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Supervisory Control of Extended Finite Automata
Using Transition Projection

Mohammad Reza Shoaei, Lei Feng, Bengt Lennartson

Abstract—A limitation of the Ramadge and Wonham (RW)
framework for the supervisory control theory is the explicit state
representation using finite automata, often resulting in complex
and unintelligible models. Extended finite automata (EFAs), i.e.,
deterministic finite automata extended with variables, provide
compact state representation and then make the control logic
transparent through logic expressions of the variables. A chal-
lenge with this new control framework is to exploit the rich
control structure established in RW’s framework. This paper
studies the decentralized control structure with EFAs. To reduce
the computational complexity, the controller is synthesized
based on model abstraction of subsystems, which means that
the global model of the entire system is unnecessary. Sufficient
conditions are presented to that guarantee the decentralized
supervisors result in maximally permissive and nonblocking
control to the entire system.

I. INTRODUCTION

Supervisory control theory (SCT), established by Ramadge

and Wonham [1], is a formal framework for the modeling

and control of discrete-event systems (DES). Problems that

SCT can address include dynamic resource allocation, sys-

tem blocking prevention, etc. and, within these constraints,

maximally permissive system behavior. Although SCT can

systematically synthesize supervisory controllers that are able

to prevent a DES from executing undesirable behavior, indus-

trial acceptance is scarce. A number of issues that hinder

industrial use have been identified by various researchers

such as [2], [3]. Two main issues are the lack of a compact

representation of large models and computational complexity.

In the former case, Extended Finite Automata (also called

Symbolic Transition Systems), which are ordinary automata

augmented with discrete variables, guard expressions and ac-

tion functions, are introduced in [4] and [5]. Extended Finite

Automata (EFAs) have been used in several research works

and successfully applied to a range of examples such as [6],

[7]. Beside a number of methods for synthesizing EFAs [8],

[9], [10], the EFA framework in [5] has been implemented in

Supremica [11], a verification and supervisory control tool.

Even though EFAs simplify the modeling experience by

providing a compact modeling and representation, SCT anal-
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ysis is still performed on their underlying automata models

and therefore, the fundamental obstruction to the develop-

ment of SCT, i.e., the computational complexity of synthe-

sizing optimal nonblocking supervisors, still remains. Indeed,

the nonblocking supervisory control problem for DES is NP-

hard [12]. It is well known that the exponential complexity of

supervisor design arises from synchronizing subsystems into

a global system. Researchers are seeking effective control

methods for various subclasses of DES that enjoy special

structures. Such structures will admit modularity [13], [14],

[15], [16] and model abstraction [17], [18], [19], [20] to

circumvent computing global dynamic models.

The most effective model abstraction operator in SCT

is the causal reporter map having the observer property

[13]. While [21] treats hierarchical control using general

causal reporter maps, Feng and Wonham [22], [23], construct

model abstractions only with natural observers, i.e., natural

projections [24], [25], [26] with the observer property. In

this method, if two components share only a small number

of common events, their abstractions tend to be small, and

either verifying the nonconflicting property (if it holds) or

designing a coordinator to achieve it may require only modest

effort. Natural projection is a language-theoretic operation,

which needs the language of a system to be known or

can be obtained by its generators, for instance, automata.

Unfortunately, this cannot be applied for DES modeled by

EFAs. In particular, it makes no sense to speak of the

language of individual extended automata, i.e., the language

of the components can both be larger than or smaller than

the language of the synchronized system. Hence, one cannot

enjoy the compositional computation of natural projections.

In this paper, we introduce the transition projection, which

is an extension of natural projection that can be applied

directly on the transition systems of the EFAs, rather than

their underlying finite automata. Sufficient conditions are

presented for maximally permissive nonblocking and con-

trollable controllers with partial observation in EFAs, by

preserving the information needed for reliable representation

of the nonblocking and controllability properties.

This paper is organized as follows: Section II briefly

describes Extended Finite Automata modeling formalism

used to model our problems. In Section III, we introduce

a model abstraction using transition projection, that is the

projection on transition systems, followed by Sections IV

and V in which transition projection properties are explained.

A practical example has been modeled and abstracted in

Section VI and we conclude our work in Section VII.



II. PRELIMINARIES

A. Languages and Automata

The behavior of DES [25], [26] is described in terms

of event sequences and regular languages [1]. A regular

language is a subset of strings that can be recognized by

a finite automaton (FA) G = (Q,Σ, 7→, q0, Qm). Q is the

finite state set. Σ = Σc∪̇Σu is a non-empty finite event

set called alphabet. 7→⊆ Q × Σ × Q is the state transition

relation mapping elements of Q×Σ into singletons of Q. The

element q0 ∈ Q is the initial state and Qm ⊆ Q is the set of

marked states. The transition relation in G is written in infix

notation p
σ
7→ q. Let Σ∗ be the set of all finite strings over

Σ, including the empty string ε. Then, these notations can

be extended to strings in Σ∗ in the natural way by letting

p
ε
7→ p for all p ∈ Q and p

sσ
7→ q if p

s
7→ r and r

σ
7→ q

for s ∈ Σ∗, σ ∈ Σ, r ∈ Q. Let p
σ
7→ denote the existence

of at least one state q such that p
σ
7→ q, and p 7→ q the

existence of a string s ∈ Σ∗ such that p
s
7→ q. Automaton G

is deterministic if p
σ
7→ q and p

σ
7→ q́ always implies q = q́.

An important property of an automaton is nonblocking. The

automaton G is nonblocking if any state reachable from the

initial state q0 can also reach a marked state via some string,

i.e., (∀q ∈ Q) q0 7→ q ⇒ q 7→ p for some p ∈ Qm.

Note that, by definition, the symbol ε does not belong to

either of Σ,Σc, or Σu. If it is to be included, the event sets

Σε = Σ ∪ {ε},Σε,c = Σc ∪ {ε}, and Σε,u = Σu ∪ {ε} are

used instead. Given two event sets Σ and Σ0 ⊆ Σ, the natural

projection is the function P : Σ∗ → Σ∗
0 such that P (ε) = ε,

P (σ) =

{

ε, σ ∈ Σ− Σ0

σ, σ ∈ Σ0

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ

The effect of P on a string s ∈ Σ∗ is just to erase the events

in s that do not belong to Σ0, but keep the events in Σ0

unchanged. The inverse image of the natural projection P is

a function P−1 : Pwr(Σ∗
0) → Pwr(Σ∗) where Pwr is the

power set.

B. Extended Finite Automata

A finite automaton can be extended with a set of variables to

an Extended Finite Automaton (EFA) whose transitions are

augmented with conditions and actions on these variables to

enjoy a compact and symbolic description of DES.

Let V = {v1, . . . , vn} be the set of n typed variables over

the finite domain (type) D = D1 × · · · × Dn. Let H(V )
denote the set of (variable) evaluations η that assigns values

to variables. G is the set of Boolean conditions over V in

which each condition g, also called guard, is a propositional

logic formula whose propositional symbols are of the form

v̄ ∈ D̄, where v̄ = (v1, · · · , vn) is an n-tuple of pairwise

distinct variables in V , and D̄ is a subset of the domain

D. For the sake of simplicity, we write the propositional

symbols such as “x− y ≤ 2” instead of “(x, y) ∈ {(m,n) ∈
Dm × Dn|m − n ≤ 2}”. A satisfaction relation |= for a

guard g can be defined as a set of pairs (η, g) indicating the

evaluations η for which the guard g is satisfied. It is written

η |= g instead of (η, g) ∈|=. Given two guards g and h, we

say that g is a subguard of h, denoted g � h, if g ∧ h = g.

We say g and h have the same satisfaction, denoted g = h,

if for all η ∈ E(V ), η |= g iff η |= h.

Let A be the set of actions where each action a ∈ A is

an n-tuple of partial function ai : Di → Di, updating the

current variables value to a new value. The symbol ξ is used

to indicate that a variable is not updated, namely, takes their

current values.

Definition 1 (Extended Finite Automaton).

An extended finite automaton over the set of variables V is

a tuple (L,D,Σ, T, ℓ0, d0, Lm, Dm) where

• L is a finite set of discrete locations,

• D = D1 × · · · ×Dn is the finite domain of variables,

• Σ is a nonempty finite set of events (alphabets),

• T ⊆ L× Σ× G ×A× L is the transition relation,

• ℓ0 ∈ L is the initial location,

• d0 ∈ D is the tuple of initial values,

• Lm ⊆ L is the set of marked (desired) locations,

• Dm ⊆ D is the set of marked values of the variables.

The notation ℓ
σ
→g/a ℓ́ is used as shorthand for (ℓ, σ, g, a, ℓ́) ∈

T . If the guard of the conditional transition ℓ
σ
→g/a ℓ́ is a

tautology then we simply write ℓ
σ
→a ℓ́. For two EFAs E1

and E2, with the same set of events, domain, initial location,

and initial variables value we say E1 is a sub-EFA of E2,

written E1 ⊆ E2, if L1 ⊆ L2, T1 ⊆ T2, D
m
1 ⊆ Dm

2 , and

Lm
1 ⊆ Lm

2 .

The semantics of an EFA is described in terms of a DFA.

Definition 2 (EFA Semantics).

Let E = (L,D,Σ, T, ℓ0, d0, Lm, Dm) be an EFA over

the set of variables V . The DFA G(E) of E is the tuple

(QE ,ΣE , 7→E , q
0
E , Q

m
E ) where QE = L × D, ΣE = Σ,

q0E = 〈ℓ0, d0〉, Qm
E = Lm × Dm, 7→E⊆ Q × Σ × Q is

defined by the following rule:

ℓ
σ
→g/a ℓ́ ∧ η |= g

〈ℓ, η〉
σ
7→ 〈ℓ́, a(η)〉

.

States of G(E) are the set of reachable states of E, and

each state consists of a location ℓ together with an evaluation

η. Note that in the definition of transition relation 7→, if

the proposition above the horizontal line holds, then the

proposition under the line holds as well, namely, whenever

the guard g of the conditional transition ℓ
σ
→g/a ℓ́ holds for

the evaluation η, i.e., η |= g, then there is a transition in G(E)
from state 〈ℓ, η〉 to state 〈ℓ́, a(η)〉. Also, the DFA generated

directly from a given EFA by constructing the state set as

L×D is not guaranteed to be the canonical recognizer and

therefore further reduction needs to be done by using the

standard algorithm of minimization [27]. In the sequel, we

assume that the DFA obtained by the above transformation

is a canonical recognizer of the language represented by the

input EFA model.

EFAs similar to ordinary finite automata are composed

by extended full synchronous composition (EFSC). By the



definition of EFSC, it is assumed that the variables are shared

by all EFAs with the same initial values.

Definition 3 (EFSC).

Let E = (Lk, D,Σk, Tk, ℓ
0
k, d

0, Lm
k , Dm), k = 1, 2, be two

EFAs over the set of shared variables V . The Extended Full

Synchronous Composition of E1 and E2 is the tuple

E1‖E2 = (L,D,Σ, T, ℓ0, d0, Lm, Dm),

where L = L1 × L2, Σ = Σ1 ∪ Σ2, ℓ0 = 〈ℓ01, ℓ
0
2〉, L

m =
Lm
1 × Lm

2 , and T is defined by the following rules:

*
ℓ1

σ
→1,g1/a1

ℓ́1 ∧ ℓ2 = ℓ́2 ∧ σ ∈ (Σ1 − Σ2)

〈ℓ1, ℓ2〉
σ
→g1/a1

〈ℓ́1, ℓ́2〉
;

*
ℓ2

σ
→2,g2/a2

ℓ́2 ∧ ℓ1 = ℓ́1 ∧ σ ∈ (Σ2 − Σ1)

〈ℓ1, ℓ2〉
σ
→g2/a2

〈ℓ́1, ℓ́2〉
;

*
ℓ1

σ
→1,g1/a1

ℓ́1 ∧ ℓ2
σ
→2,g2/a2

ℓ́2 ∧ σ ∈ (Σ1 ∩ Σ2)

〈ℓ1, ℓ2〉
σ
→g/a 〈ℓ́1, ℓ́2〉

such that g = g1 ∧ g2 and for i = 1, . . . , n we have

ai =















a1i if a1i = a2i
a1i if a2i = ξ
a2i if a1i = ξ
ηi otherwise;

Note that, if the action functions of E1 and E2 try to update a

shared variable to different values, the variable is, by default,

not updated.

We introduce the notion of local events for a system

consisting of more than one EFA component, which will be

used later. For an event σ, let Act(σ) ⊆ A and Con(σ) ⊆ G
be the sets of actions and guards, respectively, retrieved from

all transitions labeled with σ.

Definition 4 (Local Event).

An event σ ∈ Σk is local to Ek, k ∈ ΩE where ΩE is

an index set, if for all m ∈ ΩE we have (i) σ ∈ Σk −
⋃

Σm(k 6= m), (ii) (∀g ∈ Con(σ)) g is a tautology, (iii)
(∀a ∈ Act(σ); ∀η ∈ H(V ); ∀g ∈

⋃

Gm) η |= g ⇔ a(η) |= g.

In above, condition (i) guarantees that the event σ only

appears in Ek, (ii) ensures that guards on any transition

labeled by σ evaluates to true; hence σ can cause the

transition to occur at any time, and (iii) guarantees that the

actions on all transitions labeled by σ have no effect on any

guard in the system. We say that an event is shared with

other EFAs when it is not local. Also, any transition labeled

with a local event is called a local transition.

Moreover, we use the notion of executions (also called

runs) to describe a possible behavior of the transition system.

Definition 5 (Execution Fragment).

An execution fragment ̺ in E is a series of finite transitions

in T , ̺ = ℓ0
σ1→g1/a1

ℓ1
σ2→g2/a2

· · ·
σi+1

→ gi+1/ai+1
ℓi+1, (0 6

i < n), where n > 0 and the variables evaluation ηi+1 =
a(ηi). The integer n is the length of the fragment ̺ and

̺ = ℓ0 for some ℓ0 ∈ L is a legal execution fragment of

length n = 0.

The first and last location of ̺ is denoted by first(̺) and

last(̺), respectively. We call an execution fragment ̺ initial

if first(̺) = ℓ0, marked if last(̺) ∈ Lm, and local if all of its

transitions are local. For two execution fragments ̺, ´̺, we say

̺ is a precedence of ´̺, written ̺ ⊑ ´̺, if last(̺) = first(´̺) and

we say ̺ = ´̺ if they have the same sequence of transitions

up to renaming of locations.

C. Supervisory Control of EFAs

SCT is a formal framework for the modeling and control of

DES consisting of a plant and a specification. A supervisor

for a control problem modeled by EFAs can be symboli-

cally computed using the algorithm presented in [10]. The

algorithm iteratively strengthens the guards on conditional

transitions to avoid forbidden or blocking states.

Given a DES control problem, we assume that the plant is

modeled by an EFA G and the specification by an EFA K .

The specification can be represented, without loss of gener-

ality, by a set of forbidden locations, which can be obtained

by a refined plant model R with the same behavior as G
such that the executions not allowed in K end up in certain

forbidden locations in R. See [10] for more elaboration on

refinement. From now on, we assume that the plant model is

given as the refined EFA R and the specification is given as

the set of forbidden locations Lf ⊂ LR. Let us denote the

set of safe locations by Ls = L − Lf , and recall the set of

reachable states QR in G(R). A state q = 〈ℓ, η〉 ∈ QR is a

forbidden state iff ℓ ∈ Lf , otherwise, q is a safe state. In the

sequel, Rs denotes the EFA obtained from R by assigning

false to the guard g of every transition ℓ
σ
→g/a ℓ́ for which

ℓ́ ∈ Lf , i.e., ℓ́ is a forbidden location. Rs is constructed such

that Rs ⊆ R and is called the safe sub-EFA of R.

Definition 6 (Nonblocking, Safety, Controllability).

[10] Let R be an EFA, Lf its set of forbidden locations,

and Rs its safe subautomaton. A reachable state q ∈ QR

is: (a) nonblocking if there exists a state p ∈ Qm
R such that

q
s
7→ p for some string s ∈ Σ∗; (b) safe if q ∈ QRs and (c)

(R,Lf ,Σu)-controllable (or simply controllable when clear

from context) if q is safe and ∀σ ∈ ΣR(q) ∩ Σu where

ΣR(q) denote the set of active events, we have QR(q, σ) ⊆
QRs . The EFA R is, respectively, nonblocking, safe, and

controllable if every reachable state of R is, respectively,

nonblocking, safe, and controllable.

A supervisor S for R can be seen as a function S : T → G
which maps each transition to a supervision guard such that

S(ℓ
σ
→g/a ℓ́) � g if σ ∈ Σc, and S(ℓ

σ
→g/a ℓ́) = g

if σ ∈ Σu. Let RS denote the sub-EFA obtained from R
by replacing its guards by those provided by S. Then, S
is said to be nonblocking if RS is nonblocking and safe

if RS is safe. In case RS is blocking or uncontrollable, a

search will be performed to find a safe and nonblocking

supervisor S such that RS ⊆ Rs. Let S(R,Lf ) denote

the set of nonblocking and safe supervisor candidates of R,

then S↑ := supS(R,Lf), is the most permissive nonblocking

and safe supervisor compared to any other supervisor in



S(R,Lf ) when the latter is nonempty. The RS↑

is called

the supremal controllable and nonblocking sub-EFA of Rs.

RS↑

is calculated by the Supervisory Synthesis for EFA

(SSEFA) using a fixed-point iteration method. Given a re-

fined EFA R and a set Lf ⊂ L of forbidden location,

SSEFA(R,Lf ) computes stronger, maximally permissive,

guards for the transitions of R in N steps such that the

obtained EFA is nonblocking, safe and controllable [10].

III. EFA PROJECTION

Traditionally, brute-force computation is used for verifica-

tion and coordination [25], [17]. This we wish to avoid since

the nonblocking supervisory control problem in SCT [17] is

NP-hard [12]. Abstraction introduces hierarchy into the sys-

tem structure, as it reports only the events shared with other

subsystems and conceals the rest. The fewer the reported

events, the greater state reduction will be achieved. In order to

use a model abstraction using natural projection on EFAs, we

introduce the transition projection which is an extension of

natural projection to abstract systems modeled by EFAs. We

present sufficient conditions for an optimal nonblocking and

controllable supervisor with partial observation in EFA, by

preserving the information needed for reliable representation

of the nonblocking and controllability properties.

For an EFA E with the set of events Σ, the transition

projection, written with a slight abuse of notation P̄ , for the

conditional transition relation T and the set Σℓ ⊆ Σ is a

function P̄ : T × Σℓ → T defined as follows: for every

transition ℓ
σ
→g/a ℓ́ ∈ T ,

P̄ (ℓ
σ
→g/a ℓ́, ε) = ℓ

σ
→g/a ℓ́,

P̄ (ℓ
σ
→g/a ℓ́, γ) =

{

ℓ
σ
→g/a ℓ́, σ 6= γ

ℓ
ε
→g/a ℓ́, σ = γ.

The transition projection P̄ replaces the label of transitions

labeled by events in Σℓ with the symbol ε. In effect, an EFA

is allowed to make a transition spontaneously, without receiv-

ing an input event. Extending T to its power set Pwr(T ), we

get P̄ : Pwr(T )×Σℓ → Pwr(T ) such that for any τ ∈ Σℓ,

N ⊆ T : P̄ (N, τ) = {P̄ (ℓ
σ
→g/a ℓ́, τ)|ℓ

σ
→g/a ℓ́ ∈ N}. If

we further extend Σℓ to its power set Pwr(Σℓ), P̄ becomes

P̄ : Pwr(T ) × Pwr(Σℓ) → Pwr(T ) such that for A ∈ Σℓ,

N ⊆ T : P̄ (N,A) =
⋃

{P̄ (N, τ)|τ ∈ A}. If the action of P̄
on T is understood then P̄ (T,Σℓ) may be written P̄Σℓ

T and

similarly if P̄ is defined then P̄ T .

Given any EFA, Algorithm 1, denoted by P̂ , computes the

projected EFA. The intuition of the algorithm is the follow-

ing. Let Sε(ℓ) be the set of ε-closure of a location ℓ in E.

Sε(ℓ) is constructed recursively by finding every location that

can be reached from ℓ along any path whose transitions are all

labeled ε. Formally, (1) ℓ ∈ Sε(ℓ), (2) (∀ℓ́ ∈ Sε(ℓ)) ℓ́
ε
→g/a

ℓ̀ ⇒ ℓ̀ ∈ Sε(ℓ). The location set of Ẽ will be denoted by L̃,

with element ℓ̃ that label ε-closure subsets of E. The transi-

tion system of Ẽ is constructed as follows. Define the initial

location subset ℓ̃0 := Sε(ℓ
0). Choose σ1 ∈ Σ−Σℓ and define

ℓ̃1 :=
⋃

ℓ∈ℓ̃0{Sε(ℓ́) | (ℓ, σ1, g, a, ℓ́) ∈ T }. Define ℓ̃2 similarly,

from ℓ̃0 and σ2 ∈ Σ−Σℓ−{σ1}, and repeat until Σ−Σℓ is

Algorithm 1 EFA Projection (P̂ )

Input: An EFA E = (L,D,Σ, T, ℓ0, d0, Lm, Dm) and a

subset of events Σℓ ⊆ Σ.

1: Apply P̄ : T × Σℓ → T to E;

2: Σ̃ := Σ− Σℓ;

3: ℓ̃0 := Sε(ℓ
0);

4: L̃ := {ℓ̃0};

5: S := {ℓ̃0};

6: repeat

7: X = ∅;

8: for all ℓ̃1 ∈ S and σ ∈ Σ̃ do

9: ℓ̃2 :=
⋃

ℓ∈ℓ̃1{Sε(ℓ́) | (ℓ, σ, g, a, ℓ́) ∈ T };

10: if ℓ̃2 6= ∅ then

11: if ℓ̃2 /∈ L̃ then

12: X := X ∪ ℓ̃2;

13: L̃ := L̃ ∪ ℓ̃2;

14: end if

15: T̃ := T̃ ∪ {(ℓ̃1, σ, g, a, ℓ̃2)};

16: end if

17: end for

18: S := X ;

19: until S = ∅
20: L̃m := {ℓ̃ ∈ L̃ | ℓ̃ ∩ Lm 6= ∅};

Output: An EFA Ẽ = (L̃,D, Σ̃, T̃ , ℓ̃0, d0, L̃m, Dm).

exhausted. The subset obtained at any step is discarded if it is

empty or if it appeared previously. This process yields a list

of (final) distinct nonempty subsets ℓ̃0, ℓ̃1, . . . , ℓ̃k1 and one-

step ‘subset’ transitions of form (ℓ̃0, σ, g, a, ℓ̃i), σ ∈ Σ−Σℓ,

i ∈ {0, 1, . . . , k1}. The procedure is repeated with each

of the subsets ℓ̃1, ℓ̃2, . . . , ℓ̃k1 and each σ ∈ Σ − Σℓ, until

no new subset transitions are obtained. The result is the

projected EFA Ẽ = (L̃,D, Σ̃, T̃ , ℓ̃0, d0, L̃m, Dm), where L̃ is

the final list {ℓ̃0, ℓ̃1, . . . , ℓ̃k}, L̃m := {ℓ̃ ∈ L̃ | ℓ̃ ∩ Lm 6= ∅},

and (ℓ̃, σ, gσ, aσ, ℓ̃
′

) ∈ T̃ iff (ℓ, σ, g, aσ, ℓ́) ∈ T for some

ℓ ∈ ℓ̃, ℓ́ ∈ ℓ̃
′

, σ ∈ Σ− Σℓ.

We assume a DES to consist of a group of simple plant

EFAs subject to a conjunction of modular control specifica-

tions. Consider a system consisting of two EFA components,

E1 and E2. To obtain a reduction of the system, we could

first compute the systems global behavior E1‖E2 and then its

transition projection. When, however, the local events of the

two components are all defined the result is obtained more

economically from reductions of the components.

Proposition 1.

Let Ek = (Lk, D,Σk, Tk, ℓ
0
k, d

0, Lm
k , Dm), k = 1, 2, be two

EFAs. Consider T as the set of transition relation for E1‖E2

and Σℓ ⊆ Σ := Σ1 ∪ Σ2. Define P̄ : T × Σℓ → T and Q̄i :
Ti×(Σi∩Σℓ) → Ti(i = 1, 2). If Σℓ is the set of local events

then P̂ (E1‖E2,Σℓ) = Q̂1(E1,Σ1 ∩Σℓ)‖Q̂2(E2,Σ2 ∩ Σℓ).

Proof: See [28].

The extension to an arbitrary number of synchronized

factors is straightforward and is left out.



IV. OBSERVER OF EFA

Consider a DES described by EFA E. Given a set of

local events, we can define the transition projection P̄ :
T × Σℓ → T and then the projected EFA P̂ (E,Σℓ). The

resulting projected EFA is not guaranteed to be coreachable,

or nonblocking for E. Crucial to successful model abstraction

using transition projection is that the projected system con-

tains necessary and sufficient information needed for reliable

representation of the nonblocking property. Therefore, one

must carefully select the local events of a DES.

A ”good” selection of local events for any transition

projection is whenever a projected EFA reaches a marked

location via some projected execution fragments, the original

system must be able to reach a marked location by those

execution fragments as follows.

Definition 7 (E-observer).

Assume a nonblocking EFA E and let Σℓ ⊆ Σ be the subset

of local events. The transition projection P̄ : T ×Σℓ → T is

an E-observer, if for all initial execution fragments ̺s and

̺ś and for all marked execution fragment ̺t in E such that

̺s ⊑ ̺t and P̄ ̺s = P̄ ̺ś, there exists a marked execution

fragment ̺t́ in E such that ̺ś ⊑ ̺t́ and P̄ ̺t́ = P̄ ̺t.

Note that if Σℓ is equal to Σ or ∅ for an EFA E then P̄
is automatically an E-observer. It can be shown, by similar

reasoning on reachable states as in [29], that the model

abstractions computed by transition projection with observer

property are guaranteed to have location sizes no larger than

the original model.

For a system consisting of more than one plant component

it would be more economical to check the observer property

component-wise without computing the synchronous product

first. Proposition 2 presents a sufficient condition for this

simplification to be valid.

Proposition 2.

Let Ek = (Lk, D,Σk, Tk, ℓ
0
k, d

0, Lm
k , Dm), k = 1, 2, be

two nonblocking EFAs. Consider T as the set of transi-

tion relation for E1‖E2. Define the transition projections

P̄ : T × Σℓ → T and Q̄i : Ti × (Σi ∩ Σℓ) → Ti (i = 1, 2)
where Σℓ ⊂ Σ := Σ1 ∪ Σ2. If Σℓ is the set of local events

and for both i = 1, 2, Q̄i is an Ei-observer, then P̄ is an

E1‖E2-observer.

Proof: See [28].

As we establish a “reliable interface” for EFAs by in-

troducing E-observer, the interaction between two complex

systems may be examined through their projections rather

than their global behavior. If P̄ has the observer property,

we can check if two EFAs E1 and E2 are synchronously

nonconflicting by checking whether their projections are

synchronously nonconflicting and we may save significant

computational effort, in accordance with the following.

Theorem 1 (Synchronously Nonconflicting Criterion). Let

Ek = (Lk, D,Σk, Tk, ℓ
0
k, d

0, Lm
k , Dm), k = 1, 2, be two

EFAs and let Σℓ ⊂ Σ := Σ1 ∪ Σ2 be the set of local

events. If Q̄i : Ti × (Σi ∩ Σℓ) → Ti are Ei-observer

(i = 1, 2), then E1‖E2 is nonblocking if and only if

Q̂1(E1,Σ1 ∩ Σℓ)‖Q̂2(E2,Σ2 ∩ Σℓ) is nonblocking.

The proof needs the following Lemma. Denote E = ∅
when there is no outgoing transition from the initial location

of E.

Lemma 1.

In the notation of Proposition 2, define the transition pro-

jection P̄i : T × (Σj − Σi) → T (i, j = 1, 2; j 6= i).

If Σ − Σℓ 6= ∅ and there exists ℓi
σ
→g/a ℓ́i ∈ Ti such

that σ ∈ Σ − Σℓ for some ℓi, ℓ́i ∈ Li (i = 1, 2) then

E1‖E2 6= ∅ ⇔ Q̂1(E1,Σ1 ∩ Σℓ)‖Q̂2(E2,Σ2 ∩ Σℓ) 6= ∅.

Proof: See [28].
Returning to the proof of Theorem 1, define the transition

projections P̄i : T × (Σj −Σi) → T (j 6= i), Z̄ : T × ((Σ1 ∪
Σ2) − (Σ1 ∩ Σ2)) → T, R̄i := Q̄i ◦ P̄i(i, j = 1, 2) and let

Ẽ1 = Q̂1(E1,Σ1 ∩ Σℓ), Ẽ2 = Q̂2(E2,Σ2 ∩Σℓ).
Proof of Theorem 1: (If) Let ̺s be an initial execution

fragment in E1‖E2. We must show that there exists a

marked execution fragment ̺t such that ̺s ⊑ ̺t. Apply

P̄i to ̺s, we get P̄i̺s ∈ Ei (i = 1, 2). We also know

that P̄ (̺s) ∈ P̂ (E1‖E2,Σℓ). Because of the assumption

that Σℓ is the set of local events and by Proposition 1,

P̄ ̺s ∈ Ẽ1‖Ẽ2. Then, by Proposition 2 there must exist a

marked execution fragment ´̺t ∈ Ẽ1‖Ẽ2 such that P̄ ̺s ⊑ ´̺t.
Applying R̄i on both sides, we get R̄iP̄ ̺s and R̄i ´̺t.We have

R̄i ◦ P̄ = Q̄i ◦ P̄i (i = 1, 2). Consequently, both Q̄iP̄i̺s and

R̄i ´̺t are in Q̂i(Ei,Σi ∩ Σℓ)(i = 1, 2). Since P̄i̺s ∈ Ei

and Q̄i is an Ei-observer, there exists a marked execution

fragment ̺wi ∈ Ei such that P̄i̺s ⊑ ̺wi and Q̄i̺wi = R̄i ´̺t.
Applying P̄j(j = 1, 2; j 6= i) to both sides of this equation,

we get P̄jQ̄i̺wi = P̄jR̄i ´̺t = Z̄ ´̺t and P̄j ◦ Q̄i = P̄j . This

implies that P̄2̺w1
= Z̄ ´̺t = P̄1̺w2

. Constructing the set

Π := {̺w ∈ E1‖E2 | P̄1̺w = ̺w1
∧P̄2̺w = ̺w2

}. We know

that Π 6= ∅. Hence, taking any marked execution fragment

form the set Π, say ̺w ∈ Π, we have P̄i̺w = ̺wi(i = 1, 2).
Since ̺wi ∈ Ei, we have P̄i̺w ∈ Ei(i = 1, 2). Consequently,

̺w ∈ E1‖E2, and as required is marked and ̺s ⊑ ̺w.

(Only if) According to the assumption E1‖E2 is nonblocking

and therefore, for any initial execution fragment ̺s there

exists a marked execution fragment ̺t such that ̺s ⊑ ̺t.
Apply P̄ on both ̺s and ̺t, we get, respectively, P̄ ̺s and

P̄ ̺t in P̂ (E1‖E2,Σℓ), and by Proposition 1, they are also

in Ẽ1‖Ẽ2. Since P̄ is E1‖E2-observer, there must exist a

marked execution fragment ´̺t ∈ Ẽ such that P̄ ̺s ⊑ ´̺t and

P̄ ´̺t = P̄ ̺t. By Proposition 1, ´̺t ∈ Ẽ1‖Ẽ2. Therefore, for

any execution fragment P̄ ̺s ∈ Ẽ1‖Ẽ2 there exists a marked

execution fragment ´̺t such that P̄ ̺s ⊑ ´̺t which implies

Ẽ1‖Ẽ2 is also nonblocking.
In case two EFAs E1 and E2 are synchronously conflict-

ing, a third EFA E, called a coordinator, must be introduced

to resolve the conflict. We can now, instead of computing the

coordinator directly from the two EFAs themselves, perform

this computation through their abstractions.

Proposition 3.

Let Ek = (Lk, D,Σk, Tk, ℓ
0
k, d

0, Lm
k , Dm), k = 1, 2, be two

synchronously conflicting EFAs and let Σℓ ⊂ Σ := Σ1 ∪ Σ2

be the set of local events. If Q̄i : Ti × (Σi ∩ Σℓ) → Ti are



ℓ0 ℓ1

ℓ2 ℓ3

ℓ4
α

β

β

γ
gγ/aγ

λ
gλ/aλ

© are the locations of E and � are the
locations (subsets) of Ẽ

Fig. 1: For the EFA E with Σℓ = {α, β}, Σu = {β, γ}
the transition projection P̄ is not OCC since there exists an

execution fragment ̺ = ℓ0
α
→ ℓ1

β
→ ℓ2

γ
→gγ/aγ

ℓ3 such that

γ /∈ Σℓ, {α, β} ∈ Σℓ, γ ∈ Σu but α /∈ Σu.

Ei-observer (i = 1, 2) and there exists an EFA E such that

Q̂1(E1,Σ1 ∩ Σℓ)‖Q̂2(E2,Σ2 ∩ Σℓ)‖E is nonblocking then

E1‖E2‖E is also nonblocking.

Proof: See [28].

As long as E can resolve the conflict between Q̂1(E1,Σ1∩
Σℓ) and Q̂2(E2,Σ2∩Σℓ), it can resolve the conflict between

E1 and E2.

V. OPTIMAL NONBLOCKING AND CONTROLLABLE

SUPERVISOR

An optimal supervisor with full observation usually dis-

ables the nearest controllable events preceding or “upstream”

to a prohibited uncontrollable event (say, σ). If, however,

some of these controllable events are unobservable, a decen-

tralized supervisor must disable controllable events further

back, and so is more restrictive. For this restriction to be

relaxed, the local event set must be selected properly enough

to contain all the upstream controllable events nearest to σ.

Such a decentralized supervisor will prevent the occurrence

of an uncontrollable event while allowing maximal freedom

of system behavior. A transition projection with such a local

event set is called Output Control Consistent (OCC).

Definition 8 (OCC).

Let E = (L,D,Σ, T, ℓ0, d0, Lm, Dm) be an EFA and let

Σℓ,Σu ⊆ Σ be the local and uncontrollable event sets. The

transition projection P̄ : T × Σℓ → T is output control

consistent (OCC) for the EFA E, if for every finite execution

fragment ̺ of the form

̺ = ℓ0
σ1→g1/a1

· · ·
σi+1

→ gi+1/ai+1
ℓi+1 or

̺ = ℓ
σ
→g/a ℓ0

σ1→g1/a1
· · ·

σi+1

→ gi+1/ai+1
ℓi+1, 0 6 i < n

which satisfies the conditions that n > 1, σ ∈ Σ− Σℓ, σj ∈
Σℓ (j ∈ n-1) and σn ∈ Σ − Σℓ, we have the property that

σn ∈ Σu ⇒ (∀j ∈ n) σj ∈ Σu.

In above definition, when σn is not local and uncontrol-

lable, its immediately preceding local events must all be

uncontrollable, namely, its nearest controllable event must

be observable.

Example 1. Consider EFA E in Fig. 1 where Σ =
{α, β, λ, γ},Σℓ = {α, β},Σu = {β, γ} are, respectively, the

sets of alphabet, local events, and uncontrollable events. Let

P̄ : T × Σℓ → T be the transition projection. In this, P̄
is not OCC for E since there exists an execution fragment

̺ = ℓ0
α
→ ℓ1

β
→ ℓ2

γ
→gγ/aγ

ℓ3 where γ ∈ Σ− Σℓ, α, β ∈ Σℓ

but α /∈ Σu.

We can now state a sufficient condition for Optimal

Nonblocking and Controllable Supervisor (ONCS).

Theorem 2 (ONCS).

Let E be a nonblocking EFA along with local and uncon-

trollable event sets Σℓ, Σu ⊆ Σ, respectively. Define the

transition projection P̄ : T × Σℓ → T and let the EFA

Ẽ = P̂ (E,Σℓ). Suppose the set of forbidden locations is

L̃f ⊂ L̃. If the transition projection P̄ is an E-observer and

OCC for E, then supS(E, L̃f) = supS(Ẽ, L̃f )‖E.

supS(E, L̃f) denotes the optimal nonblocking and con-

trollable supervisor with full observation that can be obtained

for E. Similarly, supS(Ẽ, L̃f ) describes the decentralized

supervisor with partial observation on Σ − Σℓ. When this

supervisor is synchronized with the plant, the final controlled

behavior is the supS(Ẽ, L̃f)‖E.
Proof: It needs to be shown that the reach-

able states of the fixed points of supS(E, L̃f) and

supS(Ẽ, L̃f )‖E, i.e., GN := G(SSEFA(E, L̃f )
N ) and

G̃N := G(SSEFA(Ẽ, L̃f)
N‖E), respectively, are the same.

This can be proved by an induction on the step iterator j.

(⊆) BASE: Let j = 0. By definition G̃N ⊆ L×D = G0.

INDUCTION: Assuming that the property holds for j it

needs to be shown that it also holds for j+1. Let p = 〈ℓ, η〉 ∈
G̃N . By the inductive assumption it holds that p ∈ Gj .

Assume that p /∈ Gj+1. This implies that either p is (α)
uncontrollable or (β) blocking state and therefore removed

by the synthesis algorithm.

(α) Then there exists v ∈ Σu such that p
v
7→Gj q /∈ Gj for

some q = 〈ℓ́, ή〉 ∈ L × D. Assume v ∈ Σ − Σℓ. Then v
is not projected by P̄ so the same transition exists in Ẽ.

Therefore, p
v
7→G̃N q /∈ Gj ⊇ G̃N . But then p /∈ G̃N ,

which is a contradiction. Now, assume v ∈ Σℓ. Then for all

execution fragments of the form p
σ17→Gj q

σ27→Gj · · ·
σk−1

7→ Gj

t
σk7→Gj u (k ≥ 1) in Gj such that σ1 = v and satisfies

the conditions σ1, . . . , σi ∈ Σℓ(i ∈ k-1) and σk ∈ Σ − Σℓ.

Observe that the subset of states {p, · · · , t} is labeled by

p in Ẽ. If σk ∈ Σu then by the assumption that P̄ is

OCC for E we can immediately see (∀i ∈ k)σi ∈ Σu.

Consequently, p
σ17→Gj · · ·

σk7→Gj u /∈ Gj ⊇ G̃N and

p /∈ G̃N which is a contradiction. If σk ∈ Σc then it

must be the case that q
σ27→Gj /∈ Gj . Assume σ2 ∈ Σc then

q ∈ Gj which is a contradiction. Therefore, σ2 must be

uncontrollable, i.e., σ2 ∈ Σu. By similar reasoning we can

see that σi ∈ Σu (∀i ∈ k-1). Since σk ∈ Σc implies that

the state t is not removed by the synthesis algorithm hence

{p, q, · · · , t} ∈ Gj which is a contradiction to the assumption

that q /∈ Gj .

(β) Then p
s
7→Gj r

t
7→Gj q implies q /∈ Lm ×Dm, s ∈ Σ∗

ℓ ,

and t ∈ (Σ − Σℓ)
∗. Since P̄ is E-observer then p

t
7→G̃N q

in G̃N also implies q /∈ Lm × Dm thus p /∈ G̃N , which

contradicts the initial assumption.

(⊇) BASE: Let j = 0. By definition GN ⊆ L×D = G̃0.



INDUCTION: Assuming that the property holds for j.

It needs to be shown that it also holds for j + 1. Let

p = 〈ℓ, η〉 ∈ GN . By the inductive assumption it holds that

p ∈ G̃j . Assume that p /∈ Gj+1. This implies that either

p is (α) uncontrollable or (β) blocking state and therefore

removed by the synthesis algorithm.

(α) Then there exists v ∈ Σu ∩ (Σ − Σℓ) such that

p
v
7→G̃j q /∈ G̃j for some q = 〈ℓ́, ή〉 ∈ L×D. Let a sequence

of consecutive transitions in GN be the form p
σ17→GN r

σ27→GN

· · ·
σk7→GN q (k ≥ 1) such that σi ∈ Σℓ (i ∈ k-1) and σk = v.

Then immediately we can see that by definition of OCC,

σi ∈ Σu. Hence, for p
σ17→GN r ∈ GN we have σ1 ∈ Σu.

This implies that p /∈ GN which is a contradiction.

(β) Then there exists p
t
7→G̃j q such that q /∈ Lm ×Dm and

t ∈ (Σ−Σℓ)
∗. Let the corresponding sequence of consecutive

transitions in GN be the form p
s
7→GN r

t
7→GN q where

s ∈ Σ∗
ℓ . Since P̄ is E-observer and q /∈ Lm ×Dm implies

that p /∈ GN , which is a contradiction.

We can extend Theorem 2 to accommodate systems com-

posed of two components.

Proposition 4. Let E1 and E2 be two nonblocking EFAs

along with local and uncontrollable event sets Σℓ,Σu ⊆
Σ := Σ1 ∪ Σ2, respectively, and let E := E1‖E2. Define

the transition projections P̄ : TE × Σℓ → TE , Q̄i :
Ti × (Σi ∩Σℓ) → Ti (i = 1, 2) and let EFA Ẽ = P̂ (E,Σℓ).
Suppose the set of forbidden locations is L̃f ⊂ L̃. If for

i = 1, 2, Q̄i is an Ei-observer and OCC for Ei then

supS(E, L̃f) = supS(Ẽ, L̃f)‖E.

Proof: See [28].

By an argument similar to that for Theorem 2 we can

further extend Proposition 4 for n number of EFAs as

follows.

Corollary 1. Let E be the plant consisting of n ≥ 2
nonblocking components. Assume the set of local and un-

controllable events Σℓ,Σu ⊆ Σ :=
⋃n

i=1
Σi, respectively.

Define the transition projections P̄ : T × Σℓ → T, Q̄i :
Ti × (Σi ∩ Σℓ) → Ti (i ∈ n). Let Ẽ := P̂ [E,Σℓ] be the

projected plant and let L̃f ⊂ L̃ be the set of forbidden

locations. If for i ∈ n, Qi is an Ei-observer and OCC for

Ei, then supS(E, L̃f) = supS(Ẽ, L̃f)‖E.

Proof: The proof is similar to that of Theorem 2 and

Proposition 4 by considering E2 as E2‖ · · · ‖En.

This property was pointed out by [14], [26] and later in

more general form by [23], and Corollary 1 extends it to

systems modeled by EFAs.

VI. EXAMPLE - MANUFACTURING WOKRCELL

Consider a manufacturing workcell borrowed from [10],

consisting of three machines M1, M2, and M3, working on

parts stored in two buffers B1 and B2 of size 16 and 8,

respectively. To increase the practical usage and complexity

of the workcell, two inspection unites TU1 and TU2 are

added to randomly inspect parts from B1 and B2. Parts that

are qualified will be returned to the buffers, otherwise they

will be eliminated. Fig. 2 shows the workcell product flow

TU2 B2

OUT1 M2 M3 OUT2

TU1 B1 M1 IN
!test1

return1

!test2

return2

tb13

pb23tb22

pb12!o1

in

!pb11

!o2

eliminate1

eliminate2

Fig. 2: The manufacturing workcell control flow.

ℓ0

ℓ1

in

!pb11

(a) M1

ℓ0

ℓ1

!o1

pb12

tb22

(b) M2

ℓ0

ℓ1

!o2

pb23

tb13

(c) M3

ℓ0 ℓ1!test1

return1

eliminate1
g : b1 > 0

a : b1 := b1 − 1

g : b1 < 16

a : b1 := b1 + 1

(d) TU1

ℓ0 ℓ1!test2

return2

eliminate2
g : b2 > 0

a : b2 := b2 − 1

g : b2 < 8

a : b2 := b2 + 1

(e) TU2

ℓ0

!pb11

pb12

pb23
g : b2 < 8

a : b2 := b2 + 1

g : b1 < 16

a : b1 := b1 + 1

g : b1 < 16

a : b1 := b1 + 1

(f) SPEC1

ℓ0

tb22

tb13
g : b1 > 0

a : b1 := b1 − 1

g : b2 > 0

a : b2 := b2 − 1

(g) SPEC2

Fig. 3: EFA components of the example

{ℓ0, ℓ1}

g : b1 > 0

a : b1 := b1 − 1

g : b1 < 16

a : b1 := b1 + 1

return1

eliminate1

(a) ˜TU1

{ℓ0, ℓ1}

g : b2 > 0

a : b2 := b2 − 1

g : b2 < 8

a : b2 := b2 + 1

return2

eliminate2

(b) ˜TU2

Fig. 4: Abstracted EFA models of TU1 and TU2.

and Fig. 3 illustrates the EFA components of the system in

which the events with exclamation mark are the uncontrol-

lable events and the shaded circles are the marked locations.

The domain of the variables b1 and b2 are, respectively,

D1 = {0, 1, 2, . . . , 16} and D2 = {0, 1, 2, . . . , 8} that

indicate the number of parts in the two buffers and their

maximum capacity. B1 and B2 initially contain no part, i.e.,

D0 = {(0, 0)}, and all values are marked Dm = D1 ×D2.

The workcell specifications are as follows. SPEC1: buffers

B1 and B2 must not overflow, i.e., a machine must not try to

put a part in a buffer when it is full, formally, when b1 = 16
or b2 = 8. SPEC2: buffers B1 and B2 must not underflow,

i.e., a machine must not try to take a part from a buffer

when it is empty, formally, when b1 = 0 or b2 = 0. The

corresponding EFAs for SPEC1 and SPEC2 are depicted in

Fig. 3(f) and Fig. 3(g), respectively.

To apply the model abstraction using transition projection

as mentioned earlier, first we find the local events in the

system by checking the conditions in Definition 4 for all

the events. The first candidates for the set of local events



TABLE I: Optimal nonblocking supervisory synthesis results

of the manufacturing workcell example

Reachable States Supervisor States

Original Models 4896 4752

Abstracted Models 1224 1188

are Σℓ = {in, !test1, !test2, !o1, !o2}. In this set, the events

“!o1” and “!o2” do not fulfill the observer property and there-

fore, are eliminated from the list. Also, the event “in” is found

to be inconsistent with OCC conditions; thus it is removed.

Finally, the remaining local events Σℓ = {!test1, !test2} are

used to project the EFA components. The projection of TU1

and TU2 are depicted in Fig. 4(a) and Fig. 4(b), respectively,

while the rest are the same as the original ones. The optimal

nonblocking and controllable guards added to the abstracted

system are the same as the original system in [10]. Table I

shows the result of the optimal nonblocking supervisory

synthesis for both the original and the abstracted systems.

VII. CONCLUSION

In this paper we have extended previous work on model

abstraction by natural projection with a modified observer

property to include the EFA modeling formalism. Transition

projection is introduced as an extension of natural projection

for EFAs by directly projecting the conditional transitions.

We independently compute the projection of the low-level

components without regard to their mutual conflict. Subse-

quently, to reduce computational complexity, we compute

the high-level coordinators based only on abstracted models

of the low-level components. Effective and consistent model

abstractions are accomplished through transition projections

with the observer and OCC properties. A manufacturing

workcell example demonstrates the computational effective-

ness and practical usage of the proposed approach. A spe-

cial case of this abstraction, including additional structural

reduction, has been applied on a large-scale manufacturing

workcell [30], where more than 98% of the computational

time and space has been saved.
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