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Numerical Sensitivity of Linear Matrix Inequalities
for Shorter Sampling Periods

Bengt LennartsonMember, IEEE(*) and Richard Middleton,Fellow, IEEE

Abstract—The numerical sensitivity of Linear Matrix In-
equalities (LMIs) arising in the H∞ norm computation in dis-
crete time is analyzed. Rapid sampling scenarios are examined
comparing both shift and delta operator formulations of the
equations. The shift operator formulation is shown in general to
be arbitrarily poorly conditioned as the sampling rate increases.
The delta operator formulation includes both recentering (to
avoid cancellation problems ) and rescaling, and avoids these
difficulties. However, it is also shown that rescaling of the
shift operator formulation gives substantial improvements in
numerical conditioning, whilst recentering is of more limited
benefit.

I. I NTRODUCTION

Linear Matrix Inequalities (LMIs) have been used exten-
sively during the last decade for a range of control analysis
and synthesis problems (see for example [1], [2]). One key
reason for this is that LMIs can be solved very efficiently by
applying interior-point methods to solve these problems.

LMIs are frequently formulated and solved as semidefinite
programming (SDP) problems. One typical control problem
is H∞ gain computation, with many other problems as
extensions or variations on this method. However, it can be
shown that when using the shift operator formulation of a
discrete time system, with fast sampling, the LMI problem
generically has very poor numerical conditioning. In this
paper this problem is examined using the delta operator
formulation.

One method, using sensitivity analysis, for studying the
differential sensitivity of the solution to SDP problems under
perturbation of input parameters has been investigated in
e.g. [3], [4]. In this paper two more specific numerical sensi-
tivity problems are analyzed for LMIs based on discrete-time
shift operator models. These sensitivity issues are related to
scaling and cancellation, two well know numerical problems
for shift operator models that are conveniently solved using
the delta operator [5]. More recently, delta operator based
LMIs have been introduced, often related toH∞ robust
control problems [6], [7].

A preliminary numerical analysis of both shift and delta
operator LMIs was given in [8]. [9] gives a more detailed
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analysis of the underlying mechanisms causing numerical
sensitivity. A scaling of the input and output signals was
then introduced in the same way as in [10], [11]. The shift
operator based LMI was shown to become nearly singular for
short sampling periods, not only for the requested optimal
γ-value, but also forγ-values far away from the optimal
solution. This ill-conditioned behavior generates significant
errors in the computed norm for rapid sampling.

In this paper the basic discrete-time model is initially
considered without any signal scaling, where the input signal
is assumed to be piece-wise constant between the sam-
pling instants. Then another ill-conditioned behavior appears,
namely that the symmetric solution matrixPq of the shift
operator LMI increases with1/h for small sampling periods
h. This fact makes it difficult to solve the shift operator
LMI for small h. In fact, the increase ofPq for small h
is shown to have more severe consequences than the more
well known cancellation, which occurs both in LMIs and
corresponding Riccati equations using shift operator models
[8], [11], [5]. The problem with the increasingPq can be
avoided by solving the LMI for the scaled matrixP = hPq.
This means that the cancellation problem can be separated,
and it is then shown to be of much less importance than the
increasingPq for small sampling periodsh.

The paper starts with a brief presentation of the shift
and delta operator models and their relationships. The corre-
sponding LMIs are then given, and the numerical sensitivity
of the different LMIs is analyzed. Finally, the different error
contributions are illustrated by an example, where two well
known LMI solvers are evaluated.

II. SHIFT AND DELTA OPERATORMODELS

The shift and the delta operator models are briefly pre-
sented in this section, including some useful transformations
between them.

A. Shift operator model

Consider the following discrete-time state space model on
the shift operator form
[

qx(tk)

y(tk)

]

=

[

Aq Bq

C D

][

x(tk)

u(tk)

]

, Gq

[

x(tk)

u(tk)

]

(1)

where the shift operatorq is defined asqx(tk) = x(tk+1).
The state vectorx, the input signalu and the output signal
y have dimensionsn, nu andny, respectively. The discrete-
time updates occur at timestk, k = 0, 1, 2, . . ., where the



time interval between two updates is the sampling period
h = tk+1 − tk.

B. Delta operator model

By introducing the delta operator, cf. [5]

δx(tk) = (x(tk+1)− x(tk))h
−1

= (Aq − I)h−1x(tk) +Bqh
−1u(tk)

the state space model (1) can be rewritten in delta operator
form as
[

δx(tk)

y(tk)

]

=

[

Aδ Bδ

C D

][

x(tk)

u(tk)

]

, Gδ

[

x(tk)

u(tk)

]

(2)

Observe that the delta operator model is an exact repre-
sentation of the discrete time system, assuming that the
input signal is piece-wise constant as in the shift operator
model. This can be compared with e.g. the discrete Euler
approximation, where the system matrixI + hAc is an
approximation ofAq. The relation between the state space
matrices on shift and delta operator form are

Gq =

[

Aq Bq

C D

]

=

[

In + hAδ hBδ

C D

]

(3)

Introducing the matricesE = diag(In, 0) and Th =
diag(hIn, I), where the dimension of the lower identity
matrix in Th is given by the adjacent matrices, the relation
between the the shift and delta operator form can be shortly
expressed asGq = E + ThGδ.

There are two main reasons for introducing the delta
operator for discrete-time models. Firstly, there is no natural
transition and convergence from an ordinary discrete-time
model in the shift operatorq to the corresponding continuous-
time model. Secondly, the shift operator exhibits bad numer-
ical behavior for short sampling periods. Both problems are
naturally solved by the delta operator.

C. Convergence to continuous-time model

Assume a related continuous-time model

Gc =

[

Ac Bc

C D

]

(4)

and introduce the functionΓ(h) =
∑∞

k=0
(Ach)

k/(k + 1)!,
which converges toΓ(h) = I + O(h) for short sampling
periods. Furthermore, assume a piecewise constant input
signal. Then the delta operator modelGδ can be expressed
as

Gδ =

[

Γ(h) 0

0 I

]

Gc → Gc when h → 0 (5)

On the other hand, the shift operator system matrixAq =
eAch ≈ I + Ach → I when h → 0 independently ofAc.
This means that all eigenvalues ofAq converge to 1, and the
information from the system behavior inAc is completely
lost whenh → 0.

These expressions explicitly show the convergence of the
delta operator modelGδ to its continuous-time counterpart
Gc, and the bad numerical behavior of the shift operator
model, see further comments in Middleton and Goodwin [5].

III. L INEAR MATRIX INEQUALITIES

Computation of theH∞ norm using linear matrix inequal-
ities (LMIs) is briefly presented in this section, both for
systems on shift and delta operator form. It is well known
that for a stable systemG, with input u and outputy, the
H∞ norm ‖G‖∞ is given by the induced norm, cf. [12]
‖G‖∞ = sup‖u‖6=0

‖y‖
‖u‖ . This norm can be calculated by

solving linear matrix inequalities (LMIs) [13], [1].

A. Shift operator LMI

For the shift operator case, the following lemma shows
how to solve theH∞ norm.

Lemma 1:Consider a stable discrete-time systemG on
shift operator formGq (1). TheH∞ norm ‖G‖∞ < γ, if
and only if there exists a symmetric matrixPq such that

Fq(Pq , γ) = diag(−Mq(Pq, γ), Pq) > 0 (6)

where

Mq(Pq , γ) =

[

Mq11(Pq) Mq12(Pq)

M ′
q12

(Pq) Mq22(Pq , γ)

]

(7)

and

Mq11(Pq) = A′
qPqAq − Pq + C′C

Mq12(Pq) = A′
qPqBq + C′D (8)

Mq22(Pq , γ) = B′
qPqBq +D′D − γ2I

✷

The minimal value ofγ is obtained at the same time
as the unknownPq > 0 is computed. This result
is based on the bounded real lemma, see e.g. [13],
where ‖G‖∞ < γ iff the Riccati inequalityMq11(Pq) −
Mq12(Pq)M

−1
q22

(Pq, γ)M
′
q12

(Pq) < 0 is satisfied forPq > 0
andMq22(Pq, γ) < 0. A Schur complement then gives the
LMI (6).

B. Delta operator LMI

In the same way as for the shift operator case, an LMI can
be formulated for delta operator models. The corresponding
Riccati equation can be found in e.g. [5], [11]. Ones again,
a Schur complement gives the following result.

Lemma 2:Consider a stable discrete-time systemG in
delta operator formGδ (2). TheH∞ norm ‖G‖∞ < γ, if
and only if there exists a symmetric matrixP such that

Fδ(P, γ) = diag(−Mδ(P, γ), P ) > 0 (9)

where

Mδ(P, γ) =

[

Mδ11(P ) Mδ12(P )

M ′
δ12

(P ) Mδ22(P, γ)

]

(10)

and

Mδ11(P ) = A′
δP + PAδ + hA′

δPAδ + C′C

Mδ12(P ) = PBδ + hA′
δPBδ + C′D (11)

Mδ22(P, γ) = hB′
δPBδ +D′D − γ2I ✷

Similar LMI’s based on the delta operator can be found in
e.g. [6], [14].



C. Relation between delta operator and continuous LMIs

For a continuous-time systemGc (4), the LMI matrix
corresponding toFδ(P, γ) is

Fc(P, γ) = diag(−Mc(P, γ), P ) > 0 (12)

where

Mc(P, γ) =

[

A′
cP + PAc + C′C PBc + C′D

B′
cP +D′C D′D − γ2I

]

(13)
Using (5) and (9)-(11), it means that

Fδ(P, γ) = Fc(P, γ) +O(h)

Hence, the LMI formulation in the delta operator form
illustrates very explicitly the convergence of the discrete-time
solution to the corresponding continuous-time one. This is
an expected but also essential convergence property in the
following numerical sensitivity analysis.

D. Relation between shift and delta operator LMIs

In the original shift operator modelGq in (3) recall that
Aq = I+hAδ, Bq = hBδ. This means that the block matrices
(8) in Mq alternatively, using (11), can be expressed as

Mq11(Pq) = A′
δPqh+ PqhAδ + hA′

δPqhAδ + C′C

= Mδ11(Pqh)

Mq12(Pq) = (I + hAδ)PqhBδ + C′D = Mδ12(Pqh)

Mq22(Pq, γ) = hB′
δPqhBδ +D′D − γ2I = Mδ22(Pqh, γ)

Hence, we find that

Mq(Pq, γ) = Mδ(P, γ) (14)

whereP = Pqh. Introducing this result in (6) and (9), we
obtain the following result.

Lemma 3:The solutionPq > 0 to the LMI Fq(Pq, γ) > 0
for the systemGq (3) can alternatively be obtained as

Pq =
P

h
(15)

where P > 0 is the solution to the LMIFδ(P, γ) > 0.
Furthermore, sinceFδ → Fc whenh → 0 the solutionP >
0 converges to the corresponding continuous-time solution.
This implies thatPq = P/h increases without bound when
h → 0. ✷

Utilizing (15) in (6) and (14) means thatFq(Pq, γ) can
alternatively be expressed as

Fq(Pq , γ) = diag(−Mq(P/h, γ), P/h)

= diag(−Mδ(P, γ), P/h) (16)

The minimalγ-value of the LMIFq(Pq, γ) > 0 is normally
obtained by an interior-point method [2], where the bar-
rier function φ(Pq , γ) = − log detFq(Pq, γ) is introduced.
Starting with a feasible solution such thatFq(Pq, γ) > 0
means thatdetFq(Pq, γ) > 0. Decreasingγ means that
finally detFq(Pq, γ) gets close to zero, and at the optimum
Fq(Pq, γ) is approximately singular anddetFq(Pq, γ) ≈ 0.

On the other hand,detFq(Pq, γ) = det(−Mδ(P, γ))
det(P/h) = det(−Mδ(P, γ))O(1/h). Hence, it is hard to
determine if detFq(Pq, γ) ≈ 0 for small sampling peri-
ods, since this condition then includes a multiplication of
a small valuedet(−Mδ(P, γ)) ≈ 0 with a large value
det(P/h) = O(1/h). This analysis shows that the evaluation
of the optimality condition is an ill-conditioned problem
for short sampling periods, which is also confirmed by the
numerical investigation in Section V.

E. Scaled shift operator LMI

The ill-conditioned property of the LMIFq(Pq, γ) > 0
is easily avoided by observing that this condition accord-
ing to (16) is based on the two conditionsMq(Pq, γ) =
Mq(P/h, γ) < 0 andPq = P/h > 0. Since the latter one
can be simplified toP > 0, the LMI Fq(Pq, γ) > 0 can be
replaced by the scaled shift operator LMI

FS(P, γ) = diag(−Mq(P/h, γ), P ) > 0 (17)

whereP = O(1) is the unknown matrix and we remind
that alsoMq(P/h, γ) = Mδ(P, γ) = O(1). Hence,FS is
numerically well behaved except for the cancellation inMq11 .

F. Shift operator LMI without cancellation

The block matrixMq11 = A′
qPqAq − Pq + C′C in (8)

includes for short sampling periods a cancellation between
two large matrices. Since thenAq = I+O(h) andPq = P/h,
we find that

Mq11 = (I + O(h))′P/h(I +O(h)) − P/h+ C′C

= Ph/h− P/h+ C′C

wherePh ≈ P = O(1). This cancellation can be avoided
either by using the delta operator formulation, or simply by
introducingA∆ = hAδ and replacing the block matrixMq11

in Mq by

M∆11
= A′

∆Pq + PqA∆ +A′
∆PqA∆ + C′C (18)

The LMI Fq(Pq , γ) > 0 is then reformulated as

F∆(Pq , γ) = diag(−M∆(Pq, γ), Pq) (19)

where

M∆(Pq , γ) =

[

M∆11
(Pq) Mq12(Pq)

M ′
q12

(Pq) Mq22(Pq, γ)

]

(20)

Note that algebraicallyF∆ = Fq, but numerically the
cancellation problem is avoided inF∆.

In fact, we have now separated the two properties of the
delta operator from an LMI perspective. The cancellation is
avoided inF∆ (20), and the system scaling, including the1/h
factor in bothAδ and in the delta operator, is introduced in
FS by replacingPq by P = hPq as the unknown matrix.

IV. ERROR ANALYSIS

We will now investigate the numerical error in the compu-
tation of the LMI matricesFq, F∆, FS , andFδ. Especially
the contribution from the cancellation inFq andFS will be
analyzed as a function of the sampling periodh.



A. Errors in the LMI matrices

Motivated by floating point arithmetic implementations,
we will use a relative error analysis [15]. It is well known
that subtraction between two uncertain numbers being almost
equal yields cancellation of digits. To be more precise, letaǫ

and bǫ be stored representations of two numbersa and b.
Then aǫ = (1 + ǫa)a and bǫ = (1 + ǫb)b, where |ǫa| ≤ µ
and |ǫb| ≤ µ, andµ is the machine precision (µ ≈ 2 · 10−16

in MATLAB). Now assume that the subtraction is performed
according to the IEEE-standard, [15]. Then the stored result
is (a− b)ǫ = (1 + ǫs)(a

ǫ − bǫ) with |ǫs| ≤ µ.
For matrices similar expressions can be formulated intro-

ducing the Hadamard (entry-wise) matrix multiplication [16],
the one matrix1, and the relative error matrixε, where
[1]ij = 1 and [ε]ij = ǫij . ThenAǫ = (1 + εA) ◦ A and
(A−B)ǫ = (1+εs) ◦

(

(1+εA) ◦A− (1+εB) ◦B
)

. Ne-
glecting the quadratic error termsεs◦εA◦A andεs◦εB◦B,
the error in the matric subtraction can be expressed as

(A−B)ǫ = (1+(εs+εA))◦(A−B)+(εA−εB)◦B (21)

Apply this formulation onMq11 in (8), by letting A =
A′

qPqAq+C′
qCq andB = Pq, which leads toA−B = Mq11 .

Since the analysis is focused on the cancellation, it is
assumed for simplicity thatA′

qPqAq + C′C is computed
without error, but stored with a relative error as well asPq.
Based on (21), the error in the computation ofMq11 can then
be expressed as

M ǫ
q11(Pq) = (1+ εq11) ◦Mq11(Pq) + εP ◦ Pq (22)

where the relative errorsεq11 andεP are of sizeO(µ). The
other block matrices inMq are computed without cancella-
tion, and can therefore be simplified toM ǫ

q12
(Pq) = (1 +

εq12) ◦Mq12(P ) andM ǫ
q22

(P, γ) = (1+εq22 ) ◦Mq22(P, γ),
whereεq12 = O(µ) andεq22 = O(µ). Introduce the error
matrix due to the cancellation inMq11

P ǫ = diag(εP ◦ P, 0nu×nu
) (23)

SinceP = O(1), we observe thatP ǫ = O(µ). Together with
(22), reminding thatPq = P/h andMq(Pq, γ) = Mδ(P, γ),
M ǫ

q (Pq, γ) can now be formulated asM ǫ
q (P/h, γ) = (1 +

ε) ◦ Mδ(P, γ) + P ǫ/h, whereε =




εq11
εq12

ε
′

q12
εq22



= O(µ).

Based on this type of analysis the errors in the four LMI
matricesFq (6), F∆ (19), FS (17), andFδ (9) are now be
presented in the following theorem.

Theorem 4:Assume thatMδ is computed and stored with
relative errorε as

M ǫ
δ (P, γ) = (1+ ε) ◦Mδ(P, γ) (24)

whereε = O(µ). The corresponding errors inFq, F∆, FS ,
andFδ can then be expressed as

F ǫ
q (P/h, γ) = diag(−M ǫ

δ (P, γ) − P ǫ/h, P/h) (25)

F ǫ
∆(P/h, γ) = diag(−M ǫ

δ (P, γ), P/h) (26)

F ǫ
S(P, γ) = diag(−M ǫ

δ (P, γ) − P ǫ/h, P ) (27)

F ǫ
δ (P, γ) = diag(−M ǫ

δ (P, γ), P ) (28)

where the error matrix due to the cancellationP ǫ = O(µ),
and the storage error in the lower diagonal matrix in the LMI
matricesF ǫ

x is neglected.
✷

This theorem highlights the fact that there are mainly
two error sources in the shift operator based LMI calcu-
lations. The first has to do with the large value ofPq =
P/h = O(1/h) for shorter sampling periods, resulting in ill-
conditioned matricesFq andF∆. The other error source is
the cancellation inMq, resulting in the error termP ǫ/h in
Fq andFS . Both these error sources are avoided in the delta
operator versionFδ.

B. Error sensitivity in the objective function

To investigate in more detail how the cancellation error
influences the optimization, first assume that the LMI con-
dition F > 0 is handled by introducing a barrier function.
The original minimization criterionγ is then replaced by the
approximation

f(P, γ, ǫ) = θγ − log detF (P, γ, ǫ) (29)

where the approximation error is reduced when the parameter
θ is increased [2]. Then the partial derivative

∂f(P, γ, ǫ)

∂ǫi
= −

1

detF (P, γ, ǫ)

∂

∂ǫi
detF (P, γ, ǫ)

= −tr
(

F−1(P, γ, ǫ)
∂

∂ǫi
F (P, γ, ǫ)

)

(30)

This partial derivative is now analyzed for the scaled LMI
problemFS > 0, which only includes the cancellation error
but not the ill-conditioning problem. The error term due to
the cancellationP ǫ/h, defined in (23), depends on the error
matrix εP . Hence, we investigate (30) with respect to the
elements in this matrixǫpij

= [εP ]i,j . First consider (27),
where we only include the error matrixεP but notε in M ǫ

δ .
This means thatM ǫ

δ is simplified toMδ, and we obtain

FS(P, γ,εP ) = diag(−Mδ(P, γ)−
P ǫ

h
, P )

= diag
(

−Mδ(P, γ) −
1

h
diag(εP ◦ P, 0nu×nu

), P
)

which gives

[

∂FS(P, γ,εP )

∂ǫpij

]

k,l

=

{

−
pij
h

k = i, ℓ = j

0 otherwise

where pij = [P ]ij . Since the inverseF (P, γ,εP )
−1 =

diag
(

− (Mδ(P, γ) + P ǫ/h)−1, P−1
)

, the partial derivative
of the objective function (30) can now be expressed as

∂f(P, γ,εP )

∂ǫpij

= −

[(

Mδ(P, γ) +
P ǫ

h

)−1]

j,i

pij
h

This result is used in the following theorem.
Theorem 5:For the scaled LMI problemFS > 0 the

sensitivity of the approximative objective functionf(P, γ, ǫ)



in (29), with respect to the cancellation errorsǫpij
= [εP ]i,j

in P ǫ, can approximately be determined as

f(P, γ, ǫpij
) ≈ f(P, γ, 0) + ǫpij

∂f(P, γ,εP )

∂ǫpij

∣

∣

εP=0

= f(P, γ, 0) + ǫpij

cij
h

for i, j = 1, . . . , n, where

cij = −pij [Mδ(P, γ)
−1]j,i

✷

Observe thatf(P, γ, 0) becomes large at the optimum due
to a largeθ, but alsocij , since it includes the inverse of
Mδ that is near-singular at the optimum. This is valid for
arbitrary sampling periods, which shows that the objective
function will be sensitive to the error inP ǫ for sufficiently
small sampling periods.

Now introduce a relative error in the determination of the
optimal γ value for the actual LMI problems

eγ =
|γ − γ0|

γ0
(31)

whereγ0 is the true optimal value andγ is the optimal value
computed by the different LMIs. As already observed, for
the scaled LMI problemFS > 0, the objective function
becomes more and more sensitive to the error inP ǫ due
to cancellation for shorter sampling periods, according to
Theorem 5. Since this error sensitivity is proportional to1/h,
and the determination of the optimalγ value is based on this
objective function, the relative erroreSγ for the LMI FS > 0
is also expected to increase with the same factor1/h, that is

eSγ ≈
ǫS
h

for small h (32)

whereǫS is a constant factor. This error function is verified
in the next section, where two different SDP solvers generate
the same error behavior for shorter sampling periodsh, and
the value ofǫS is shown to be of the same order as the
machine precision.

V. NUMERICAL ILLUSTRATIONS

Consider the following resonant dynamic system with
continuous-time transfer function

Gc(s) =
12

(s+ 1)(s2 + 0.2s+ 1)(s2 + 0.4s+ 4)

where the accuracy in the computation of the corresponding
discrete-timeH∞ norm will be evaluated. This is done by
solving the four different LMIs considered in this paper for
various sampling periodsh ≤ 1 using two different SDP
solvers.

First a balanced state-space model is generated using
the MATLAB function ssbal. Corresponding discrete-time
state-space models with zero-order hold circuit at the control
input are then computed for different sampling periods, both
in shift and delta operator versions. Finally, the minimalγ
value is computed for the different LMIsFq (6), F∆ (19),
FS (17), andFδ (9), resulting in corresponding relative errors
eqγ , e∆γ , eSγ , andeδγ .

10
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10
−5

10
0

10
−10

10
−8

10
−6

10
−4

ǫS

h

Fig. 1 Relative error as a function of the sampling period
h for the SDP solvers SeDuMi (solid) and SDPA (dashed),
whenγ is minimized for the scaled LMIFS > 0.

The LMIs are solved by two different semi definite pro-
gramming (SDP) solvers SeDuMi [17] and SDPA [18]. They
are all run on top of MATLAB via the user friendly interface
YALMIP [19].

In order to obtain a correct relative erroreγ (31) the true
gamma valueγ0 is determined by the maximum frequency
response based on the delta operator with a very dense
grid (20000 points around the maximum at≈ 1 rad/s). As
an extra check, this result is compared to the continuous-
time infinity norm function in MATLAB for very short
sampling periods, and the corresponding discrete one for
longer sampling periods, with a very small relative difference
around10−11.

The resulting relative errorseSγ for the scaled LMIFS > 0
are shown in Fig. 1 for the two different solvers. Since the
cancellation remains inFS the erroreSγ increases for shorter
sampling periods for both solvers approximately asǫS/h,
the thin line in Fig. 1. The constantǫS ≈ 5 · 10−17, which
is of the same order as the machine precision in MATLAB
(2 · 10−16). This is reasonable since the error source is a
cancellation. The result also coincide with the analysis in
Section IV and especially Theorem 5 and (32).

Furthermore, note that for longer sampling periods the
relative error depends more on the general accuracy of
the individual LMI solver. No adjustments of the tuning
parameters for the two solvers have been performed, and we
observe that the solver SDPA is generally tuned to achieve
less relative accuracy (≈ 10−7) than the SeDuMi solver.

Corresponding relative errors for the delta operator case
agree with the more constant behavior ofeSγ for longer
sampling periods, witheδγ around 10−7 for SDPA and
10−8 − 10−9 for the SeDuMi solver. The difference is that
the delta operator LMI behaves equally well also for very
short sampling periods. For all practical choices of sampling
periods we find on the other hand that the scaling mechanism
in FS is sufficient to achieve perfect numerical results. The
cancellation error simply shows up only for unrealistically
short sampling periods.

The ill-conditioned behavior in bothFq andF∆ is however
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Fig. 2 Relative error as a function of the sampling period
h for the SDP solvers SeDuMi (solid) and SDPA (dashed),
whenγ is minimized for the shift operator LMIFq > 0.

shown to be much more severe. The relative errors for the
shift operator caseeqγ are shown in Fig. 2. It is evident that
especially the SDPA solver has great difficulties to generate
accurate results also for moderate sampling periods. The
removal of the cancellation inF∆ does not change the error
behavior. The same severe errors as for the shift operator LMI
are shown for shorter sampling periods. The reason is that the
cancellation error according to Fig. 1 appears at much shorter
sampling periods than the error caused by the ill-conditioning
problem, still included inF∆.

To summarize, a numerically robust solution for shorter
sampling periods is to use the delta operator model, or to
introduce the simple scaling of the unknownP -matrix. Both
approaches work fine for all practical choices of sampling
periods.

VI. CONCLUSIONS

Numerical properties have been analyzed when the
H∞ norm is calculated for discrete-time systems by Linear
Matrix Inequalities (LMIs). In particular, the behavior for
shorter sampling periods has been investigated. By analysis
and numerical illustrations it has been shown that there are
two main error sources when systems are modeled by the
ordinary discrete-time shift operator. The quite well-known
cancellation problem in the shift operator case is shown to
be less important compared to the fact the LMI problem is
fundamentally ill-conditioned for shorter sampling periodsh.
In a study of a numerical example, two different numerical
solvers for LMIs exhibit problems with this ill-conditioned
behavior.

All these numerical problems are solved by using a delta
operator formulation of the LMI. Alternatively, it is possible
to use the shift operator model but then apply a simple
scaling of the matrixP . This transformation captures the
system scaling mechanism in the delta operator model, but
does not avoid the cancellation problem. The relative error
then however becomes negligible for all practical choices of
sampling periods.
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