 2:33, eventually decreasing to zero

as the holes disappear and the frequency sweeps terminate.

In order to connect to previous studies,9,13 these simulations

are performed with the constant slope qð _sÞ ¼ 1.

FIG. 10. Amplitude evolution of holes in the absence of drag collisions.

These simulations are performed with the critical slope, qð _sÞ ¼ qc.

FIG. 11. Amplitude evolution of clumps in the absence of drag collisions.

These simulations are run with a constant slope, qð _sÞ ¼ 1.

FIG. 12. Lifetimes of holes and clumps as functions of ~� , in log-log scale.

The solid lines are holes (black line) and clumps (gray line), and the dashed

line is the previous theoretical estimate sL / ~��3.

FIG. 13. Unperturbed fast particle distribution function, F 0ð _sÞ, correspond-

ing to qð _sÞ ¼ qc for _s > _s0 and qð _sÞ ¼ 1 for _s < _s0:F 0 tends asymptoti-

cally to 3ð2=pÞ4 	 0:49 for large _s.
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As shown in Figure 16, hooked frequency sweeping

appears for all values of ~a, once ~� exceeds a certain thresh-

old value. The corresponding transition line in ð~a; ~�Þ-space

also serves as a boundary of the domain in which phase

space holes decay due to diffusive collisions. The supple-

mentary domain exhibits either asymptotically steady holes

or holes that sweep indefinitely through the linear distribu-

tion of ambient particles.

Asymptotically steady holes emerge when ~a exceeds a

bifurcation threshold value of 2.41. The relaxation to steady

state is either monotonic or oscillatory. The number and

magnitudes of the oscillations increase with ~� , for both _s and

a, whereas their steady state values decrease with ~� . Figure

17 displays a series of spectral lines that demonstrate this

trend for ~a ¼ 3:5. As seen in Figure 18, the corresponding

amplitudes behave similarly. The steady holes exhibit a char-

acteristic linear E-space profile, maintained through the

interplay of drag and diffusion, cf., Figure 19. Steady holes

are discussed further in Sec. V.

V. STEADY HOLES

The trapped particle distribution inside a steady hole is

given by the stationary solution

dF ¼ 2a~a2q

~�3
½E� 1� (29)

of the kinetic equation (10a) with boundary condition

dFðE ¼ 1; sÞ ¼ 0. As shown in Figure 19, this expression

matches the asymptotic results of numerical simulations with

qð _sÞ ¼ 1 to within 0.1%. It is noteworthy that the linear pro-

file (29) renders a simple analytic description of steady state

holes. With Eq. (29), evaluation of the integrals on the right

hand side of Eq. (10b) and in C2 gives

@2y

@n2
þ 4p2 _s0

_s

� �2

y ¼ 4p3~a2q
ffiffiffi
a
p

~�3
ð1� yÞ3=2 � 2

5

� �

þ 2p2 _s0

_s

� �2

; (30)

FIG. 14. Frequency evolution of holes at the threshold between monotonic

and hooked non-monotonic sweeping in a constant equilibrium slope. The

collision frequency for drag is set to ~a ¼ 1 and ~� equals, from the top to bot-

tom curve, 2.2, 2.3, 2.4, 2.5. The transition occurs at ~� ¼ 2:33.

FIG. 15. Amplitude evolution corresponding to the curves in Figure 14.

FIG. 16. Parameter domains in ð~a; ~�Þ-space for the three classes of solu-

tions: Monotonically increasing frequency and amplitude (gray area),

hooked non-monotonic regime (blank area) and asymptotic steady states

(dark area). The dashed, straight line is an approximate analytical boundary

of the steady state domain, given by Eq. (44).

FIG. 17. Frequency evolution of holes when ~a ¼ 3:5 and ~� varies across the

steady state domain in Figure 16. The monotonically increasing spectral line

has ~� ¼ 6:4, the steady states have, from top to bottom, ~� ¼ 6:45, 6.5, 6.6,

6.8, and the hook has ~� ¼ 6:85.
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where _s, a, and y now represent steady state values. The first

integral of Eq. (30) can be conveniently written by defining

g ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� y

p
; (31)

which yields

@g

@n

� �2

¼ p2 _s0

_s

� �2

ð1� g2Þ þ 4p3~a2q
ffiffiffi
a
p

5~�3
ð1� g3Þ: (32)

Equation (32) is separable and can be immediately integrated

to give an expression for n as a function of g. The wave pro-

file is then obtained by inverting this relation and forming

y ¼ 1� g2. However, the inversion involves evaluation of

elliptic integrals. An equivalent, but more straightforward,

approach is to construct a numerical solution for g by first

differentiating Eq. (32) with respect to n to obtain a har-

monic oscillator equation with quadratic nonlinearity,

@2g

@n2
þ p2 _s0

_s

� �2

g ¼ �Ag2; A � 6p3~a2q
ffiffiffi
a
p

5~�3
: (33)

The boundary conditions for g are g ¼ 1 and @g=@n ¼ 0 at

n ¼ 0:5 and g ¼ 0 at n ¼ 0, 1. Equation (33) represents a dif-

ferential “eigenvalue” problem: Given a value of _s, A is

found by shooting from n ¼ 0:5 until g vanishes at n ¼ 1.

The relation A ¼ Að _sÞ found through this procedure is shown

in Figure 20.

A remarkable feature of the nonlinear differential equa-

tion (33) is that the steady state mode structure never devi-

ates significantly from g0ðnÞ ¼ sin pn, formally obtained

from Eq. (33) in the limit _s ! _s0; A! 0. This observation

was first made during the simulations presented in Sec. IV

and then confirmed by numerical solutions of Eq. (33).

Analytically, it can be seen by rewriting Eq. (33) as

@2g

@n2
þ p2g ¼ p2 _s2 � _s2

0

_s2
g� Ag2; (34)

multiplying through with g0 and integrating from n ¼ 0 to 1.

We then have

A

ð1
0

g2ðnÞsin pn dn ¼ p2 _s2 � _s2
0

_s2

ð1
0

gðnÞsin pn dn: (35)

Assuming that g 	 g0, which should hold at least for

ð _s � _s0Þ= _s0 � 1; a� 1, gives

A ¼ 6p3~a2q
ffiffiffi
a
p

5~�3
	 3p3

8

_s2 � _s2
0

_s2
; (36)

so that

a 	 25

256

~�6

~a4

_s2 � _s2
0

q _s2

� �2

: (37)

The approximation (36) is plotted as a dashed curve along-

side the numerically obtained relation A ¼ Að _sÞ in Figure

20. The good agreement between the two lines, even for

large _s= _s0, confirms the closeness of g to g0.

A second relation between _s and a, needed in order to

close the system, is provided by the power balance condition

FIG. 18. Amplitude evolution corresponding to the spectral lines in Figure 17.

FIG. 19. Steady state E-space profiles for the steady holes in Figures 17 and

18. From bottom to top, these holes have ~� ¼ 6:45, 6.5, 6.6, 6.8. The squares

are analytic steady state profiles given by Eq. (29).

FIG. 20. Eigenvalues A ¼ Að _sÞ of the nonlinear harmonic oscillator (33).
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(10c). In steady state, the dissipation in the background

plasma is balanced solely by the ambient particles that skim

the separatrix due to drag-type collisions. The power balance

then reads

~a2 ¼ cd

cL0

1ffiffiffi
2
p

C1

_s0

_s

� �3ð1
0

½2ayðnÞ þ Umin�2dn; (38)

where now

C1 ¼
8
ffiffiffi
2
p

~a2qa3=2

15~�3
� 2

ffiffiffi
2
p

3p

_s0

_s

� �2

½aþ Umin� (39)

and Umin is determined through Eq. (13). Taken together,

Eqs. (33) and (38) determine _s and a for a given set of input

parameters cd=cL0; ~a; ~� , and q. However, Eq. (38) also sim-

plifies considerably for g 	 g0. We then have Umin ¼ �a, so

that the power balance becomes

~a2 	 cd

cL0

15~�3 ffiffiffi
a
p

32~a2q

_s0

_s

� �3

: (40)

This handy formula and Eq. (37) give an algebraic equation

cd

cL0

75

512

~�

~a

� �6 ð _s= _s0Þ2 � 1

q2ð _s= _s0Þ5
	 1 (41)

for the asymptotic value of _s.

The presented solution can be applied to the steady

holes found in the simulations in Sec. IV by setting qð _sÞ ¼ 1

and cd=cL0 ¼ 1. We then find that for a given value of ~a,

there is a critical value of ~� below which no steady states

exist. This is visualized in Figure 21, showing plots of the

approximate “residual”

R ¼ 75

512

~�

~a

� �6 ð _s= _s0Þ2 � 1

ð _s= _s0Þ5
� 1: (42)

We note that R is always negative for

~�

~a
<

256

9

ffiffiffi
5

3

r !1=6

	 1:82; (43)

in which case no steady states exist, whereas higher values

of ~�=~a yield two roots that shift away from the maximum at

_s= _s0 ¼
ffiffiffiffiffiffiffiffi
5=3

p
	 1:29 as ~�=~a increases. The corresponding

straight line, given by

~� ¼ 256

9

ffiffiffi
5

3

r !1=6

~a; (44)

is very close to the lower transition line in Figure 16 for

~a �2:5. The exact residual curves for Eq. (38) are very simi-

lar to Eq. (42), with maxima at _s= _s0 ¼ 1:3. When steady

states do exist, the corresponding lower roots reproduce with

high accuracy the asymptotic values of _s and a found in the

simulations, cf., Figures 22 and 23. However, no steady

holes corresponding to upper roots were found in the simula-

tions. The steady state values of _s are therefore bounded to

_s= _s0 2 ð1; 1:3�.
The absence of “upper root holes” in the simulations

suggests that such solutions are likely to be unstable and

decay in a manner similar to the hooks. This calls for stabil-

ity analysis to clarify whether or not hooks represent unsta-

ble steady state solutions, as suggested in Ref. 9.

Numerically, a steady hole near the upper transition line in

Figure 16 can be slightly pushed into the hook domain via a

small increase in ~� . Along the transition line, this procedure

induces perturbations in _s, a, and dF that grow in an oscilla-

tory manner, thus supporting the conjecture that the upper

transition line marks the stability boundary.

VI. DISCUSSION

The presented numerical simulations of long-range fre-

quency sweeping phenomena extend our earlier adiabatic

description of resonant particles in an evolving nonlinear

FIG. 21. The approximate power balance residual (42) for cd=cL0 ¼ 1 and

qð _sÞ ¼ 1. The curves start at and asymptote to �1, with a maximum at
_s= _s0 ¼

ffiffiffiffiffiffiffiffi
5=3

p
	 1:29. As ~�=~a increases the curves are stretched upwards,

with solutions to R ¼ 0 emerging at ~�=~a 	 1:82.

FIG. 22. Steady state frequency as function of ~� when ~a ¼ 3:5. The end val-

ues in Figure 17 are shown as squares for comparison.
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mode to the regime in which capturing of ambient particles

may significantly modify the trapped particle distribution. A

convenient feature of the model is that it reduces the problem

to the description of trapped particles only, whereas the pass-

ing particles can be accounted for via a simple boundary

condition at the phase-space separatrix. We observe that the

frequency sweeping rate can increase significantly due to

particle trapping (as a combined effect of separatrix expan-

sion and diffusive flux trough the separatrix) and that life-

times of holes and clumps decrease with increasing

diffusivity. We have also included drag-type collisions in the

simulations and examined sweeping scenarios produced

through the interplay between drag and diffusion. The possi-

ble types of mode evolution are: 1) persisting sweeping lim-

ited only by the range of the fast particle distribution

(consequently, the lifetime of these structures should depend

on global properties of the equilibrium distribution); 2)

establishment of steady nonlinear phase-space structures rep-

resented by the newly constructed asymptotic analytic solu-

tions; 3) hook-type pulses with sweep reversal. The third

regime suggests recurrent pulses of hooks in the presence of

a continuously acting fast particle source. We also note that,

if not initiated properly, the phase space structures can ex-

hibit fast transient behavior before they meet the applicabil-

ity conditions for the adiabatic description.

The spectral asymmetry observed in Figure 9, where

holes sweep significantly longer than clumps, is due to the

global shape of the unperturbed distribution shown in

Figure 13, chosen just to highlight the effect of diffusion on

the mode evolution. Other types of distributions can alter the

sweeping pattern. In particular, setting qð _sÞ ¼ qc for all _s �
0 produces almost perfectly symmetric sweeps (until addi-

tional minima appear in yðn; sÞ for the clumps, as discussed

in Sec. IV B). In the present 1D model, there are several

additional means of generating up/down asymmetries. First

and foremost, the considered drag collision operator acts

intrinsically asymmetrically to always deepen holes and

deprive clumps, while boosting clump sweeping rates and

restraining those of holes.13 Moreover, the collision rates

~a; ~b, and ~� in general depend on _s, as does the phenomeno-

logical linear damping rate cd. This opens up an interesting

question of whether the listed factors are sufficient to under-

stand the asymmetries of frequency shifts observed in sev-

eral experiments, including, e.g., TAE avalanches on

NSTX.2,3

Looking ahead, we consider this work a step towards

reduced modeling of frequency sweeping phenomena in

tokamak experiments, where the observed signals are likely

to be associated with energetic particles locked in isolated

nonlinear resonances. The next technical step in this direc-

tion is to extend the presented formalism to Alfv�enic pertur-

bations, including a relevant description of the fast ion orbits

in realistic geometry, as outlined in Ref. 12. This extension

should also include diffusive collisions and drag, which now

seems feasible with the numerical procedure described in

this paper. A more challenging aspect of the realistic model-

ing is to develop a proper description of continuum damping

for Alfv�en waves. The subtlety here is that continuum

resonances themselves may require nonlinear treatment,

which is not captured by our present model with a preset

background damping rate.

ACKNOWLEDGMENTS

The authors are grateful to M. K. Lilley and F.
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