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1 Introduction

In four dimensions, there are many examples of topological field theories. N = 2 super-

Yang-Mills theory in four dimensions admits one unique topological twisting [1], whereas

N = 4 super-Yang-Mills admits three inequivalent twistings [2–5]. In five dimensions how-

ever, the situation is slightly different and not as well-studied. Maximally supersymmetric

Yang-Mills theory considered on a general five-manifold of Euclidean signature, M5, has

both R-symmetry- and Holonomy group (of M5) equal to SO(5). Hence there exist a unique

topological twisting of this theory that will give one scalar and nilpotent supersymmetry

charge. However, if one considers a five-manifold not so general but rather on the form

M5 = M4 × I, (1.1)

with I some one-dimensional manifold and M4 a Riemannian four-manifold of Euclidean

signature, the holonomy group is reduced to SO(4), and the theory may admit several

topological twistings.

One of these result in a topological field theory which is invariant under two scalar

nilpotent supersymmetries, and is the theory that will be considered herein. This twisting

of five-dimensional maximally supersymmetric Yang-Mills theory can be described as the

five-dimensional analog of the four-dimensional geometric Langlands-twist that was first

mentioned in [2], and then shown to have applications to the geometric Langlands program
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in [4]. This five dimensional topological field theory was first considered in [6] with the

original motivation being the interesting applications to Khovanov homology for knots [7]

it was shown to possess, something that was further studied in [8]. In order to make

contact with knot theory, and more particularly Khovanov homology, the four-manifold

M4 must be a product of a three manifold in which the knots are embedded and another

one-dimensional manifold with a boundary.

This relatively new topological field theory have been the interest of several papers

since its introduction [8, 9], and its four-dimensional analog has been even further studied

(amongst others in [10–13], and from a lattice supersymmetry perspective in for example [5,

14, 15]). However, focus in these works has mainly been on the bosonic aspects of the

theory, or probably most heavily on the localisation equations since the connection to knot

theory and Khovanov homology lies therein. In this setting, the knots are encoded in subtle

boundary conditions for these elliptic differential equations on M5 [6]. Much progress have

been made in the field, but as previously mentioned only a part of the theory has been

studied in detail. There are large areas that still remain unexplored.

In this paper, we shall focus on other aspects of this theory than the applications to

knot theory, thus the extra requirements upon the manifold that were imposed in order

to make contact with this will here be unnecessary. We shall instead consider the theory

on a more general five-manifold on the form given in equation (1.1). Since the twist

was constructed to give a theory containing two scalar nilpotent supersymmetries, it is

obvious that it indeed produces a topological field theory when M4 has vanishing curvature.

However, it is not as straight forward to see that this is true even in the case when M4 is

curved. It is thus important in order to understand this theory better to find the explicit

expression of the action, even in the case when M4 is curved. This has not yet been done.

However, it should be noted that some terms in this action were written down in [6] during

a discussion regarding the equations of motion of the theory.

In this paper, we find the expression for the complete action when M4 is a general

Riemannian four-manifold of Euclidean signature, and this is concluded to be unique. It is

furthermore shown to be invariant under both scalar, nilpotent supersymmetries in bulk.

This is done by first describing the twist in greater detail as well as the field content of the

theory. After this, the action in flat space is computed and shown to be invariant under

the two scalar supersymmetries in bulk. Finally, the case when M4 is curved is considered.

Throughout the paper, we shall only occupy ourselves with the theory in bulk, details

of the boundary behaviour can for example be found in [6] and [11]. We shall make some

brief comments about the importance of the boundary at the end of the paper but not

dwell on it further at the moment.

Finding an expression for the action is an important step in order to understand this

topological field theory, but many questions still remain. It may for example be interesting

to investigate if the action presented herein is Q-exact. My belief is that this is not the

case since the four-dimensional analog of this theory does not have a Q-exact action [4],

however, it would be interesting to study this in greater detail. It may also be interesting

to investigate the surface terms in the action that have not been presented herein, and

study their behaviour and properties.
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2 The twist

The five-dimensional maximally supersymmetric Yang-Mills theory discussed above is con-

sidered as a dimensional reduction from ten dimensions and we work in overall Minkowski

signature. In a ten-dimensional notation, the theory may famously [16] be described by

the action

S =

∫
M4×I

d4xdyTr

(
−1

4
FMNF

MN +
i

2
λ̄DMΓMλ

)
. (2.1)

This action is invariant under the supersymmetry transformations below:

δAI = iε̄ΓIλ (2.2)

δλ =
1

2
FIJΓIJε. (2.3)

This will be our starting point to obtain the action of the twisted theory.

There have previously been comments that topological twisting only works in Eu-

clidean signature, but in this specific case, this is not entirely true. Minkowski signature is

handleable under the condition that the time-like direction is chosen to lay in the direction

along the interval I. In this manner we restrict ourselves to a compact subgroup of the non-

compact Lorentz group of M5, namely the subgroup consisting of rotations on M4. This

subgroup will be compact under the only requirement that M4 is an oriented Riemannian

manifold of Euclidean signature. Thus the overall Minkowski signature is no hinderance to

perform the topological twisting, which corresponds to a homomorphism from the Spin(4)

holonomy group of M4 to the Spin(5) R-symmetry group of the Yang-Mills theory under

which the spinor representation 4 of Spin(5) decomposes as a direct sum 2 + 2 of two

chiral spinor representations of Spin(4). This twisting is described in greater detail in the

table below.

SU(2)l×SU(2)r×U(1)×SU(2)R
twist−−−→ SU(2)l×SU(2)′×U(1)

Aµ (2,2,1)0 (2,2)0 Aµ
Ay (1,1,1)0 (1,1)0 Ay
ΦI (1,1,1)+1⊕(1,1,1)−1⊕(1,1,3)0 (1,1)+1⊕(1,1)−1⊕(1,3)0 σ, σ̄, Bµν
λα (1,2,2)+1/2⊕(1,2,2)−1/2 (1,1)±1/2⊕(1,3)±1/2 η, η̃, χµν , χ̃µν

⊕(2,1,2)+1/2⊕(2,1,2)−1/2 ⊕(2,2)±1/2 ψµ, ψ̃µ

The left hand side here contains the fields and the respective representations in which they

live after dimensional reduction from ten dimensions, whereas the right hand side contains

the same information for the twisted theory. I takes the values 5, 6, 7, 8, 9, so ΦI thus

denotes the ten-dimensional gauge field in the 5, 6, 7, 8, 9-directions. The dimensions of the

representations of the SU(2)s are represented by bold face numbers, and the charge under

the U(1) is denoted by a superscript. The twisting here replaces SU(2)r × SU(2)R with

SU(2)′, which is the diagonal group of SU(2)r × SU(2)R .

After such a twisting, the bosonic degrees of freedom can be described by fields on the

four manifold that in addition depends on the linear coordinate y along I. These will be
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the gauge connection Aµ with field strength Fµν , a self-dual (with respect to the orientation

and Riemannian structure of M4) two-form Bµν and a complex scalar σ. These will all take

their values in the vector bundle ad(E) associated to the gauge bundle E via the adjoint

representation of the gauge group G. Furthermore, the fermionic degrees of freedom will

after the twisting be given by two zero-forms (η, η̃), two one-forms (φµ, φ̃µ), and two self-

dual two-forms (χµν , χ̃µν), which will also take values in ad(E). The two fermionic forms

of a certain degree will be distinguished by opposite charge under the U(1) of the Spin(5)

R-symmetry group of the Yang-Mills theory that is left untouched by the twisting. These

fields are all summarised in the table below.

Bosonic Fields Fermionic Fields

Aµ ∈ Ω1(M4, ad(E)) η, η̃ ∈ Ω0(M4, ad(E))

Ay ∈ Ω0(M4, ad(E)) ψµ, ψ̃µ ∈ Ω1(M4, ad(E))

σ, σ̄ ∈ Ω0(M4, ad(E)) χµν , ˜χµν ∈ Ω2+(M4, ad(E))

Bµν ∈ Ω2+(M4, ad(E))

Before we proceed any further, we shall spend some time on clarifying some details

in our notation. The bosonic self-dual two form in the twisted theory is simply obtained

by reinterpreting the original ten-dimensional gauge fields in the 5, 6, 7-direction as com-

ponents of a self-dual two form according to the relations below:

B0i = φi (2.4)

Bij = εijkφ
i.

Here, i, j ∈ {1, 2, 3}, and we define φi = Φi+4. The statement that Bµν is self-dual is as

usual equivalent to saying that Bµν satisfies Bµνεµνκλ = 2Bκλ. Furthermore, the self-dual

part, denoted Ω+
µν , of a general two-form Ωµν can be written as Ω+

µν = 1
2(Ωµν + 1

2εµνρσΩρσ).

This notation will be helpful in the coming calculations.

Furthermore, as also done in [6], it will be convenient to define a product on the space

of self-dual two-forms according to

(B ×B)µν =

3∑
τ=0

[Bµτ , Bντ ]. (2.5)

It is quite straight-forward to check that if B ∈ Ω2+(M4, ad(E)), then B × B ∈
Ω2+(M4, ad(E)).

Furthermore, the complex valued zero-forms σ (with complex conjugate σ̄) is obtained

by reinterpreting the gauge fields in the 8, 9-direction, so we find:

σ =
φ8 − iφ9√

2
(2.6)

σ̄ =
φ8 + iφ9√

2
.
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2.1 Twisting of the supersymmetries and fermionic fields

The supersymmetries transform in the spinor representation of the gauge group before the

twist, as is the case for the fermions. Thus after the twist, as for the fermions, two of these

will be scalar under the two SU(2)’s remaining after the twist (SU(2)l and SU(2)′), with

opposite U(1)-charge. These two supersymmetries will live in the representations (1,1)+1/2

and (1,1)−1/2 respectivly. Let the (1,1)+1/2 be generated by the constant spinor e+. Then

(1,1)−1/2 is generated by e− = 1√
2
Γ4Γ8−i9e

+, where Γ8−i9 = 1√
2
(Γ8 − iΓ9). Since the

twisted theory is invariant under any linear combination of the two supersymmetries, this

can be written as it being invariant under a supersymmetry with parameter

ε = ue+ + ve− =

(
u+ v

1√
2

Γ4Γ8−i9

)
e+, (2.7)

where u and v are grasmannian odd with U(1)-charges ±1
2 respectively. Thus we have

here an entire family of supersymmetries under which the theory is invariant, described by

the relations between u and v. For completeness, one can here notice that the boundary

conditions of the theory is half-BPS, thus fixing the relationship between u and v such that

u = ±v [6]. However, as stated previously we will here consider the theory in bulk and

must thus still consider general u and v.

In the same way as previously with (1,1)±1/2 , we can also find base elements span-

ning (2,2)±1/2 and (1,3)±1/2 respectively. These will be generated by e±µ = Γ4Γµe
± and

e±µν = Γ+
µνe
± respectively. (Recall that with our notation, Γ+

µν denotes the self-dual part

of Γµν).This allows us to write the ten-dimensional fermionic fields in terms of the twisted

five-dimensional fields as follows:

λ=

(
η+

1√
2

Γ4Γ8−i9η̃+ΓκΓ4ψ
κ− 1√

2
ΓκΓ8−i9ψ̃

κ− 1

4
ΓκΓλχ

κλ− 1

4

1√
2

ΓκΓλΓ4Γ8−i9χ̃
κλ

)
e+.

(2.8)

The self-duality property is here placed upon the coefficients χκλ, thus eliminating the need

to use the self-dual part of Γµν only. This will facilitate coming calculations.

In order to obtain the fermionic part of the action for the theory, one must also write

down the Dirac conjugate of λ; λ. This can easily be done by using that for a general spinor

x, its Dirac conjugate is given by x̄ = x∗Γ4, where the star denotes complex conjugation.

Thus we will have:

λ= ē+
(
η̃− 1√

2
Γ4Γ8+i9η−ΓκΓ4ψ̃

κ+
1√
2

ΓκΓ8+i9ψ
κ− 1

4
ΓλΓκχ̃

κλ− 1

4

1√
2

Γ8+i9Γ4ΓλΓκχ
κλ

)
.

(2.9)

In this calculation, the Minkowski signature will have an effect, and we must note that

with our conventions we have Γ4Γ4 = −1.

2.2 Gamma matrix gymnastics

The conditions that our supersymmetries in equation (2.7) are scalar under both of the

remaining SU(2)’s after the twist can be written down explicitly by considering the gener-

ators of these groups. We denote the generators of the twisted, diagonal subgroup SU(2)′
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with σD and the generators of the original SU(2)l with σl, as:

σxl =
i

2
(Γ0Γ1 − Γ2Γ3) (2.10)

σyl =
i

2
(Γ0Γ2 − Γ3Γ1)

σzl =
i

2
(Γ0Γ3 − Γ1Γ2)

σxD =− i

2
(Γ0Γ1 + Γ2Γ3 + 2Γ5Γ6)

σyD =− i

2
(Γ0Γ2 + Γ3Γ1 + 2Γ6Γ7)

σzD =− i

2
(Γ0Γ3 + Γ1Γ2 + 2Γ7Γ5).

The condition that e+ is invariant under both of these subgroups is equivalent to e+ being

anhilated by all of the above generators. This condition can be written on a slightly easier

form, namely:

(ΓiΓj + Γi+4Γj+4)e
+ = 0 (2.11)(

Γ0Γi −
1

2
εijkΓ

jΓk
)
e+ = 0,

where i ∈ {1, 2, 3}.
In addition to requiring that our constant base element e+ is invariant under the two

SU(2)’s that exist after the twisting (equation (2.11)), one can also find other relations

for how the gamma matrices act on the spinor e+. Firstly, e+ will be anti-chiral in four

dimensions. It will also be chiral in a ten-dimensional sense, such that Γ11 = Γ0 . . .Γ9

will leave e+ invariant. Furthermore, we know of the properties it will have under trans-

formation of the U(1), and from all this, one can deduce how the gamma matrices in the

5, 6, 7-directions will act on it. All of these properties can be summarised as:

Γ0Γ1Γ2Γ3e
+ =− e+ (2.12)

Γ0Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9e
+ =e+

Γ8Γ9e
+ =ie+

Γi+4e
+ =− i

2
εijkΓjΓkΓ4e

+.

There is however some freedom left that we have not used yet. That is the normalisation

of e+. This will lack any physical meaning and result in only an overall scaling of the final

action, so in this work we will make the simplest choice such that

ē+Γ4e
+ =1. (2.13)

We can now deduce what will happen to expressions on the form ē+Γ...e
+, which will be

needed in order to compute the action of the theory. Any odd number of gamma matrices

between ē+ and e+ will trivially be zero by chirality. For any even number of gamma

– 6 –
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matrices, one can from the above relations compute the quantity. The most important

cases that shall be needed are:

ē+Γ4ΓµΓνe
+ =δµν (2.14)

ē+Γ4ΓµΓνΓκΓλe
+ =− εµνκλ + δµνδκλ + δνκδµλ − δµκδνλ.

2.3 Some useful formulas

It will in the coming calculations be convenient to note some useful relations before we

start. One such is the following:

D(νDγ)Bµγχ
µν =

1

4
DγD

γBµνχµν . (2.15)

This can be seen if we study the possible ways of creating a scalar from two self-dual two-

forms and the symmetric part of the product between two vectors. The representations of

the tensor product between two self-dual two forms in SU(2)× SU(2) will be given by

(1,3)× (1,3) = [(1,1)⊕ (1,5)]sym ⊕ [(1,3)]antisym . (2.16)

Similarly, the symmetric part of the tensor product between two vectors will be obtained as:

[(2,2)× (2,2)]sym = [(1,1)⊕ (3,3)]sym . (2.17)

Thus the only way one can construct a scalar from the symmetric part of the tensor product

between two vectors and two self-dual two-forms is from the (1,1) in both cases above.

The factor 1
4 can be obtained by a back-of-an-envelope calculation.

Another relation that will be useful for later is(
−χ̃κλ[Bjk, χ

ρσ] + χκλ[Bjk, χ̃
ρσ]
)
ē+Γ4ΓκΓλΓρΓσΓjΓke

+ = 16Bµν [χ̃µγ , χνγ ]. (2.18)

This can be derived by repeated use of equation (2.14) together with the self-duality prop-

erty of the two-forms. It will be used both in obtaining the fermionic part of the action as

well as when computing the supersymmetry variations for the fermionic two-forms.

We can also relate terms containing four copies of the fermionic fields φi to a term

quadratic in the cross-product of two B’s, such as

[φi, φj ][φ
i, φj ] =

1

8
(B ×B)µν(B ×B)µν . (2.19)

This can be found by explicitly writing down the expression for the commutator in the

adjoint representation of the gauge group and use the properties of the structure constants.

This expression will be useful when computing the bosonic terms in the action.

3 The action in flat space

The above considerations will allow us to write down the explicit expression for the action

of this topologically twisted theory. When performing the twist, we started by considering

a dimensional reduction from ten to five dimensions, after which we created our group
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homomorphism and thus the twist itself. We also found expressions for how to reinterpret

the fields from the ten-dimensional theory in terms of our new fields in the twisted theory.

It is thus quite logical that we when obtaining the action for this twisted theory again start

from the ten-dimensional expression of the action of super-Yang-Mills theory in Minkowski

signature, that is from equation (2.1).

The Lagrangian density for the topologically twisted theory in five dimensions can

then be written as

S =

∫
M4×I

d4xdyTr
(
LBosonic + LFermionic

)
. (3.1)

In the following sections, we will perform the necessary calculations needed to find both the

bosonic piece of this and the fermionic piece. In the next section we shall then investigate

the supersymmetry invariance of the action obtained herein.

3.1 The bosonic part

We will begin by considering the terms containing the bosonic degrees of freedom in the

action. These can by quite straight-forward calculations and use of the expression in

equation (2.19) be written as:

LBosonic =− 1

4
FµνF

µν − 1

2
FyµF

yµ (3.2)

− 1

8
DγBµνD

γBµν −DµσD
µσ̄

− 1

8
DyBµνD

yBµν −DyσD
yσ̄

− 1

32
(B ×B)µν(B ×B)µν − 1

4
[Bµν , σ][Bµν , σ̄] +

1

2
[σ, σ̄]2.

Some of these terms were previously presented in [6].

3.2 The fermionic part

The fermionic terms are somewhat trickier to obtain. Since we have managed to write

down the ten-dimensional fermionic degrees of freedom in terms of our twisted fields and

our constant base element e+, we can now use this to rewrite the fermionic contribution

to equation (2.1). By using the expressions in equation (2.8) and (2.9), together with

equation (2.12) and (2.11), one can now compute the fermionic part of the Lagrangian

density. This will be slightly tedious, but overall straight forward. Let µ, ν denote indices

on M4 and as previously y denote the linear coordinate along the interval. After some

– 8 –
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work, one will find:

LFermionic =
i

2

[
η̃Dµψ

µ + ηDµψ̃
µ + ψ̃µDµη + ψµDµη̃ (3.3)

+ ψ̃µDνχ
µν + ψµDνχ̃

µν + χ̃µνDνψµ + χµνDνψ̃µ

− η̃Dyη − ηDyη̃ − ψ̃µDyψ
µ − ψµDyψ̃

µ − 1

4
χ̃µνDyχ

µν − 1

4
χµνDyχ̃

µν

√
2

(
+σ[η̃, η̃]+σ̄[η, η]−σ[ψ̃µ, ψ̃

µ]−σ̄[ψµ, ψ
µ]+

1

4
σ[χ̃µν , χ̃µν ]+

1

4
σ̄[χµν , χµν ]

)]
− 1

4
Bµν [η̃, χµν ] +

1

4
Bµν [η, χ̃µν ] +Bµν [ψµ, ψ̃ν ] +

1

4
Bµν [χ̃µγ , χνγ ].

In bulk, one can use integration by parts, which can be used to simplify the fermionic

part of the Lagrangian density slightly. It should be noted here that this is only valid in

bulk, since we otherwise would find surface terms which would not all be identically zero.

We will however not concern ourselves with this at the moment, but stay in the bulk where

the fermionic part of the Lagrangian density now can be written as

LFermionic =i

[
η̃Dµψ

µ+ηDµψ̃
µ+ψ̃µDνχ

µν+ψµDνχ̃
µν−η̃Dyη − ψ̃µDyψ

µ− 1

4
χ̃µνDyχ

µν

(3.4)

1√
2

(
+σ[η̃, η̃]+σ̄[η, η]−σ[ψ̃µ, ψ̃

µ]−σ̄[ψµ, ψ
µ]+

1

4
σ[χ̃µν , χ̃µν ]+

1

4
σ̄[χµν , χµν ]

)]
− 1

4
Bµν [η̃, χµν ] +

1

4
Bµν [η, χ̃µν ] +Bµν [ψµ, ψ̃ν ] +

1

4
Bµν [χ̃µγ , χνγ ].

It should be noted that, as opposed to the result for the bosonic part, these terms have

never previously been presented.

4 Supersymmetry

In order to show supersymmetry invariance of the action in equation (3.1), we must first

compute how the fields in the action transform under our supersymmetries. This will, as

done when computing the action, be done by starting from the ten-dimensional expressions

for the supersymmetry variations of the fields (equations (2.3) and (2.2)). Let us first start

by considering the supersymmetry variations of the bosonic quantities.

4.1 Variation of the Bosonic fields

In order to find these, we need to find the expression for the Dirac conjugate of our

supersymmetry parameter. Recall that this was given by equation (2.7), and thus allows

us to write down the expression for its Dirac conjugate as

ε̄ =ē+
(
v − u 1√

2
Γ4Γ8+i9

)
. (4.1)

By using (2.8), we now divide the ten-dimensional expression (equation (2.2)) into equations

relating zero-forms, one-forms and self-dual two-forms respectively, and furthermore split

– 9 –
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this into smaller pieces according to U(1)-charge. After some calculations, this will give us

the supersymmetry transformation rules of the bosonic fields as follows:

δAy =ivη + iuη̃ (4.2)

δσ =− iu
√

2η

δσ̄ =− iv
√

2η̃

δAµ =ivψµ + iuψ̃µ

δBµν =vχµν − uχ̃µν .

4.2 Variation of the Fermionic fields

In order to compute the variations of the fermionic fields, the ten-dimensional expression in

equation (2.3) will be split into six parts: Two equations with U(1) charge ±1
2 respectively

that will give us the variation of the fermionic zero-forms, and similarly two equations

describing the variations of the fermionic one-forms as well as two equations for the variation

of the fermionic self-dual two-forms. This will be slightly less straight forward than in the

bosonic case.

First, let us start by considering the right hand side of equation (2.3) and divide this

in accordance with the above statements. This will be done by noting

1

2
FIJΓIJ =

1

2
FµνΓµΓν +

1

2
FijΓ

i+4Γj+4 + FyiΓ
4Γi+4 + FiαΓi+4Γα (4.3)

FyµΓ4Γµ + FiµΓi+4Γµ + FαµΓαΓµ

+ F89Γ
8Γ9 + FyαΓ4Γα.

The first row in the above expression will give us the right hand side in the equation

describing the supersymmetry variation of the (self-dual) two-forms (χµν , χ̃µν) , the second

row of the one-forms, (ψµψ̃µ), and finally the third row the variation of the zero-forms (η, η̃).

The variations under the supersymmetries for the fermionic quantities in the twisted

theory can then be calculated in a straight forward manner by using equations (2.7)

and (2.8) together with (2.12) . One will then arrive at an expression for the variations of

the fermionic fields under the two scalar supersymmetries as:

δη =u[σ, σ̄]− v
√

2Dyσ (4.4)

δη̃ =− v[σ, σ̄]− u
√

2Dyσ̄

δψν =uFyν − v
√

2Dνσ + iuDµBνµ

δψ̃ν =vFyν − u
√

2Dν σ̄ − ivDµBνµ

δχκλ =− 2uF+
κλ + u

1

2
(B ×B)κλ + i

(
uDyBκλ − v

√
2[Bκλ, σ]

)
δχ̃κλ =− 2vF+

κλ + v
1

2
(B ×B)κλ − i

(
vDyBκλ − u

√
2[Bκλ, σ̄]

)
.

Again, recall that F+
κλ denotes the self-dual part of the field strength for the gauge fields.

That only the self-dual part should arise here is obvious since χκλ, χ̃κλ are self-dual.
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4.3 Supersymmetry invariance in flat space

The invariance under the supersymmetries of the obtained action in equation (3.1) can now

be shown. It should then be noticed that when performing the variation of this action, one

must recall that the variation of a covariant derivative in itself is non-vanishing, so

δ(DµΦ) = DµδΦ + [δAµ,Φ]. (4.5)

It will also be useful to use the below expression for the supersymmetry variation of the

field strength for the gauge fields:

δFµν = D[µδAν]. (4.6)

Furthermore, on several occasions in the calculation of the variation under the super-

symmetries of the action, it will be convenient to use the relation between the commutator

of two covariant derivatives an the field strength of the gauge fields, namely:

[Dµ, Dν ] = Fµν , (4.7)

which is valid when M4 is flat. By quite extensive calculations, and repeated use of equa-

tion (2.15), (4.7) and similar expressions together with integrations by parts as well as the

Bianchi- and Jacobi identities, one can eventually show that the obtained action in equa-

tion (3.1) is invariant under the supersymmetries in bulk for M4 with vanishing curvature.

5 The action in curved space

If the manifold M4 instead is curved, the above calculation will not hold and some modi-

fications to both the expression for the action (3.1) and the expressions for the variations

of the fields (4.2), (4.4) may be necessary to maintain invariance of the action under the

supersymmetries. There are however strong restrictions on which kind of terms that may

be added to these because of the requirements posed by for example dimensionality and

U(1)-charge. We will below see that the variations of the fields will be unchanged from the

previous case when M4 was flat, whereas some new terms will be added to the action.

The fault in the calculations in section 4 when M4 is curved comes for the fact that

the expression (4.7) is no longer true. One must modify this to account for the fact that

the covariant derivative no longer will be covariant only with respect to the gauge fields.

In addition to the term containing the field strength for the gauge fields, each commutator

will also give rise to a term proportional to the Riemann tensor. This term will look slightly

different depending on what it acts upon. Let V κ be some vector, and consider only the

curvature part of the commutator of two covariant derivatives acting on V κ. This will be

given by:

([Dγ , Dµ]V κ)curvature =− 1

2
Rγµρσ(Σρσ)κλV

λ, (5.1)

where (Σρσ)ab is the generators of the Lorentz group of M4 (SO(4)) in the vector repre-

sentation. These can explicitly be written down such that:

(Σρσ)κλ = −δρκδσλ + δρλδ
σκ. (5.2)
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If we instead have a two-form Ωκλ upon which the commutator acts, we will obtain

one term for each of the indices κ, λ, so one finds:(
[Dγ , Dµ]Ωκλ

)
curvature

= −1

2
Rγµρσ((Σρσ)κνΩνλ + (Σρσ)λνΩκν). (5.3)

By taking this into account when performing the variation of the action obtained

in (3.1), (with the variations of the fields as previously given by equations (4.2) and (4.4)),

and again using equation (2.15) and similar expressions together with the Bianchi identity,

Jacobi identity and known properties of the Riemann tensor, one can eventually show that

δS =

∫
M4×I

d4xdyTr

(
−1

4
RµνρσB

µν(vχρσ − uχ̃ρσ) +
1

8
RBµν(vχµν − uχ̃µν)

)
, (5.4)

in bulk. Thus the obtained action in (3.1) together with the expressions in (4.2) and (4.4)

cannot be the whole story whenever M4 has non-vanishing curvature. As we mentioned at

the beginning of this section though, when M4 is curved the option exists of adding more

terms in these equations, and below we shall determine what these correction terms will

be. Let us first start by considering corrections to the action presented in equation (3.1).

When one consider dimensionality, U(1)-charge and the requirement of general covari-

ance, one find that there are only three possible terms that may be added to the action in

equation (3.1) when M4 has non-vanishing curvature. These are:

Rσ̄σ (5.5)

RBµνB
µν

RµνρσB
µρBνσ.

These terms will be added to the original action (equation (3.1)) with some prefactors which

are determined by requiring vanishing of the right hand side in equation (5.4). We thus

wish to find expressions for how these terms behave under the supersymmetry variation.

One can here in a straight-forward manner use the expressions in (4.2) to find that

δ(Rσ̄σ) =− i
√

2R(uησ̄ − vη̃σ) (5.6)

δ(RBµνB
µν) =2RBµν(vχµν − uχ̃µν)

δ(RµνρσB
µρBνσ) =2RµνρσB

µρ(vχνσ − uχ̃νσ).

By then requiring the expression in (5.4) to vanish, it is clear that one must add the

following terms to the action in equation (3.1):

− 1

16
RBµνB

µν (5.7)

+
1

8
RµνρσB

µρBνσ.

The first one of the possible term mentioned, Rσ̄σ, cannot exist in the action since its

variation would not be cancelled by anything.

Furthermore, the only corrections possible in the expressions for the variations of the

fields when M4 has non-vanishing curvature is in the expressions for the variations of the
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fermionic zero-forms. The only possibility is that there may be an extra term proportional

to the curvature scalar added in these (4.4). This will not be the case here however, since

it would result in non-vanishing terms in the variation of the action. For example, it will

give rise to two terms containing one covariant derivative, one fermionic one-form and the

curvature scalar. These two terms will be:

vRDµψ
µ + uRDµψ̃

µ. (5.8)

These are not identically zero and are as previously mentioned the only terms of this form.

Thus with all these considerations in mind, we can draw the conclusion that we have

found the complete and unique action of the topologically twisted maximally supersym-

metric Yang-Mills theory on a general five manifold on the form M4 × I in bulk. This will

be given by:

S =

∫
M4×I

d4xdyTr

(
−1

4
FµνF

µν − 1

2
FyµF

yµ (5.9)

− 1

8
DγBµνD

γBµν −DµσD
µσ̄

− 1

8
DyBµνD

yBµν −DyσD
yσ̄

− 1

32
(B ×B)µν(B ×B)µν − 1

4
[Bµν , σ][Bµν , σ̄] +

1

2
[σ, σ̄]2

− 1

16
RBµνB

µν +
1

8
RµνρσB

µρBνσ

i

[
η̃Dµψ

µ + ηDµψ̃
µ + ψ̃µDνχ

µν + ψµDνχ̃
µν − η̃Dyη − ψ̃µDyψ

µ − 1

4
χ̃µνDyχ

µν

1√
2

(
+σ[η̃, η̃] + σ̄[η, η]− σ[ψ̃µ, ψ̃

µ]− σ̄[ψµ, ψ
µ] +

1

4
σ[χ̃µν , χ̃µν ] +

1

4
σ̄[χµν , χµν ]

)]
−1

4
Bµν [η̃, χµν ] +

1

4
Bµν [η, χ̃µν ] +Bµν [ψµ, ψ̃ν ] +

1

4
Bµν [χ̃µγ , χνγ ]

)
.

Many of the bosonic terms obtained in this action have previously been obtained

by Witten in [6] during examination of the equations of motion for the theory, but the

expression given therein is here completed by the remaining terms. Neither the bosonic

terms consisting of only covariant derivatives and zero-forms or the terms quartic in the

zero-forms have been presented before. The same is true for the fermionic terms. The

action of the twisted theory is now complete, and the result in equation (5.9) is the unique

result. All coefficients are precisely determined by the condition of invariance under our

two supersymmetries.

When considering the boundary as well, surface terms from the integrations by parts

that have been carried out here will cause the above action to no longer be invariant under

the supersymmetries we have considered here. The boundary conditions of the theory will

turn out to be half-BPS [17], thus breaking half of the supersymmetries. The obtained

action will then only be supersymmetric for u = ±v, which have been further investigated

in [6]. However, the precise appearance of the boundary terms have not been studied in

any detail in this work. This may be interesting, and possibly something for future works.
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[15] M. Ünsal, Twisted supersymmetric gauge theories and orbifold lattices, JHEP 10 (2006) 089

[hep-th/0603046] [INSPIRE].

[16] L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B

121 (1977) 77 [INSPIRE].

[17] D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills

Theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].

– 14 –

http://dx.doi.org/10.1007/BF01223371
http://dx.doi.org/10.1016/0370-2693(88)91769-8
http://dx.doi.org/10.1016/0370-2693(88)91769-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B213,325
http://dx.doi.org/10.1016/0550-3213(94)90097-3
http://arxiv.org/abs/hep-th/9408074
http://inspirehep.net/search?p=find+EPRINT+hep-th/9408074
http://arxiv.org/abs/hep-th/0604151
http://inspirehep.net/search?p=find+EPRINT+hep-th/0604151
http://dx.doi.org/10.1016/0550-3213(95)00389-A
http://dx.doi.org/10.1016/0550-3213(95)00389-A
http://arxiv.org/abs/hep-th/9506002
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506002
http://arxiv.org/abs/1101.3216
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.3216
http://arxiv.org/abs/1108.3103
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3103
http://dx.doi.org/10.1007/JHEP02(2012)063
http://arxiv.org/abs/1112.2866
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.2866
http://dx.doi.org/10.1103/PhysRevD.86.085003
http://arxiv.org/abs/1106.3845
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3845
http://arxiv.org/abs/1106.4789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4789
http://dx.doi.org/10.1103/PhysRevD.84.105032
http://arxiv.org/abs/1109.2393
http://inspirehep.net/search?p=find+J+Phys.Rev.,D84,105032
http://dx.doi.org/10.1007/JHEP05(2012)112
http://arxiv.org/abs/1202.4848
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4848
http://dx.doi.org/10.1088/1126-6708/2005/09/042
http://arxiv.org/abs/hep-lat/0503039
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0503039
http://dx.doi.org/10.1088/1126-6708/2006/10/089
http://arxiv.org/abs/hep-th/0603046
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603046
http://dx.doi.org/10.1016/0550-3213(77)90328-5
http://dx.doi.org/10.1016/0550-3213(77)90328-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B121,77
http://dx.doi.org/10.1007/s10955-009-9687-3
http://arxiv.org/abs/0804.2902
http://inspirehep.net/search?p=find+J+J.Stat.Phys.,135,789

	Introduction
	The twist
	Twisting of the supersymmetries and fermionic fields
	Gamma matrix gymnastics
	Some useful formulas

	The action in flat space
	The bosonic part
	The fermionic part

	Supersymmetry
	Variation of the Bosonic fields
	Variation of the Fermionic fields
	Supersymmetry invariance in flat space

	The action in curved space

