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Numerical Sensitivity of Linear Matrix Inequalities
Using Shift and Delta Operators

Bengt Lennartson Member, IEEE(*), Richard H.
Middleton, Fellow, IEEE and Ivar Gustafsson

Abstract—The numerical sensitivity of Linear Matrix Inequalities
(LMIs) arising from discrete-time control with short sampling periods
is analyzed using shift and delta operators. The delta operator avoids
cancellation problems for short sampling periods, and it includes a
system scaling proportional to the inverse of the sampling period. The
numerical sensitivity of both these mechanisms is investigated analytically,
and verified by numerical examples. The conclusion is that the scaling
procedure is (somewhat surprisingly) much more essential for shorter
sampling periods than avoiding the cancellation problem.

I. INTRODUCTION

Linear Matrix Inequalities (LMIs) have been used extensively
during the last decade. The main reason is that LMIs can be solved
very efficiently by applying interior-point methods. Many signals,
systems and control problems can also be formulated as convex
optimization problems including LMIs, see [1], [2]. For example,
various H∞ robust control problems can be solved via a line search
over a parameter, γ, of LMIs.

LMIs are formulated and solved as semidefinite programming
(SDP) problems. The differential sensitivity of the optimal solution
to SDP problems under perturbation of input parameters has been
investigated in e.g. [3], [4]. In this paper two more specific numerical
sensitivity problems are analyzed for LMIs based on discrete-time
shift operator models. These sensitivity issues are related to scaling
and cancellation, two well-known numerical problems for shift op-
erator models that are conveniently solved by introducing the delta
operator [5]. More recently, delta operator based LMIs have been
introduced, often related to H∞ robust control problems [6], [7].

A preliminary analysis of numerical properties of shift and delta
operator LMIs was given in [8]. A more detailed analysis, including
a deeper understanding of the underlying mechanisms, is given in
this paper. The LMIs considered are based on the bounded real
lemma, which is used to compute the induced norm from the input
disturbance signal to the output performance signal. The results in
this paper are easily adapted to other LMI based applications.

To obtain a natural convergence from the discrete-time to the
continuous-time signal norm, both for shift and delta operator models,
a signal scaling for the input and output signals is introduced. This is
done in the same way as in [9], [10]. The shift operator based LMI
is then shown to become nearly singular for short sampling periods,
not only for the requested optimal γ-value, but also for γ-values far
away from the optimal solution.

This ill-conditioned behavior generates significant errors for short
sampling periods. In fact, these errors are more severe than those
which arise because of the more well-known cancellation, which
occurs both in LMIs and corresponding Riccati equations using shift
operator models [8], [10], [5]. However, it is possible to avoid the near
singularity for arbitrary γ-values by a simple scaling transformation.
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This means that the cancellation problem can be separated, and it
is then shown to be of much less importance than the singularity
problem.

II. SHIFT AND DELTA OPERATOR MODELS

The shift and the delta operator models are briefly presented in
this section, including some useful transformations between them. A
natural signal scaling of the ordinary shift operator model is also
introduced, related to the induced norm that will be solved in the
next section.

A. Shift operator model

Consider the following discrete-time state space model on the shift
operator form�

qx(tk)

y(tk) � =

�
Aq Bq0

Cq0 Dq � �
x(tk)

u(tk) � , Gq0

�
x(tk)

u(tk) � (1)

where the shift operator q is defined as qx(tk) = x(tk+1). The state
vector x, the input signal u and the output signal y have dimensions
n, nu and ny , respectively. The discrete-time updates occur at times
tk, k = 0, 1, 2, . . ., where the time interval between two updates is
the sampling period h = tk+1 − tk. The subscript 0 is included to
separate this shift operator model Gq0 from the signal scaled shift
operator model Gq , which will be introduced in Section II-C and
used in the rest of the paper.

B. Delta operator model

By introducing the delta operator δx(tk) = (x(tk+1) −
x(tk))h−1 = (Aq −I)h−1x(tk)+Bq0h

−1u(tk), [5], the state space
model (1) can be rewritten in delta operator form as�

δx(tk)

y(tk) � =

�
Aδ Bδ

Cδ Dδ � �
x(tk)

u(tk) � , Gδ

�
x(tk)

u(tk) � (2)

Observe that the delta operator model is an exact representation of
the discrete-time system, assuming that the input signal is piece-
wise constant as in the shift operator model. This can be compared
with e.g. the discrete Euler approximation, where the system matrix
In + hAc is an approximation of Aq . Introducing the matrices E =
diag(In, 0) and Th = diag(hIn, I), where the dimension of the
lower identity matrix in Th is given by the adjacent matrices, the
relation between the the shift and delta operator form can be shortly
expressed as Gq0 = E + ThGδ .

There are two main reasons for introducing the delta operator for
discrete-time models. Firstly, there is no natural transition and con-
vergence from an ordinary discrete-time model in the shift operator
q to the corresponding continuous-time model. Secondly, the shift
operator exhibits bad numerical behavior for short sampling periods.
Both problems are naturally solved by the delta operator [5], [8].

C. Signal scaling of the shift operator model

Multiplying both the input signal u and the output signal y by a
scalar does not change the input/output behavior. This is the focus
when the H∞-norm is computed in the next section by the induced
norm from the input to the output signal. Observe that the system
is then often a closed loop system, where the input is a disturbance
signal and the output is a performance signal, while the control and
measured plant outputs are internal signals.
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Compared to the model in (1), the shift operator model with the
scaled input signal uh =

√
hu and the scaled output signal yh =√

hy becomes

Gq =

�
Aq Bq

Cq Dq � =

�
In + hAδ

√
hBδ√

hCδ Dδ � = E + T
1

2

h GδT
1

2

h

(3)
A consequence of this signal scaling with respect to the sampling
period is that the size of the signal yh can be expressed by the norm
‖yh‖2 = � ∞

k=0
y′

h(tk)yh(tk) = � ∞
k=0

y′(tk)y(tk)h The second
sum converges to a corresponding (Riemann) integral when h → 0,
which is in fact the main motivation for introducing the factor

√
h

in this state space model. Identical arguments hold for the norm of
the input signal ‖uh‖.

The same type of signal scaling was used in [9], [10] for the
performance output and disturbance input signals. This scaling is
important to get comparable behavior when e.g. different sampling
periods are evaluated. The same type of scaling also appears in
traditional sampled-data control, where a continuous-time criterion
is lifted to a corresponding discrete one.

III. LINEAR MATRIX INEQUALITIES

Computation of the H∞ norm using linear matrix inequalities
(LMIs) is briefly presented in this section, both for systems on shift
and delta operator form. It is well known that for a stable system
G, with input u and output y, the H∞ norm ‖G‖∞ is given by the
induced norm sup‖u‖6=0

‖y‖
‖u‖

, cf. [11]. This norm can be calculated
by solving linear matrix inequalities (LMIs) [12], [1].

A. Shift operator LMI

For the shift operator case, the following lemma shows how to
solve the H∞ norm.

Lemma 1: Consider a stable discrete-time system G on signal
scaled shift operator form Gq (3). The H∞ norm ‖G‖∞ < γ, if
and only if there exists a P = P ′ > 0 such that

Mq(P, γ) = � Mq11 (P ) Mq12 (P )
M ′

q12 (P ) Mq22 (P, γ) � < 0 (4)

where
Mq11 (P ) = A′

qPAq − P + C′
qCq

Mq12 (P ) = A′
qPBq + C′

qDq (5)

Mq22 (P, γ) = B′
qPBq + D′

qDq − γ2I
2

The minimal value of γ is obtained at the same time as the unknown
P > 0 is computed. This result is based on the bounded real lemma,
see e.g. [12], where a Schur complement on a Riccati inequality gives
the LMI (4).

B. Delta operator LMI

In the same way as for the shift operator case, an LMI can be
formulated for delta operator models. The corresponding Riccati
equation can be found in e.g. [5], [10]. Ones again, a Schur com-
plement gives the following result.

Lemma 2: Consider a stable discrete-time system G in delta op-
erator form Gδ (2). The H∞ norm ‖G‖∞ < γ, if and only if there
exists a P = P ′ > 0 such that

Mδ(P, γ) =

�
Mδ11 (P ) Mδ12 (P )

M ′
δ12

(P ) Mδ22 (P, γ) � < 0 (6)

where

Mδ11 (P ) = A′
δP + PAδ + hA′

δPAδ + C′
δCδ

Mδ12 (P ) = PBδ + hA′
δPBδ + C′

δDδ (7)

Mδ22 (P, γ) = hB′
δPBδ + D′

δDδ − γ2I
2

Similar LMI’s based on the delta operator can be found in e.g. [6],
[13].

Comparing the shift and delta operator matrices in (3), the block
matrices (5) in Mq are related to the corresponding delta operator
matrices in (7) as Mq11 (P ) = hMδ11 , Mq12 (P ) =

√
hMδ12 ,

and Mq22 (P, γ) = Mδ22 . Applying the transformation Th =
diag(hIn, I), we then obtain the following relation between the LMI
matrices Mq and Mδ

Mq(P, γ) = T
1

2

h Mδ(P, γ)T
1

2

h (8)

C. Relation between delta operator and continuous LMIs

For a continuous-time system Gc = � Ac Bc

Cc Dc � , the LMI matrix

corresponding to Mδ(P, γ) is

Mc(P, γ) =

�
A′

cP + PAc + C′
cCc PBc + C′

cDc

B′
cP + D′

cCc D′
cDc − γ2I �

(9)
The block matrices in (7) and the fact that Gδ = Gc + O(h),
cf. [8], imply that Mδ(P, γ) = Mc(P, γ) + O(h). Hence, the LMI
formulation in the delta operator form converges to the corresponding
continuous-time one. This is an expected but also essential conver-
gence property in the following numerical sensitivity analysis.

IV. NUMERICAL SENSITIVITY PROBLEMS

Two numerical sensitivity problems related to the shift operator
LMI Mq will be further analyzed in this section. First, it will be
shown that the LMI problem in Lemma 1 becomes ill-conditioned
for short sampling periods. Secondly, a cancellation is identified in
the block matrix Mq11 (P ) for short sampling periods.

A. Ill-conditioned shift operator LMI

LMIs are normally solved as convex optimization problems, see
e.g. [2]. To show this, introduce the vector ξ = [vec(P )′ γ]′ includ-
ing the unknown variables. Then consider the following semidefinite
programming problem, corresponding to the LMI in Lemma 1

min γ

subject to F (ξ) = diag(−Mq(P, γ), P ) > 0
(10)

This optimization problem can be solved by an interior-point method
[2], where the barrier function φ(ξ) = − log det F (ξ) is introduced.
The original criterion γ is then replaced by the approximation f(ξ) =
θγ + φ(ξ) = θγ − log det F (ξ), where the approximation error is
reduced when the parameter θ is increased. The minimization of this
criterion is a convex optimization problem that can be solved by
ordinary Newton type algorithms iteratively for increasing θ [2].

Starting with a feasible solution such that F (ξ) > 0 means that
detF (ξ) > 0. Decreasing γ means that finally detF (ξ) gets close
to zero and the barrier function φ(ξ) becomes large. At the optimum
F (ξ) is approximately singular and det F (ξ) ≈ 0. Hence, there is a
problem when det F (ξ) is close to zero also when γ is far away from
the optimum, and we get an ill-conditioned optimization problem.

Since the determinant of Mq according to (8) can be expressed as
detMq(P, γ) = det(T

1

2

h Mδ(P, γ)T
1

2

h ) = detTh det Mδ(P, γ) =
hn det Mδ(P, γ), we find that this ill-conditioned behavior occurs
for short sampling periods, since

detF (ξ) = det diag(−Mq(P, γ), P )

= (−1)n+nuhn det Mδ(P, γ) detP
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is close to zero independently of γ when the sampling period h is
small.

Hence, the shift operator LMI becomes ill-conditioned for short
sampling periods. Since the singularity of Mq is expected to be a
unique property of the optimal solution, it is hard to find the exact
minimal value of γ when this property is not fulfilled. This will also
be confirmed in the numerical investigation in Section VI, where a
number of SDP solvers are unable to solve the shift operator LMI
Mq < 0 for short sampling periods.

The relation (8) suggests however to scale Mq with T
− 1

2

h on both
sides, to avoid the singularity problem for Mq . We therefore introduce
the following scaled LMI problem

MS(P, γ) = T
− 1

2

h Mq(P, γ)T
− 1

2

h < 0 (11)

which gives the same optimal γ as the shift operator LMI, but without
the singularity problem for small sampling periods.

As long as the corresponding continuous-time system Gc is well
behaved, the continuous-time LMI solution can be computed without
numerical problems. Because Mδ(P, γ) → Mc(P, γ) when h →
0, the same can be expected for the delta operator LMI solution,
especially for shorter sampling periods. Since algebraically MS =
Mδ , this means that the scaled LMI problem also can be expected
to behave well for shorter sampling periods. However, one problem
remains and that is the cancellation in both Mq and MS . This will
be discussed in the next subsection.

B. Cancellation in shift operator LMI

The block matrix Mq11 = A′
qPAq − P + C′

qCq in (5) includes a
cancellation for short sampling periods, since then Aq = I + O(h)
and Mq11 = (I + O(h))′P (I + O(h)) + hC ′

δCδ − P = Ph − P +
O(h) = O(h), where Ph ≈ P . This cancellation can be avoided
either by using the delta operator matrix Mδ , or simply be replacing
the block matrix Mq11 in Mq by M∆11

= A′
∆P+PA∆+A′

∆PA∆+
C′

qCq where A∆ = hAδ (Aq = I + A∆). The LMI Mq(P, γ) < 0
is then replaced by

M∆(P, γ) =

�
M∆11

(P ) Mq12 (P )

M ′
q12 (P ) Mq22 (P, γ) � < 0 (12)

Note that algebraically M∆ = Mq , but numerically the cancellation
problem is avoided in M∆. In fact, we have now separated the
two properties of the delta operator from an LMI perspective. The
cancellation is avoided in M∆ (12), and the system scaling, including
the 1/h factor in both Aδ and in the delta operator, is introduced in
MS . In the following two sections an error analysis for all four LMI
problems Mq < 0, M∆ < 0, MS < 0, and Mδ < 0 will be given,
both analytically and numerically.

V. ERROR ANALYSIS

We will now investigate the numerical error in the computation
of the LMI matrices Mq , M∆, MS , and Mδ . In particular, the
contribution from the cancellation in Mq and MS will be analyzed
as a function of the sampling period h.

A. Errors in the LMI matrices

Motivated by floating point arithmetic implementations, we will
use a relative error analysis [14]. It is well known that subtraction be-
tween two uncertain numbers being almost equal yields cancellation
of digits. To be more precise, let aε and bε be stored representations
of two numbers a and b. Then aε = (1 + εa)a and bε = (1 + εb)b,
where |εa| ≤ µ and |εb| ≤ µ, and µ is the machine precision
(µ ≈ 2 · 10−16 in MATLAB). Now assume that the subtraction

is performed according to the IEEE-standard, [14]. Then the stored
result is (a − b)ε = (1 + εs)(a

ε − bε) with |εs| ≤ µ.
For matrices similar expressions can be formulated introducing the

Hadamard (entry-wise) matrix multiplication [15], the one matrix 1,
and the relative error matrix ε, where [1]ij = 1 and [ε]ij = εij .
Then Aε = (1 + εA) ◦ A and (A −B)ε = (1 + εs) ◦ � (1 + εA) ◦
A− (1+εB)◦B � . Neglecting the quadratic error terms εs ◦εA ◦A
and εs ◦εB ◦B, the error in the matric subtraction can be expressed
as

(A−B)ε− (A−B) = (εs +εA)◦ (A−B)+(εA −εB)◦B (13)

where the asymmetry between A and B is introduced to fit the
analysis of the cancellation in Mq11 . Introducing the corresponding
entry-wise division, using the notation ◦/ , the relative error becomes

((A−B)ε−(A−B))◦/ (A−B) = (εs+εA)+(εA−εB)◦B ◦/ (A−B)
(14)

Obviously this error becomes large when the elements in A−B are
small. Remind that the elements in the error matrices ε∗ are no larger
in magnitude than µ. Based on this result we consider two cases:

1) The matrix A − B becomes small when the sampling period
h → 0, i.e. A − B = O(h), while A = O(1) and B = O(1).
According to (14) the elements of (A−B)ε then have a relative
error of size O(µ + µh−1) for small h.

2) The matrix A − B = O(1) for all sampling periods. Then
the elements of (A − B)ε have a relative error of size O(µ)
independently of h.

This error analysis is now applied to the LMI matrices Mq , Mδ ,
MS , and M∆. For Mq11 in (5), let A = A′

qPAq+C′
qCq and B = P ,

which leads to A−B = Mq11 . Since the analysis is focused on the
cancellation, it is assumed for simplicity that A = A′

qPAq + C′
qCq

is computed without error, but stored with a relative error as well as
P . Based on (13), the error in the computation of Mq11 can then be
expressed as

Mε
q11(P ) = Mq11(P ) + εq11 ◦ Mq11(P ) + εP ◦ P (15)

where εq11 = O(µ) and εP = O(µ). Since Mq11 = A−B = O(h)
according Section IV-B, while P = O(1), the elements of M ε

q11
have

a relative error, according to case one above, of size O(µ+µh−1) for
small h. This highlights the effect of the cancellation when h → 0.

The other block matrices in Mq are computed according to case
two above without any cancellation, and can therefore be simplified
to Mε

q12
(P ) = Mq12 (P ) + εq12 ◦ Mq12 (P ) and Mε

q22
(P, γ) =

Mq22 (P, γ) + εq22 ◦ Mq22 (P, γ), where the relative errors εq12

and εq22 are of size O(µ). Introduce the error matrix due to the
cancellation in Mq11

P ε = diag(εP ◦ P, 0nu×nu ) (16)

Since P = O(1), we observe that P ε = O(µ). Together with (15),
Mε

q (P, γ) can now be formulated as M ε
q (P, γ) = Mq(P, γ) + ε ◦

Mq(P, γ) + P ε, where ε = 	 εq11
εq12

ε′

q12
εq22 
 = O(µ). Applying the

transformation (8) finally gives

Mε
q (P, γ) = T

1

2

h � Mδ(P, γ) + ε ◦ Mδ(P, γ) + P ε/h � T 1

2

h

Similar analysis shows that the errors in Mδ and M∆ can be
expressed in the same way, but without the last term P ε, since there is
no cancellation involved in these LMIs. For MS the error term P ε due
to the cancellation remains, while the transformation T

1

2

h disappears
as well as in Mδ . By these remarks we are ready to formulate the
following theorem.
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Theorem 3: Assume that Mδ is computed and stored with relative
error ε as

Mε
δ (P, γ) = Mδ(P, γ) + ε ◦ Mδ(P, γ) (17)

where the relative error matrix ε = O(µ). The corresponding errors
in Mq , M∆ and MS can then be expressed as

Mε
q (P, γ) = T

1

2

h (Mε
δ (P, γ) + P ε/h)T

1

2

h (18)

Mε
∆(P, γ) = T

1

2

h Mε
δ (P, γ)T

1

2

h (19)

Mε
S(P, γ) = Mε

δ (P, γ) + P ε/h (20)

where the error matrix due to the cancellation P ε = O(µ). 2

This theorem highlights the fact that there are mainly two error
sources in the shift operator based LMI calculations. The first has
to do with the bad scaling for shorter sampling periods, expressed
by the transformation matrix T

1

2

h and present in Mq as well as in

M∆. Due to T
1

2

h in (18) and (19) the LMI problem becomes ill-
conditioned, where the LMI matrices Mq and M∆ becomes near
singular independently of γ when h → 0, according to the analysis
in Section IV-A. The other error source is the cancellation in Mq and
MS , resulting in the error term P ε/h. Both these error sources are
avoided in the delta operator form Mδ .

B. Error sensitivity in the objective function

To investigate in more detail how the cancellation error influences
the optimization, first assume that the objective function in (10)
depends on an error vector ε included in the constraint function
F (ξ, ε) > 0, that is f(ξ, ε) = θγ − log det F (ξ, ε) Then the partial
derivative

∂f(ξ, ε)

∂εi

= − 1

det F (ξ, ε)

∂

∂εi

det F (ξ, ε)

= −tr � F−1(ξ, ε)
∂

∂εi

F (ξ, ε) � (21)

This partial derivative is now analyzed for the scaled LMI problem
MS < 0, which only includes the cancellation error but not the
near singularity problem. The error term due to the cancellation
P ε/h, defined in (16), depends on the error matrix εP . Hence,
we investigate (21) with respect to the elements in this matrix
εpij

= [εP ]i,j . First consider (20), where we only include the error
matrix εP but not ε in Mε

δ . This means that Mε
δ in (20) is simplified

to Mδ = MS , and we obtain

F (ξ,εP ) = diag(−MS(P, γ) − P ε/h, P )

= diag � − MS(P, γ) − (1/h)diag(εP ◦ P, 0nu×nu ), P �
which gives � ∂F (ξ,εP )

∂εpij
�

k,l

= � −pij

h
k = i, ` = j

0 otherwise

where pij = [P ]ij . Since the inverse F (ξ,εP )−1 = diag �
−(MS(P, γ)+P ε/h)−1, P−1 � , the partial derivative of the objective
function (21) can now be expressed as

∂f(ξ,εP )

∂εpij

= − �� MS(P, γ) +
P ε

h � −1 �
j,i

pij

h

This result is used in the following theorem.
Theorem 4: For the scaled LMI problem MS < 0 the sensitivity

of the approximative objective function f(ξ) = θγ − log detF (ξ),
with respect to the cancellation errors εpij

= [εP ]i,j in P ε, can
approximately be determined as

f(ξ, εpij
) ≈ f(ξ, 0) + εpij

∂f(ξ, εP )

∂εpij �� εP =0
= f(ξ, 0) + εpij

cij

h

for i, j = 1, . . . , n, where cij = −pij [MS(P, γ)−1]j,i. 2

Observe that f(ξ, 0) becomes large at the optimum due to a large θ,
but also cij , since it includes the inverse of MS that is near-singular
at the optimum. This is valid for arbitrary sampling periods, which
shows that the objective function will be sensitive to the error in P ε

for sufficiently small sampling periods.
Now introduce a relative error in the determination of the optimal

γ value for the actual LMI problems

eγ =
|γ − γ0|

γ0

(22)

where γ0 is the true optimal value and γ is the optimal value
computed by the different LMIs. As already observed, for the scaled
LMI problem MS < 0, the objective function becomes more and
more sensitive to the error in P ε due to cancellation for shorter
sampling periods, according to Theorem 4. Since this error sensitivity
is proportional to 1/h, and the determination of the optimal γ value
is based on this objective function, the relative error eS

γ for the LMI
MS < 0 is also expected to increase with the same factor 1/h, that
is

eS
γ ≈ εS

h
for small h (23)

where εS is a constant factor. This error function is verified in the
next section, where four different SDP solvers generate the same
error behavior for shorter sampling periods h, and the value of εS is
shown to be of the same order as the machine precision.

VI. NUMERICAL ILLUSTRATIONS

Consider the following resonant dynamic system with continuous-
time transfer function

Gc(s) =
12

(s + 1)(s2 + 0.2s + 1)(s2 + 0.4s + 4)

where the accuracy in the computation of the corresponding discrete-
time H∞ norm will be evaluated. This is done by solving the four
different LMIs considered in this paper for various sampling periods
h ≤ 1 using different SDP solvers.

First a balanced state-space model is generated using the MATLAB
function ssbal. Corresponding discrete-time state-space models
with zero-order hold circuit at the control input are then computed for
different sampling periods, both in shift and delta operator versions.
Finally, the minimal γ value is computed for the different LMIs
Mq < 0 (4), Mδ < 0 (8), M∆ < 0 (12) and MS < 0 (11), resulting
in corresponding relative errors eq

γ , eδ
γ ,e∆

γ , and eS
γ .

The LMIs are solved by four different semi definite programming
(SDP) solvers SeDuMi [16], SDPT3[17], SDPA [18], and PENSDP
[19]. They are all run on top of MATLAB via the user friendly
interface YALMIP [20].

In order to obtain a correct relative error eγ (22) the true gamma
value γ0 is determined by the maximum frequency response based
on the delta operator with a very dense grid (20000 points around the
maximum at ≈ 1 rad/s). As an extra check, this result is compared
to the continuous-time infinity norm function in MATLAB for very
short sampling periods, and the corresponding discrete one for longer
sampling periods, with a very small relative difference around 10−11 .

The resulting relative errors eS
γ for the scaled LMI MS < 0

are shown in Fig. 1 for the different solvers. Since the cancellation
remains in MS the error eS

γ increases for shorter sampling periods
for all four solvers approximately as εS/h, the thin line in Fig. 1. The
constant εS ≈ 2 · 10−17 , which is of the same order as the machine
precision in MATLAB (2 · 10−16). This is reasonable since the error
source is a cancellation. The result also coincide with the analysis in
Section IV and especially Theorem 4 and (23).
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Fig. 1 Relative error for the SDP solvers SeDuMi (solid),
SDPT3 (dashed), PENSDP (dotted), and SDPA (dashdot), when
γ is minimized for the scaled LMI MS < 0.

Furthermore, note that for longer sampling periods the relative error
depends more on the general accuracy of the individual LMI solver.
No adjustments of the tuning parameters for the different solvers have
been performed, and we observe that the solver SDPA is generally
tuned to achieve less relative accuracy (≈ 10−7) than the other
solvers.

Corresponding relative errors for the delta operator case agree with
the more constant behavior of eS

γ for longer sampling periods, with
eδ

γ around 10−7 for SDPA and 10−8−10−9 for the rest of the solvers,
with a few outliers up to 10−7 for SDPT3. The difference is that the
delta operator LMI behaves equally well also for very short sampling
periods. For all practical choices of sampling periods we find on the
other hand that the scaling mechanism in MS is sufficient to achieve
perfect numerical results. The cancellation error simply shows up
only for unrealistically short sampling periods.

The ill-conditioned behavior in both Mq and M∆ is however
shown to be much more severe. The relative errors for the shift
operator case eq

γ are shown in Fig. 2. It is evident that the solvers
have great difficulties to generate accurate results, in the case of
SDPA already at h = 0.0035 and for PENSDP at h = 0.001. The
most robust solver here seems to be SDPT3, which generates accurate
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Fig. 2 Relative error for the SDP solvers SeDuMi (solid),
SDPT3 (dashed), PENSDP (dotted), and SDPA (dashdot), when
γ is minimized for the shift operator LMI Mq < 0.

result down to h = 10−6. For the SeDuMi solver the relative error
eq

γ increases as 1/h in the same way as the cancellation error. To
summarize the singularity problem results in much more diversified
error behaviors, more dependent on algorithmic details in the different
solvers.

The removal of the cancellation in M∆ does not change its
error behavior. The same severe errors as for the shift operator
LMI are shown for shorter sampling periods. The reason is that
the cancellation error according to Fig. 1 appears at much shorter
sampling periods than the error caused by the singularity problem,
still included in M∆.

We also observe that Mε
∆ = T

1

2

h Mε
δ (P, γ)T

1

2

h and Mε
q =

T
1

2

h Mε
S(P, γ)T

1

2

h according to Theorem 3. Since both the delta
operator and the scaled LMIs work well also for shorter sampling
periods (except very small h for the scaled LMI), it is obvious that
the bad error behavior for shorter sampling periods related to both
Mq and M∆ is purely caused by the singularity problem represented
by T

1

2

h .
To conclude, a numerically robust solution for shorter sampling

periods is to use the delta operator model, or to introduce the simple
scaling mechanism in MS = T

− 1

2

h MqT
− 1

2

h . Both approaches work
fine for all practical choices of sampling periods.

VII. CONCLUSIONS

Numerical properties have been analyzed when the H∞ norm is
calculated for discrete-time systems by Linear Matrix Inequalities
(LMIs). In particular, the behavior for shorter sampling periods has
been investigated. By analysis and numerical illustrations it has
been shown that there are two main error sources when systems
are modeled by the ordinary discrete-time shift operator. The quite
well-known cancellation problem in the shift operator case is shown
to be less important compared to the fact the LMI problem is
fundamentally ill-conditioned for shorter sampling periods h. In a
study of a numerical example, four different numerical solvers for
LMIs exhibit problems with this ill-conditioned behavior, two of
them with severe errors for sampling periods that may appear in
real applications.

All these numerical problems are solved by using a delta operator
formulation of the LMI. Alternatively, it is possible to use the shift
operator model but then apply a simple scaling transformation on the
LMI. This transformation captures the system scaling mechanism in
the delta operator model, but does not avoid the cancellation problem.
The relative error then however becomes negligible for all practical
choices of sampling periods.
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