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WEAK CONVERGENCE FOR A SPATIAL APPROXIMATION OF THE

NONLINEAR STOCHASTIC HEAT EQUATION

ADAM ANDERSSON AND STIG LARSSON

Abstract. We find the weak rate of convergence of approximate solutions of the nonlinear
stochastic heat equation, when discretized in space by a standard finite element method. Both
multiplicative and additive noise is considered under different assumptions.

This extends an earlier result of Debussche in which time discretization is considered for
the stochastic heat equation perturbed by white noise. It is known that this equation only
has a solution in one space dimension. In order to get results for higher dimensions, colored
noise is considered here, besides the white noise case where considerably weaker assumptions
on the noise term is needed. Integration by parts in the Malliavin sense is used in the proof.
The rate of weak convergence is, as expected, essentially twice the rate of strong convergence.

1. Introduction and main result

Let D ⊂ Rd be a bounded, convex and polygonal domain. We consider, for T > 0, the sto-
chastic heat equation with Dirichlet boundary condition, written in abstract form as a stochastic
evolution equation in H = L2(D):

(1.1) dX(t) + [AX(t)− f(X(t))] dt = g(X(t)) dW (t), t ∈ (0, T ]; X(0) = X0.

This equation is driven by a cylindrical Q-Wiener process (W (t))t∈[0,T ] in a filtered probability
space (Ω,F , (Ft)t∈[0,T ],P). The covariance operator Q is selfadjoint and positive semidefinite,
not necessarily of finite trace. For technical reasons we consider a deterministic initial value
X0 ∈ H .

The leading linear operator A is, for simplicity, taken to be −∆ with domain dom(A) =

H2(D) ∩ H1
0 (D), where ∆ =

∑d
k=1 ∂

2/∂x2k is the Laplace operator. It is well known that −A
generates an analytic semigroup of bounded linear operators on H . We denote it by (E(t))t≥0.

The spaces Ḣβ = dom(A
β
2 ), defined by fractional powers of A, are used to measure the spatial

regularity. We denote the norm and inner product in H = L2(D) by ‖ · ‖ and 〈·, ·〉.
Let U, V be separable Hilbert spaces and let L(U, V ) denote the Banach space of all linear

bounded operators. We denote by L1(U, V ) ⊂ L2(U, V ) ⊂ L(U, V ) the subspaces consisting
of trace class operators and Hilbert-Schmidt operators, respectively. We use the abbreviations
L(U) = L(U,U), L = L(H) when H = L2(D), and similarly for Lp, p = 1, 2. Central in the

theory of stochastic integration is the space U0 = Q1/2(H). We write L0
2 = L2(U0, H). By

Ckb(U, V ) we denote the space of not necessarily bounded functions from a Banach space U to a
Banach space V that have continuous and bounded Fréchet derivatives of orders 1, . . . , k. For
more precise definitions, see Section 2 below.

We use a “regularity parameter” β such that ‖A
β−1
2 ‖L0

2
= ‖A

β−1
2 Q

1
2 ‖L2 <∞. If Q = I, then

‖A
β−1
2 ‖L0

2
= ‖A

β−1
2 ‖L2 <∞, if and only if d = 1 and β < 1

2 , see (2.9). We consider two sets of
assumptions according to the type of noise term.

A. Additive noise in multiple dimensions. Assume that f ∈ C2
b(H,H), g(x) = I for all

x ∈ H , and ‖A
β−1
2 ‖L0

2
= ‖A

β−1
2 Q

1
2 ‖L2 <∞ for some β ∈ [ 12 , 1].
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B. Multiplicative noise in one dimension. Assume that f ∈ C2
b(H,H), g(x) = B+Cx+g̃(x),

where B ∈ L, C ∈ L(H,L), and g̃ ∈ C2
b(Ḣ

− 1
2 ,L). Moreover, assume that d = 1, Q = I,

and select any β ∈ (0, 12 ).

Under either of these assumptions we have a unique mild solution to (1.1) satisfying the
stochastic fixed point equation

(1.2) X(t) = E(t)X0 +

∫ t

0

E(t− s)f(X(s)) ds+

∫ t

0

E(t− s)g(X(s)) dW (s), t ∈ [0, T ].

One can also show that the solution has spatial regularity of order β, i.e., it is of the form
X : [0, T ]× Ω → Ḣβ, P-almost surely, see Theorem 2.3 below and the discussion preceding it.

In this paper we consider space discretization of equation (1.1) by means of a standard
finite element method. Let (Sh)h∈(0,1) be the family of spaces of continuous piecewise linear

functions corresponding to a quasi-uniform family of triangulations of D with Sh ⊂ H1
0 (D). The

parameter h specifies the maximal diameter in the triangulation. Let Ph : H → Sh denote the
orthogonal projection. We define the discrete Laplacian as the operator Ah : Sh → Sh satisfying
the variational equality

(1.3) 〈Ahψ, χ〉 = 〈∇ψ,∇χ〉, ∀ψ, χ ∈ Sh.

The finite element approximation of the elliptic problem Au = f is the unique solution of the
equation Ahuh = Phf . It is known that ‖uh − u‖ = ‖A−1

h Phf − A−1f‖ = O(h2) as h → 0, if
f ∈ L2(D). The semigroup generated by −Ah is denoted (Eh(t))t≥0. The spatially semidiscrete
analogue of (1.1) is to find a process (Xh(t))t∈(0,T ] with values in Sh such that

dXh(t) + [AhXh(t)− Phf(X(t))] dt = Phg(Xh(t)) dW (t), t ∈ (0, T ]; Xh(0) = PhX0,(1.4)

or in mild form

Xh(t) = Eh(t)PhX0 +

∫ t

0

Eh(t− s)Phf(Xh(s)) ds

+

∫ t

0

Eh(t− s)Phg(Xh(s)) dW (s), t ∈ [0, T ].

(1.5)

The existence of a unique mild solution can be proved in a similar way as for (1.2). It is also
known that we have strong convergence of order β under Assumptions A or B, see (2.26). Our
goal is to prove weak convergence in the form

E[G(X(T ))−G(Xh(T ))] = O(h2β−ǫ),

for any ǫ > 0 and any testfunction G ∈ C2
b.

For an exhaustive list of references for approximations of stochastic partial differential equa-
tions, see, e.g., [5]. We mention some works related to the situation studied here. Weak conver-
gence of numerical schemes for linear equations with additive noise is treated in [6], [14], [13],
and [19]. In the first paper full discretization of the stochastic heat equation is considered for
colored noise in multiple dimension, i.e., our Assumption A with f = 0. Papers [14] and [13]
deal with semidiscretization in space and full discretization, respectively, for the linear stochas-
tic heat, Cahn-Hilliard, and wave equations, also with additive colored noise. The fourth paper
provides an extension to impulsive noise.

The only results on weak convergence for nonlinear equations are those of [9], [10], [4], [5], [1]
and [24]. In the work [9], discretization in time with implicit Euler and Crank-Nicolson schemes
is considered for semilinear parabolic equations with additive noise. Paper [10] treats the wave
equation with additive white noise, discretized by a leap-frog scheme. This case is a bit different
from the others, due to the lack of analyticity of the semigroup for the wave equation in contrast
to the heat equation. In [4] semidiscretization in time for the nonlinear stochastic Schrödinger
equation with multiplicative white noise is considered.

The papers [4], [6], [14], [13], and [19] express the weak error by means of a Kolmogorov
equation after removing the linear term AX(t) by a transformation of variables. This trans-
formation does not work for the nonlinear heat equation. This difficulty is handled in [5] by
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means of an integration by parts from the Malliavin calculus. This paper proves weak conver-
gence of temporal semidiscretizations for the nonlinear heat equation with multiplicative noise
in one space dimension, i.e, our Assumption B. Under the same assumptions, except for an extra
boundedness condition on the nonlinearity, in [1] the method of [5] is exploited to prove weak
convergence for the invariant measure of temporally discrete approximations. In [24] the same
proof technique is used to study time discretization for the heat equation with additive noise in
multiple dimensions, i.e., our Assumption A.

In the present paper we extend the results of [24] and [5] to spatial discretization. Our
Assumptions A and B coincide with the ones in these two papers, respectively. Therefore we
may quote some moment estimates from these papers. One difficulty that arises in connection
with the spatial discretization is that the projector Ph does not commute with the projector
onto eigenspaces of A.

In all these works the rate of weak convergence is, up to an arbitrary ǫ > 0, twice that of
strong convergence. The Malliavin calculus is a useful tool in the study of weak convergence of
semilinear equations. It has been utilized in [9], [5], and [15] in completely different ways. It
plays a central role in the proof of our Theorem 1.1, following the method of [5]. In the papers
[1] and [24] the technique of [5] is also used.

The result of this paper actually concerns the convergence of the law L(Xh(T )) = P ◦
(Xh(T ))

−1 of the random variables (Xh(T ))h∈(0,1), as the mesh size parameter h → 0. We say
that the law of Xh(T ) converges weakly to that of X(T ), if E[G(Xh(T ))] → E[G(X(T ))] as
h→ 0, for all test functions G ∈ Cb(H,R), the space of all bounded continuous functions on H .
This convergence follows from the strong convergence E[‖Xh(T ) − X(T )‖2] = O(hβ), see [16]
and the discussion below, and the weak rate obtained is thus β under mild assumptions. For
G ∈ C2

b(H,R), we obtain in this paper the rate of weak convergence 2β − ǫ, for an arbitrary
ǫ > 0.

Theorem 1.1. Assume either Assumption A or Assumption B and let X and Xh be the solu-
tions of the equations (1.2) and (1.5), respectively. Then, for every test function G ∈ C2

b(H,R)
and γ ∈ [0, β), we have the convergence

|E[G(X(T ))−G(Xh(T ))]| = O(h2γ), as h→ 0.

The weak error is interesting by various reasons. It measures the error made by sampling
from an approximate probability law of X(T ), rather than the deviation from the trajectory
of an exact solution, as for the strong error. The result tells us that the weak error, when
approximating the quantity E[G(X(T ))] by E[G(Xh(T ))], is decreasing fast as h→ 0 for smooth
G.

Section 2 is devoted to preliminaries. In Subsection 2.1 compact operators and tensor products
are introduced. We need Schatten classes more general than the trace class and Hilbert-Schmidt
operators. In Subsection 2.2 some notation for Fréchet derivatives is fixed. The semigroup
framework and basic material on the finite element method are presented in Subsection 2.3. In
Subsection 2.4 the Malliavin calculus and stochastic integration is introduced. Subsection 2.5
is about the stochastic equations (1.2) and (1.5). In Section 3 two moment estimates for the
Malliavin derivative ofXh(t) are proved. Section 4 contains regularity results for the Kolmogorov
equation, adapting results from [5] and [24] to our setting. The proof of Theorem 1.1 is given
in Section 5.

2. preliminaries

2.1. Compact operators and tensor products. Given two separable real Hilbert spaces
(U, 〈·, ·〉U ) and (V, 〈·, ·〉V ), let L(U, V ) denote the Banach space of all bounded and linear
operators U → V endowed with the uniform norm. We write L(U) = L(U,U). Let (σi)i∈I be
the collection of singular values of a compact operator T ∈ L(U). These are the eigenvalues of
the operator |T | = (TT ∗)1/2. The index set I is finite or countable. Let, for 1 ≤ p < ∞, the
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Schatten class Lp = Lp(U) be all T ∈ L(U) for which

(2.1) ‖T ‖Lp =
(

∑

i∈I

σpi

)
1
p

<∞.

We set by definition L∞ = L. The Schatten classes are Banach spaces equipped with the
norms (2.1). The class L1 is the space of trace class operators. Take an arbitrary ON-basis
(en)n∈N ⊂ U . We define the trace of an operator T ∈ L1(U) as the quantity

Tr(T ) =
∑

i∈N

〈Tei, ei〉U .

It is independent of the particular choice of ON-basis. If T ∈ L1 and T ≥ 0, then Tr(T ) = ‖T ‖L1.
In general, the relation

(2.2) |Tr(T )| ≤ ‖T ‖L1

holds for T ∈ L1. It follows directly from the definition that Tr(T ) = Tr(T ∗) for T ∈ L1.
Moreover,

(2.3) Tr(ST ) = Tr(TS),

whenever S ∈ L(U, V ) and T ∈ L(V, U) satisfies ST ∈ L1(V ) and TS ∈ L1(U).
More generally, the class L2(U, V ) is the space of Hilbert-Schmidt operators from U to V . It

is defined as the Hilbert space with the scalar product and norm

〈S, T 〉L2(U,V ) =
∑

i∈N

〈Sei, T ei〉V = Tr(T ∗S) = Tr(ST ∗),(2.4)

‖T ‖L2(U,V ) =
(

∑

i∈N

‖Tei‖
2
V

)
1
2

=
√

Tr(TT ∗).(2.5)

The choice of ON-basis (en)n∈N ⊂ U is arbitrary. For U = V the class L2 = L2(U) is alone to
enjoy this property. For Lp with p 6= 2, only an eigenbasis of |T | can be used.

The following Hölder type inequality for Schatten classes holds:

(2.6) ‖ST ‖Lr ≤ ‖S‖Lp‖T ‖Lq ,

for r−1 = p−1 + q−1, p, q, r ∈ [1,∞]. The border case

(2.7) ‖ST ‖Lr ≤ ‖S‖L‖T ‖Lr

is included, meaning that Lr(U) is an ideal of the Banach algebra L(U). Also

(2.8) |〈S, T 〉L2 | = |Tr(ST ∗)| ≤ ‖ST ∗‖L1 ≤ ‖S‖L‖T ‖L1.

For more about the Schatten classes see [7].
The tensor product space U ⊗ V of two Hilbert spaces U and V is a Hilbert space together

with a bilinear mapping U × V → U ⊗ V, (u, v) 7→ u ⊗ v with dense range and with the inner
product

〈u1 ⊗ v1, u2 ⊗ v2〉U⊗V = 〈u1, u2〉U 〈v1, v2〉V , u1, u2 ∈ U, v1, v2 ∈ V.

If (un)n∈N ⊂ U and (vn)n∈N ⊂ V are ON-bases, then (um⊗ vn)m,n∈N ⊂ U ⊗V is an ON-basis.
The space U ⊗V can be realized in several isomorphic ways. If the tensor product u⊗ v realizes
a rank one operator (u ⊗ v)φ = 〈v, φ〉V u, for φ ∈ V , then U ⊗ V ∼= L2(V, U). If U and V are
spaces of functions of independent variables x ∈ D1 and y ∈ D2, then (u⊗ v)(x, y) = u(x)v(y) is
also a realization of U ⊗ V . For instance, if U = L2(D) and V = L2(Ω), where D is our spatial
domain and Ω the sample space, then U ⊗ V = L2(Ω × D) ∼= L2(Ω, L2(D)), i.e., L2(D)-valued
square integrable random variables. For a detailed introduction to tensor products, see [11,
Appendix E].
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2.2. Fréchet derivatives. Let (U, ‖ · ‖U ) and (V, ‖ · ‖V ) be Banach spaces. By Cmb (U, V ) we
denote the space of not necessarily bounded mappings g : U → V having m continuous and
bounded Fréchet derivatives Dg,D2g, . . . , Dmg. We endow it with the seminorm | · |Cm

b
(U,V ),

determined as the smallest constant C ≥ 0 such that

sup
x∈U

‖Dmg(x) · (φ1, . . . , φm)‖V ≤ C‖φ1‖U · · · ‖φm‖U , ∀φ1, . . . , φm ∈ U.

It will be convenient to write Cmb = Cmb (U, V ). From the context it will be clear what we mean.
Let us consider the important case when U is a Hilbert space and V = R. The Fréchet

derivative Dg(x) of a function g : U → R is a bounded linear functional on U for fixed x ∈
H and it can thus be identified by its gradient using the Riesz representation theorem, i.e.,
Dg(x) · φ = 〈Dg(x), φ〉. In the same way the second derivative enjoys a representation as a
bounded linear operator by the identity D2g(x) · (φ, ψ) = 〈D2g(x)φ, ψ〉. We will use both
representations and it will lead to no confusion.

2.3. The functional analytic framework. We will now introduce the semigroup framework
on which our analysis of equations (1.2) and (1.5) relies. Recall from Section 1 that A = −∆
with dom(A) = H2(D) ∩ H1

0 (D) and H = L2(D) with D ⊂ Rd a convex polygonal domain.
We denote ‖ · ‖ = ‖ · ‖H and 〈·, ·〉 = 〈·, ·〉H . The operator A is closed, selfadjoint and positive
definite.

There is an orthonormal eigenbasis (ϕi)i∈N ⊂ H with corresponding eigenvalues 0 < λ1 <
λ2 ≤ · · · ≤ λi → ∞, as i → ∞, for which Aϕi = λiϕi, i ∈ N. The asymptotics λi ∼ i2/d, as
i→ ∞, is well known. When the space dimension d = 1, as in Assumption B, we have

(2.9) Tr(A−
1
2γ) = ‖A− 1

2γ‖L1 = ‖A−
1
4γ‖2L2

<∞, ∀γ > 1, if d = 1.

This means that β ∈ (0, 1) under Assumption B.
We define norms of fractional orders by

‖v‖Ḣβ = ‖A
β
2 v‖ =

(

∑

i∈N

λβi 〈v, ϕi〉
2
)

1
2

, β ∈ R.

The spaces Ḣβ are then, for β ≥ 0, defined as dom(A
β
2 ) and for β < 0 as the closure of H with

respect to the Ḣβ-norm. The space Ḣ−γ of negative order can be identified with the dual space
of Ḣγ . Clearly Ḣ0 = H , and it is also well known that Ḣ1 = H1

0 (D) and Ḣ2 = H2(D)∩H1
0 (D),

see [22, Ch. 3].
Let (Sh)h∈(0,1) denote a family of standard finite element spaces of continuous piecewise

linear functions corresponding to a quasi-uniform family of triangulations, for which h denotes
the largest diameter in the triangulation. Then Sh ⊂ Ḣ1. By Ph we denote the orthogonal
projector of H onto Sh. Let Ah : Sh → Sh be the unique operator satisfying

〈Ahψ, χ〉 = 〈∇ψ,∇χ〉, ∀ψ, χ ∈ Sh.

This is the discrete Laplacian. By definition

(2.10) ‖A
1
2

hϕh‖ = ‖∇ϕh‖ = ‖A
1
2ϕh‖ = ‖ϕh‖Ḣ1 , ϕh ∈ Sh.

Therefore, Ph can be extended to Ḣ−1, so that for all ϕ ∈ Ḣ−1,

(2.11) ‖A
− 1

2

h Phϕ‖ = sup
ψ∈Sh

〈ϕ, ψ〉

‖A
1
2

hψ‖
= sup
ψ∈Sh

〈ϕ, ψ〉

‖A
1
2ψ‖

≤ sup
ψ∈Ḣ1

〈ϕ, ψ〉

‖A
1
2ψ‖

= ‖A− 1
2ϕ‖.

Moreover,

(2.12) ‖A
1
2

hPhϕ‖ ≤ C‖A
1
2ϕ‖, ϕ ∈ Ḣ1, uniformly in h.

This follows from (2.10) and the well-known fact that Ph is bounded with respect to ‖ · ‖Ḣ1 =

‖A
1
2 · ‖, when we use a quasi-uniform mesh family. Interpolation between this and (2.11) yields

(2.13) ‖AγhPhϕ‖ ≤ C‖Aγϕ‖, ϕ ∈ Ḣγ , γ ∈ [− 1
2 ,

1
2 ].
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Furthermore, (2.12) means that ‖A
1
2

hPhA
− 1

2 ‖L <∞. Hence,

‖A− 1
2A

1
2

hPh‖L = ‖(A− 1
2A

1
2

hPh)
∗‖L = ‖A

1
2

hPhA
− 1

2 ‖L ≤ C,

so that ‖A
1
2A

− 1
2

h Phϕ‖ ≤ C‖ϕ‖ or

‖A− 1
2ϕh‖ ≤ C‖A

− 1
2

h ϕh‖, ϕh ∈ Sh.

Interpolating between this and (2.10) yields

‖Aγϕh‖ ≤ C‖Aγhϕh‖, ϕh ∈ Sh, γ ∈ [− 1
2 ,

1
2 ].

Using also (2.13) yields the norm equivalence

(2.14) c‖Aγhϕh‖ ≤ ‖Aγϕh‖ ≤ C‖Aγhϕh‖, ϕh ∈ Sh, γ ∈ [− 1
2 ,

1
2 ].

The interpolations above are valid since (Ḣβ)β∈[−1,1] and (Ḣβ
h )β∈[−1,1] are real interpolation

spaces, where Ḣβ
h = Sh with norm ‖vh‖Ḣβ

h
= ‖A

β
2

h vh‖. For positive order this is standard, see

for instance [20]. For negative order, let β ∈ [0, 1] and notice that

[Ḣ0, Ḣ−1]β,2 = [(Ḣ0)∗, (Ḣ1)∗]β,2 = [Ḣ0, Ḣ1]∗β,2 = (Ḣβ)∗ = Ḣ−β.

We define the Ritz projector Rh : Ḣ
1 → Sh to be the orthogonal projection with respect to

the Ḣ1-scalar product. Since D is convex and polygonal it is well known that

(2.15) ‖A
s
2 (I −Rh)A

− r
2 ‖L ≤ Chr−s, 0 ≤ s ≤ 1 ≤ r ≤ 2.

For Ph the following error estimate holds

(2.16) ‖A
s
2 (I − Ph)A

− r
2 ‖L ≤ Chr−s, 0 ≤ s ≤ 1, 0 ≤ s ≤ r ≤ 2.

For more about the finite element method, see [2] for elliptic equations and [22] for parabolic.

Denote by Nh the dimension of Sh. There is an orthonormal eigenbasis (ϕhi )
Nh

i=1 ⊂ Sh cor-
responding to Ah with eigenvalues 0 < λh1 ≤ λh2 ≤ · · · ≤ λhNh

. The operators −A and −Ah
generate analytic semigroups (E(t))t≥0 and (Eh(t))t≥0, respectively. They are spectrally given
by

(2.17) E(t)v =
∑

i∈N

e−λit〈v, ϕi〉ϕi, v ∈ H, t ≥ 0,

and

Eh(t)vh =

Nh
∑

i=1

e−λ
h
i t〈vh, ϕ

h
i 〉ϕ

h
i , vh ∈ Sh, t ≥ 0.

The semigroup (Eh(t))t≥0 solves the parabolic equation u̇h+Ahuh = 0, t ≥ 0, with uh(0) = Phv,
in the sense that uh(t) = Eh(t)Phv.

Important for our analysis is the estimate

(2.18) ‖AγE(t)‖L + ‖AγhEh(t)Ph‖L ≤ Cγt
−γ , γ ≥ 0, t > 0, uniformly in h.

It is standard and is enjoyed by all analytic semigroups.
Let Pm denote the spectral projection onto the space spanned by the m first eigenvectors

(ϕi)
m
i=1 of A. An easy calculation shows that

(2.19) ‖(I − Pm)A−r‖L ≤ λ−rm , r ≥ 0.

In our analysis we will use the notation a . b, to mean that there exists a constant C > 0
such that a ≤ Cb. The constant will never depend on the mesh size h.

We will frequently use the following Gronwall lemma:

Lemma 2.1 (Generalized Gronwall lemma). Let ϕ(t) ≥ 0 be a continuous function on [0, T ].
If, for some A,B ≥ 0 and α, β ∈ [0, 1), the inequality

ϕ(t) ≤ At−α +B

∫ t

0

(t− s)−βϕ(s) ds
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holds, then there is C = C(B, T, α, β) such that

ϕ(t) ≤ CAt−α, t ∈ (0, T ].

2.4. The stochastic integral and Malliavin calculus. Since we use the Malliavin calculus
in the proof of our main result, we outline a framework for the stochastic integral in which this
calculus has a natural role. This is an alternative to the more classical procedure, presented
in [3]. Our presentation of the Wiener integral relies on [23], and the Malliavin calculus on [8]
and [18], where a natural extension of the framework of [21] to Hilbert space valued stochastic
integrals using tensor products is presented.

The covariance operator Q ∈ L(H) is self adjoint and positive semidefinite. Let Q1/2 denote
the unique positive square root. Let Q−1/2 be its inverse, restricted to (kerQ)⊥. Define the
Hilbert space U0 = Q1/2(H), equipped with the scalar product 〈u, v〉U0 = 〈Q−1/2u,Q−1/2v〉. If
Tr(Q) < ∞, then the triple i : U0 →֒ H is an abstract Wiener space, where i is the inclusion
mapping i : x 7→ x. This triple induces a Gaussian probability measure on H with mean 0
and covariance Q. It is referred to as an abstract Wiener measure. The space U0 is called the
Cameron-Martin space in this context.

Let I : L2([0, T ], U0) → L2(Ω) be an isonormal process: For every φ ∈ L2([0, T ], U0) the
random variable I(φ) is centered Gaussian and I has the covariance structure

E[I(φ)I(ψ)] = 〈φ, ψ〉L2([0,T ],U0), φ, ψ ∈ L2([0, T ], U0).

The existence of I follows by an application of the Kolmogorov Extension Theorem.
Define, for u ∈ U0, the cylindrical Q-Wiener process W : [0, T ]× U0 → L2(Ω) by

W (t)u = I(χ[0,t] ⊗ u), u ∈ U0, t ∈ [0, T ].

For u ∈ U0 the process W (t)u, t ∈ [0, T ] is a Brownian motion and given u, v ∈ U0

E[W (t)uW (s)v] = min(s, t)〈u, v〉U0 .

The space of Hilbert-Schmidt operators L0
2 = L2(U0, H) can be identified with H ⊗ U0, and

h⊗ u ∈ L0
2 for h ∈ H , u ∈ U0 being the operator (h⊗ u)v = 〈u, v〉U0h, v ∈ U0.

We now define the H-valued Wiener integral for the simplest possible integrands. Let Φ =
χ[a,b] ⊗ (h ⊗ u) ∈ L2([0, T ],L

0
2), for a, b ∈ [0, T ], h ∈ H and u ∈ U0. Then the Wiener integral

of Φ is defined as the H-valued random variable
∫ T

0

Φ(s) dW (s) = I(χ[a,b] ⊗ u)⊗ h =
(

W (b)u−W (a)u
)

⊗ h ∈ L2(Ω, H).

It is not difficult to show that for such integrands the following property, known as Wiener’s
isometry, holds:

E
[
∥

∥

∥

∫ T

0

Φ(t) dW (t)
∥

∥

∥

2

H

]

=

∫ T

0

‖Φ(t)‖2
L0

2
dt.

The integral extends directly to linear combinations of such integrands by linearity of I. By the
Wiener isometry, completeness of L2([0, T ],L

0
2) and classical approximation results for L2([0, T ])-

functions and for compact operators, it extends to all Φ ∈ L2([0, T ],L
0
2).

Let C∞
p (Rn) denote the space of all C∞-functions overRn with polynomial growth. We define

the family of smooth cylindrical random variables

S = {X = f(I(φ1), . . . , I(φN )) : f ∈ C∞
p (RN ), φ1, . . . , φN ∈ L2([0, T ], U0), N ≥ 1}

and the corresponding family with values in H as

S(H) =
{

F =

M
∑

i=1

Xi ⊗ hi : X1, . . . , XM ∈ S, h1, . . . , hM ∈ H, M ≥ 1
}

.

The Malliavin derivative of a random variable in S with representationX = f(I(φ1), . . . , I(φN ))

is defined as the L2([0, T ], U0)-valued random variable DX =
∑N
i=1 ∂if(I(φ1), . . . , I(φN ))⊗ φi.

Clearly this is a U0-valued stochastic process. We write DtX =
∑N
i=1 ∂if(I(φ1), . . . , I(φN )) ⊗
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φi(t) for t ∈ [0, T ]. The Malliavin derivative of a random variable F ∈ S(H) with the represen-

tation F =
∑M

i=1 fi(I(φ1), . . . , I(φN ))⊗ hi is given by

DtF =

M
∑

i=1

N
∑

j=1

∂jfi(I(φ1), . . . , I(φN ))⊗ (hi ⊗ φj(t)).

Thus (DtF )t∈[0,T ] is an L0
2-valued stochastic process. By Du

t F we denote the derivative of F in
the direction u ∈ U0 at time t, i.e., Du

t F = DtFu, where

DtFu =

M
∑

i=1

N
∑

j=1

〈u, φj(t)〉U0 ∂jfi(I(φ1), . . . , I(φN ))⊗ hi.

At the very heart of Malliavin calculus is the following integration by parts formula. It tells
that, for all F ∈ S(H) and Φ ∈ L2([0, T ],L

0
2),

(2.20) E〈DF,Φ〉L2([0,T ],L0
2)

= E
〈

F,

∫ T

0

Φ(t) dW (t)
〉

H
.

Thus the Wiener integral is the adjoint of D : S(H) ⊂ L2(Ω, H) → L2(Ω × [0, T ],L0
2) for de-

terministic integrands. Formula (2.20) follows from the corresponding formula for real-valued
smooth stochastic variables. The derivative operator D is known to be closable. We define the
Watanabe Sobolev space D1,2(H) as the closure of S(H) with respect to the norm

‖F‖D1,2(H) =
(

E
[

‖F‖2H
]

+E
[

∫ T

0

‖DtF‖
2
L0

2
dt
])

1
2

.

Denote by dom(δ) the elements Φ ∈ L2(Ω × [0, T ],L0
2) for which E[〈DF,Φ〉L2([0,T ],L0

2)
] de-

fines a bounded linear functional for F ∈ D1,2(H). For any such Φ the functional lΦ(F ) =
E[〈DF,Φ〉L2([0,T ],L0

2)
] can be extended by continuity to all F ∈ L2(Ω, H). The Riesz repre-

sentation theorem guarantees the existence of an adjoint operator to D, namely δ : dom(δ) ⊂
L2(Ω× [0, T ],L0

2) → L2(Ω, H) that satisfies

(2.21) E[〈DF,Φ〉L2([0,T ],L0
2)
] = E[〈F, δ(Φ)〉H ], ∀F ∈ D1,2(H).

This is a natural extension of (2.20) to a much larger class of integrands. In [8, Lemme 2.10] it
is proved that for any predictable process Φ ∈ L2(Ω× [0, T ],L0

2) the action of δ on Φ coincides
with that of the Itô integral, i.e.,

δ(Φ) =

∫ T

0

Φ(t) dW (t).

Instead of relying on Itô theory we take this as the definition of the Itô integral. We remark
that dom(δ) contains processes that are not predictable and thus δ is an extension of the Itô
integral to such integrands. In this context δ is called the Skorohod integral.

The following lemma [5, Lemma 2.1] has a central role in the proof of our main result.

Lemma 2.2. For any random variable F ∈ D1,2(H) and any predictable process Φ ∈ L2([0, T ]×
Ω,L0

2) the following integration by parts formula is valid.

E
[〈

∫ T

0

Φ(t) dW (t), F
〉

H

]

= E
[

∫ T

0

〈Φ(t), DtF 〉L0
2
dt
]

.

Proof. This is just a restatement of (2.21) for Φ predictable. �

A corollary of Lemma 2.2 is the Itô isometry. It reads

(2.22) E
[∥

∥

∥

∫ T

0

Φ(t) dW (t)
∥

∥

∥

2

H

]

= E
[

∫ T

0

‖Φ(t)‖2
L0

2
dt
]

, ∀Φ ∈ L2([0, T ]× Ω,L0
2), predictable.

The Malliavin derivative acts on its adjoint by Du
s δ(Φ) = δ(Du

sΦ) + Φ(s)u or in terms of the

Itô integral δ(χ[0,t]Φ) =
∫ t

0
Φ(r) dW (r) with a predictable Φ ∈ L2([0, T ] × Ω,L0

2) satisfying
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Φ(t) ∈ D1,2(L0
2) for all t ∈ [0, T ]:

(2.23) Du
s

∫ t

0

Φ(r) dW (r) =

∫ t

0

Du
sΦ(r) dW (r) + Φ(s)u, 0 ≤ s ≤ t ≤ T.

If s > t, then Du
s

∫ t

0
Φ(r) dW (r) = 0, since the integral is Ft-measurable. The class of

F ∈ D1,2(H) that are F0-measurable coincides with the class of constant deterministic ran-
dom variables. Let V be another separable real Hilbert space and σ ∈ C1

b(H,V ). Then
σ(F ) ∈ D1,2(V ) and

Du
t (σ(F )) = Dσ(F ) ·Du

t F, u ∈ U0, F ∈ D1,2(H),(2.24)

Dt(σ(F )) = Dσ(F )DtF, F ∈ D1,2(H).(2.25)

2.5. Existence and uniqueness. Existence and uniqueness of a solution to (1.2), under As-
sumption A with β = 1, is stated as [3, Theorem 7.4]. This is the case when Tr(Q) < ∞. The
extension to β ∈ [ 12 , 1) is straight-forward. For Assumption B existence and uniqueness is given
as [3, Theorem 7.6]. By using the methods of [12] and [17] one can show that the regularity in

space is of order β, i.e., the solution X is of the form [0, T ]×Ω → Ḣβ , P-a.s.. Recall here that
β is some number β ∈ [ 12 , 1] under Assumption A and any number β ∈ (0, 12 ) under Assumption
B. The family (Xh)h∈(0,1) of solution processes of the discrete equation (1.5), corresponding to

the family of triangulations, is treated analogously and clearly Xh(t) ∈ Sh ⊂ Ḣ1, P-a.s.. The

estimate E‖A
γ
2Xh(t)‖

2 ≤ C(1 + ‖X0‖
2), γ ∈ [0, 1] is uniform in h, only for γ ∈ [0, β]. The

strong convergence

(2.26)
(

E‖X(T )−Xh(T )‖
2
)

1
2 ≤ Chβ ,

is proved in [16] under the assumption of trace class noise. The proof is easier under Assumptions
A and B. We formulate a qualitative bound for the solution processes in the following theorem.

Theorem 2.3. Under either Assumption A or Assumption B there exists unique predictable
solutions X ∈ C([0, T ], L2(Ω, H)) and Xh ∈ C([0, T ], L2(Ω, Sh)) to equation (1.2) and (1.5)
respectively. We refer to these solutions as the unique mild solutions of (1.1) and (1.5). There
exists a constant C, such that the following moment estimate holds

(2.27) sup
t∈[0,T ]

E‖X(t)‖2 + sup
t∈[0,T ]

E‖Xh(t)‖
2 ≤ C(1 + ‖X0‖

2).

3. Estimates of the Malliavin derivative of the solution

We consider the Malliavin derivative of the discrete solution process and prove some estimates
needed later. Differentiating the equation (1.5) formally in direction u ∈ U0, using (2.23), (2.24),
and the fact that we have a deterministic initial value, yields

Du
sXh(t) = Eh(t− s)Phg(Xh(s))u +

∫ t

s

Eh(t− r)PhDf(Xh(r)) ·D
u
sXh(r) dr

+

∫ t

s

Eh(t− r)Ph
(

Dg(Xh(r)) ·D
u
sXh(r)

)

dW (r), 0 ≤ s ≤ t ≤ T.

(3.1)

This equation is treated much like (1.5) itself. It has a unique solution.
Before we proceed to the estimate of the Malliavin derivative we notice that, by the linear

growth of f and g, implied by their bounded first derivative, and the moment estimate (2.27)
for X and Xh yields

sup
t∈[0,T ]

E‖f(Y (t))‖2 + sup
t∈[0,T ]

E‖A
β−1
2 g(Y (t))‖2

L0
2
. 1 + ‖X0‖

2, Y = X or Xh.(3.2)

Lemma 3.1. Consider equation (1.5) under Assumption A. Then the Malliavin derivative of
Xh, given as the solution DsXh to equation (3.1), satisfies for some constant C = C(T ) > 0
the bound:

E
[

‖A
β−1
2

h DsXh(t)‖
2
L0

2

]

≤ C, 0 ≤ s ≤ t ≤ T.
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Proof. We make use of equation (3.1) with g(x) = I, Dg(x) = 0, for the proof and recall that
β − 1 ∈ [− 1

2 , 0]. Fix u ∈ U0. Thanks to the Cauchy-Schwarz inequality we get that

E‖Du
sXh(t)‖

2 . ‖Eh(t− s)A
1−β
2

h A
β−1
2

h Phu‖
2 +

∫ t

s

E‖Eh(t− r)PhDf(Xh(r)) ·D
u
sXh(r)‖

2 dr.

In view of (2.13) and the boundedness of Df and Eh(t) we have

(3.3) E‖Du
sXh(t)‖

2 . ‖A
1−β
2

h Eh(t− s)Ph‖
2
L ‖A

β−1
2 u‖2 +

∫ t

s

|f |2
C1
b
E‖Du

sXh(r)‖
2 dr.

The analyticity of the semigroup (2.18) yields

E‖Du
sXh(t)‖

2 . (t− s)β−1‖A
β−1
2 u‖2 +

∫ t

s

E‖Du
sXh(r)‖

2 dr

and applying Gronwall’s Lemma 2.1, for fixed s ∈ [0, t), gives

(3.4) E‖Du
sXh(t)‖

2 . (t− s)β−1‖A
β−1
2 u‖2.

Proceeding as in the proof of (3.3), we obtain also

E‖A
β−1
2

h Du
sXh(t)‖

2 . ‖A
β−1
2 u‖2 +

∫ t

s

E‖Du
sXh(r)‖

2 dr.

Estimate (3.4) is applicable. Thus

∫ t

s

E‖Du
sXh(r)‖

2 dr .

∫ t

s

(r − s)β−1 dr ‖A
β−1
2 u‖2 . (t− s)β‖A

β−1
2 u‖2,

and hence

(3.5) E‖A
β−1
2

h Du
sXh(t)‖

2 . ‖A
β−1
2 u‖2.

Notice that this is uniform with respect to u ∈ U0. We take an ON-basis (ui)i∈N ⊂ U0 and
compute the L0

2-norm according to (2.4). Using Tonelli’s Theorem and (3.5) we get that

E‖A
β−1
2

h DsXh(t)‖
2
L0

2
= E

∑

i∈N

‖A
β−1
2

h Dui
s Xh(t)‖

2 =
∑

i∈N

E‖A
β−1
2

h Dui
s Xh(t)‖

2

.
∑

i∈N

‖A
β−1
2 ui‖

2 = ‖A
β−1
2 ‖2

L0
2
.

�

For the white noise case we will need the following lemma that is a space discrete analogue
of [5, Lemma 4.3]. Recall that in this case Q = I, U0 = H , L0

2 = L2

Lemma 3.2. Consider equation (1.5) under Assumption B. Then, for γ ∈ [0, 12 ), the Malliavin
derivative satisfies the following estimate:

E‖A
γ
2

hDsXh(t)‖
2
L ≤ C(t− s)−γ , 0 ≤ s ≤ t ≤ T.

Proof. Let u ∈ H , and take norms in (3.1) using the Cauchy-Schwarz inequality and the Itô
isometry (2.22) to get

E‖A
γ
2

hD
u
sXh(t)‖

2 . E‖A
γ
2

h Eh(t− s)Phg(Xh(s))u‖
2

+

∫ t

s

E‖A
γ
2

h Eh(t− s)PhDf(Xh(s)) ·D
u
sXh(r)‖

2 dr

+

∫ t

s

E‖A
1
4+ǫ

h A
γ
2

h Eh(t− s)A
− 1

4−ǫ

h PhDg(Xh(s)) ·D
u
sXh(r)‖

2
L2

dr.
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For ǫ > 0 small enough we have by (2.7) and (2.18)

E‖A
γ
2

hD
u
sXh(t)‖

2 . (t− s)−γ sup
s∈[0,T ]

E‖g(Xh(s))‖
2
L‖u‖

2

+

∫ t

s

(t− r)−γ |f |2C1
b
E‖A

γ
2

hD
u
sXh(r)‖

2 dr

+

∫ t

s

(t− r)−γ−
1
2−2ǫ‖A

− 1
4−ǫ

h Ph‖
2
L2

|g|2C1
b
E‖A

γ
2

hD
u
sXh(r)‖

2 dr.

By (2.9), (2.7) and (2.13) we have

‖A
− 1

4−ǫ

h Ph‖L2 . ‖A
− 1

4−ǫ

h PhA
1
4+ǫ‖L‖A

− 1
4−ǫ‖L2 . ‖A− 1

4−ǫ‖L2 <∞

and by Gronwall’s Lemma 2.1 and (3.2)

E‖A
γ
2

hD
u
sXh(t)‖

2 . (t− s)−γ(1 + ‖X0‖
2)‖u‖2.

�

4. Regularity results for the Kolmogorov equation

In [5], [1] and [24], in the case of discretization in time, the proofs of the weak convergence is
performed for finite-dimensional spectral Galerkin approximations. The use of the Itô formula
and the Kolmogorov equation is in this way justified. The estimates are uniform in the dimension
m ∈ N of the approximation space and they thus hold in the limit. The approximation is not
made explicit in the proof. For the discretization in space some more care need to be taken.
This is due to the fact that the operators A and Ah do not commute.

Recall that Pm is the projection onto the subspace of Hm ⊂ H spanned by the first m ∈ N

eigenvectors (ϕi)
m
i=1 of A. Let Am = PmAPm = APm = PmA. By (Em(t))t≥0 we denote the

semigroup generated by −Am, i.e., it is given by the m first terms in the spectral representation
(2.17) of (E(t))t≥0.

We denote by Xx
m the solution of equation

Xx
m(t) = Em(t)Pmx+

∫ t

0

Em(t−s)Pmf(X
x
m(s)) ds+

∫ t

0

Em(t−s)Pmg(X
x
m(s)) dW (s), t ∈ [0, T ].

Define the function um(t, x) = E[G(Xx
m(t))] for t ∈ [0, T ] and x ∈ H . Note that u(t, Pmx) =

u(t, x) for x ∈ H . It is well known, see e.g. [3, Theorem 9.16], that um : [0, T ]× H → R is a
solution to the Kolmogorov equation

u̇m(t, x) + Lmum(t, x) = 0, (t, x) ∈ (0, T ]×H,
um(0, x) = G(Pmx), x ∈ H,

where the Markov generator Lm is given by

(Lmv)(x) =
〈

Amx− Pmf(x), Dv(x)
〉

−
1

2
Tr

(

Pmg(x)Qg
∗(x)PmD

2v(x)
)

, x ∈ H.

The proof of Theorem 1.1 relies heavily on estimates of the derivatives Dum and D2um of um
of the form: for some α > 0 we have

sup
x∈H

‖AλDum(t, x)‖ ≤ Ct−λ|G|C1
b
, t ∈ (0, T ], λ ∈ [0, α),(4.1)

sup
x∈H

‖AλD2um(t, x)A
ρ‖L ≤ Ct−(ρ+λ)|G|C2

b
, t ∈ (0, T ], λ, ρ ∈ [0, α), λ+ ρ < 1.(4.2)

In the case of colored noise it turns out that we need α ≥ (1 + β)/2 to obtain convergence
of the right rate. So far, to our knowledge, there is no satisfactory result in this direction for
multiplicative noise. But for additive colored noise, case A, the situation is much easier and
the estimates hold for α = 1, see Lemma 3.3 in [24]. For the white noise case the estimates are
stated as Lemma 4.4 and Lemma 4.5 in [5] with α = 1

2 . Thus, in case A we have β ∈ [ 12 , 1],

(4.1) and (4.2) with α = 1, and in case B we have β ∈ [0, 12 ) and (4.1) and (4.2) with α = 1
2 .
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Since we have the operator A in (4.1) and (4.2) instead of the more natural choice Am we
outline their proofs. We will use that Du(t, x) · φ = E[DG(Xx

m(t)) · ηφ,xm (t)], where

ηφ,xm (t) = Em(t)Pmφ+

∫ t

0

Em(t− s)PmDf(X
x
m(s)) · ηφ,xm (s) ds

+

∫ t

0

Em(t− s)Pm
(

Dg(Xx
m(s)) · η

φ,x
m (s)

)

dW (s).

In the proofs of Lemma 3.3 in [24] for case A with α = 1 and Lemma 4.4 in [5] for the case B

with α = 1
2 it is proved that

(4.3)
(

sup
x∈H

E‖ηφ,xm ‖2
)

1
2

. t−λ‖A−λ
m Pmφ‖, t ∈ (0, T ], λ ∈ [0, α).

Therefore

〈AλDum(t, x), ψ〉 = 〈Dum(t, x), Aλψ〉 = E[DG(Xx
m(t)) · ηA

λψ,x
m (t)] ≤ |G|C1

b

(

E‖ηA
λψ,x

m (t)‖2
)

1
2

. |G|C1
b
t−λ‖A−λ

m PmA
λψ‖ = |G|C1

b
t−λ‖Pmψ‖ ≤ |G|C1

b
t−λ‖ψ‖,

implying (4.1).
For (4.2) we notice that

(4.4) D2um(t, x) · (φ, ψ) = E[D2G(Xx
m(t)) · (ηφ,xm (t), ηψ,xm (t)) +DG(Xx

m(t)) · ζφ,ψ,xm (t)],

where

ζφ,ψ,xm (t) =

∫ t

0

Em(t− s)Pm
(

D2f(Xx
m(s)) · (η

φ,x
m (s), ηψ,xm (s)) +Df(Xx

m(s)) · ζφ,ψ,xm (s)
)

ds

+

∫ t

0

Em(t− s)Pm
(

D2g(Xx
m(s)) · (ηφ,xm (s), ηψ,xm (s)) +Dg(Xx

m(s)) · ζφ,ψ,xm (s)
)

dW (s).

In the proof of Lemma 3.3 in [24] for case A with α = 1 and Lemma 4.5 in [5] for the case B

with α = 1
2 it is shown that

(4.5)
(

sup
t∈[0,T ]

sup
x∈H

E‖ζφ,ψ,xm (t)‖2
)

1
2

. ‖A−ρ
m Pmφ‖‖A

−λ
m Pmψ‖, λ, ρ ∈ [0, α), λ+ ρ < 1.

Since D2um · (φ, ψ) = 〈D2umφ, ψ〉 and by (4.4) and the Cauchy-Schwarz inequality

〈AλD2um(t, x)Aρφ, ψ〉 = 〈D2um(t, x)A
ρφ,Aλψ〉

= E
[

D2G(Xx
m(t)) · (ηA

λψ,x
m (t), ηA

ρφ,x
m (t)) +DG(Xx

m(t)) · ζA
λψ,Aρφ,x

m (t)
]

≤ |G|C2
b

(

E‖ηA
λψ,x

m (t)‖2
)

1
2
(

E‖ηA
ρψ,x

m (t)‖2
)

1
2 + |G|C1

b

(

E‖ζA
λψ,Aρφ,x

m (t)‖2
)

1
2

Applying (4.3) and (4.5) yields

〈AλD2um(t, x)A
ρφ, ψ〉 . (|G|C2

b
t−λ−ρ + |G|C1

b
)‖A−λ

m PmA
λφ‖‖A−ρ

m PmA
ρψ‖

. t−λ−ρ‖φ‖‖ψ‖.

Thus (4.2) is valid.

5. Proof of Theorem 1.1

The error will split into several terms, some of which are common to Assumptions A and
B and some are not. We will first present the proof under Assumption A. When doing so we
write it as if the noise were multiplicative, i.e., with the operator g included. This will ease the
presentation of the white noise case B.
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5.1. The case of colored noise. For an FT -measurable, Hm-valued random variable ξ, the
law of iterated expectation and Proposition 1.12 in [3] yields

(5.1) E[G(ξ)] = E[E[G(ξ)|FT ]] = E[E[G(Xξ(0))|FT ]] = E[um(0, ξ)].

Thus, the weak error splits into four terms:

E[G(X(T ))−G(Xh(T ))]

= E[G(X(T ))−G(Xm(T ))] +E[G(Xm(t))−G(PmXh(T ))] +E[G(PmXh(T ))−G(Xh(T ))]

= E[G(X(T ))−G(Xm(T ))] + um(T,X0)− um(T,Xh(0))

+E[um(T,Xh(0))− um(0, Xh(T ))] +E[G(PmXh(T ))−G(Xh(T ))]

= em1 (T ) + em2 (T ) + em3 (T ) + em4 (T ).

Our intention is to let m → ∞ and see that the remaining terms is of the right order. The
first one is easy to treat since when we let m → ∞ the term em1 (T ) → 0 by the low order of
weak convergence implied by the strong convergence. The second term em2 (T ) is still easy but
needs computations. These holds under both of our assumptions. Using the Cauchy-Schwarz
inequality, estimate (4.1) with 0 ≤ λ = β − ǫ < α = 1, and the error estimate (2.16), we obtain
for small ǫ > 0

em2 (T ) = um(T,X0)− um(T, PhX0) =

∫ 1

0

d

dλ
um(T, PhX0 + λ(I − Ph)X0) dλ

=

∫ 1

0

〈

Aβ−ǫDum(T, PhX0 + λ(I − Ph)X0), PmA
−β+ǫ(I − Ph)X0

〉

dλ

≤

∫ 1

0

‖Aβ−ǫDum(T, PhX0 + λ(I − Ph)X0)‖L‖Pm‖L‖A
ǫ−β(I − Ph)‖L‖X0‖ dλ

. h2β−2ǫT−β|G|C1
b
‖X0‖ . h2β−2ǫ, uniformly in m.

Here we used that A and Pm commute and that

‖Aǫ−β(I − Ph)‖L ≤ ‖(Aǫ−β(I − Ph))
∗‖L ≤ ‖(I − Ph)A

ǫ−β‖L.

Notice here that we could have got a sharp result with ǫ = 0 under Assumption A, in the
case β < 1. However, e2(T ) does not allow a sharp rate.

We now turn to the third error term em3 (T ). For this we need the Markov generator Lh of
the finite element solution Xh. It is given by

(Lhv)(x) =
〈

Ahx− Phf(x), Dv(x)
〉

−
1

2
Tr

(

Phg(x)Qg
∗(x)PhD

2v(x)
)

, x ∈ Sh.

Itô’s formula and the Kolmogorov equation gives that

em3 (T ) = −E[um(T − t,Xh(t))− um(T − 0, Xh(0))]
∣

∣

∣

t=T

= −E
[

∫ T

0

u̇m(T − t,Xh(t)) + Lhum(T − t,Xh(t)) dt
]

= E

∫ T

0

(Lm − Lh)um(T − t,Xh(t)) dt.

The error em3 (T ) now naturally divides into three terms:

|em3 (T )| ≤
∣

∣

∣
E

∫ T

0

〈

(Am −Ah)Xh(t), Dum(T − t,Xh(t))
〉

dt
∣

∣

∣

+
∣

∣

∣
E

∫ T

0

〈

(Pm − Ph)f(Xh(t)), Dum(T − t,Xh(t))
〉

dt
∣

∣

∣

+
∣

∣

∣

1

2
E

∫ T

0

Tr
{[

Pmg(Xh(t))Qg
∗(Xh(t))Pm − Phg(Xh(t))Qg

∗(Xh(t))Ph

]

×D2um(T − t,Xh(t))
}

dt
∣

∣

∣

= I + J +K.
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The Ritz projection Rh can be expressed in the form Rh = A−1
h PhA. Observing this we can

write

〈(Am −Ah)Xh, Dum〉 = 〈(AmPh − PhAh)Xh, Dum〉 = 〈Xh, (PhAm −AhPh)Dum〉

= 〈Xh, AhPh(A
−1
h PhAm − I)Dum〉 = 〈Xh, AhPh(A

−1
h PhAPm − I)Dum〉

= 〈Xh, AhPh(Rh − I)PmDum〉+ 〈Xh, AhPh(Pm − I)Dum〉.

This enables us to rewrite the term I so that we can apply the error estimates (2.15) and
(2.19) for Rh and Pm respectively. We substitute for Xh the mild equation (1.2) and treat the
terms separately and estimate

I ≤
∣

∣

∣
E

∫ T

0

〈

Eh(t)PhX0, AhPh(Rh − I)PmDum(T − t,Xh(t))
〉

dt
∣

∣

∣

+
∣

∣

∣
E

∫ T

0

〈

∫ t

0

Eh(t− s)Phf(Xh(s)) ds, AhPh(Rh − I)PmDum(T − t,Xh(t))
〉

dt
∣

∣

∣

+
∣

∣

∣
E

∫ T

0

〈

∫ t

0

Eh(t− s)Phg(Xh(s)) dW (s), AhPh(Rh − I)PmDum(T − t,Xh(t))
〉

dt
∣

∣

∣

+
∣

∣

∣
E

∫ T

0

〈

AhXh, (Pm − I)Dum(T − t,Xh(t))
〉

dt
∣

∣

∣

= Ih1 + Ih2 + Ih3 + Im.

We now estimate Ih1 . Let ǫ > 0 be small. Using (2.15), (2.13), (2.18), and (4.1) yields

Ih1 =
∣

∣

∣
E

∫ T

0

〈

A1−ǫ
h Eh(t)PhX0, A

ǫ
hPh(Rh − I)A−β+ǫPmA

β−ǫDum(T − t,Xh(t))
〉

dt
∣

∣

∣

≤ E

∫ T

0

‖A1−ǫ
h Eh(t)Ph‖L‖X0‖‖A

ǫ
hPh(Rh − I)A−β+ǫ‖L‖Pm‖L

× sup
x∈H

‖Aβ−ǫDum(T − t, x)‖ dt

. h2β−4ǫ

∫ T

0

t−1+ǫ(T − t)−β+ǫ dt |G|C1
b
‖X0‖ . h2β−4ǫ.

The term Ih2 is easily estimated as follows:

Ih2 =
∣

∣

∣
E

∫ T

0

〈

∫ t

0

A1−ǫ
h Eh(t− s)Phf(Xh(s)) ds,

AǫhPh(Rh − I)A−β+ǫPmA
β−ǫDum(T − t,Xh(t))

〉

dt
∣

∣

∣

≤

∫ T

0

∫ t

0

‖A1−ǫ
h Eh(t− s)Ph‖L

(

E‖f(Xh(s))‖
2
)

1
2

× ‖AǫhPh(Rh − I)A−β+ǫ‖L‖Pm‖L sup
x∈H

‖Aβ−ǫDum(T − t, x)‖ ds dt.

Using (2.15), (2.13), (2.18) and (3.2) yields

Ih2 . h2β−4ǫ

∫ T

0

∫ t

0

(T − t)−β+ǫ(t− s)−1+ǫ ds dt . h2β−4ǫ.

For I3 we use the Malliavin integration by parts formula from Lemma 2.2 together with the
chain rule (2.25) to obtain the error representation

Ih3 =
∣

∣

∣
E

∫ T

0

〈

∫ t

0

Eh(t− s)Phg(Xh(s)) dW (s), AhPh(Rh − I)PmDum(T − t,Xh(t))
〉

dt
∣

∣

∣

=
∣

∣

∣
E

∫ T

0

∫ t

0

〈

Eh(t− s)Phg(Xh(s)),

AhPh(Rh − I)PmD
2um(T − t,Xh(t))PmDsXh(t)

〉

L0
2

ds dt
∣

∣

∣
.



WEAK CONVERGENCE FOR THE NONLINEAR STOCHASTIC HEAT EQUATION 15

Here we treat Assumptions A and B separately and start with A; B is postponed to the next
subsection. Distributing powers of A and Ah carefully and setting g(x) = I, we write

〈

EhPh, AhPh(Rh − I)PmD
2um PmDsXh

〉

L0
2
=

〈

A
1+β
2 −ǫ

h EhA
1−β
2

h A
β−1
2

h Ph,

A
1−β
2 +ǫ

h Ph(Rh − I)A−
1+β
2 +ǫPmA

1+β
2 −ǫD2umA

1−β
2 PmA

β−1
2 DsXh

〉

L0
2
.

Using the Cauchy-Schwarz inequality for L0
2 and (2.7) yields

Ih3 ≤ E

∫ T

0

∫ t

0

‖A1−ǫ
h Eh(t− s)Ph‖L‖A

β−1
2

h Ph‖L0
2
‖A

1−β
2 +ǫ

h Ph(Rh − I)A−
1+β
2 +ǫ‖L‖Pm‖L

× sup
x∈H

‖A
1+β
2 −ǫD2um(T − t, x)A

1−β
2 ‖L‖A

β−1
2 DsXh(t)‖L0

2
ds dt.

We use (2.13) to get ‖A
β−1
2

h Ph‖L0
2
. ‖A

β−1
2 ‖L0

2
. The norm equivalence (2.14) and the fact that

Du
sXh(t) ∈ Sh, P-a.s., for every u ∈ U0 yields

‖A
β−1
2 DsXh(t)‖L0

2
. ‖A

β−1
2

h DsXh(t)‖L0
2
.

The analyticity of the semigroup (2.18), the error estimate (2.15) together with (2.13), the
gradient estimate (4.2), Tonelli’s theorem and the Cauchy-Schwarz inequality now imply that

Ih3 . h2β−4ǫ|G|C2
b
‖A

β−1
2 ‖L0

2

∫ T

0

∫ t

0

(

E‖A
β−1
2

h DsXh(t)‖
2
L0

2

)
1
2 (T − t)−1+ǫ(t− s)−1+ǫ ds dt.

Applying Lemma 3.1 we finally get

Ih3 . h2β−4ǫ

∫ T

0

∫ t

0

(T − t)−1+ǫ(t− s)−1+ǫ ds dt . h2β−4ǫ.

Using (2.19), (4.1), the Cauchy-Schwarz inequality and (2.27) yields

Im ≤ E

∫ T

0

‖AhXh(t)‖L‖(Pm − I)A− 1
2+ǫ‖ sup

x∈H
‖A

1
2−ǫDum(T − t, x)‖L dt

. λ
− 1

2+ǫ
m ‖AhPh‖L

(

sup
t∈[0,T ]

E‖Xh(t)‖
2
)

1
2

∫ T

0

(T − t)−
1
2
+ǫ dt.

Letting m→ ∞ for fixed h yields Im → 0 and limm→∞ I . h2β−4ǫ.
The term J is considered next. Writing Pm − Ph = (Pm − I) + (I − Ph) we get the natural

decomposition J ≤ Jm + Jh. Using the Cauchy-Schwarz inequality, the error estimate (2.16),
(4.1), and (3.2) yields for i ∈ {h,m}

J i =
∣

∣

∣
E

∫ T

0

〈

(I − Pi)Dum(T − t, PmXh(t)), f(Xh(t))
〉

ds
∣

∣

∣

≤

∫ T

0

‖(I − Pi)A
−β+ǫ‖L sup

x∈Hm

‖Aβ−ǫDum(T − t, x)‖
(

E‖f(Xh(t))‖
2
)

1
2 dt

. ‖(I − Pi)A
−β+ǫ‖L|G|C1

b

∫ T

0

(T − t)−β+ǫ dt.

We have

Jh . h2β−2ǫ, and Jm . λ−β+ǫm .

For K we write

PmgQg
∗Pm − PhgQg

∗Ph

= PhgQg
∗(I − Ph) + (I − Ph)gQg

∗Pm + (Pm + Ph)gQg
∗(Pm − I),
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and hence we get the following decomposition:

2K =
∣

∣

∣
E

∫ T

0

Tr
(

[

Pmg(Xh(t))Qg
∗(Xh(t))Pm − Phg(Xh(t))Qg

∗(Xh(t))Ph
]

×D2um(T − t, PmXh(t))
)

dt
∣

∣

∣

≤
∣

∣

∣
E

∫ T

0

Tr
(

Phg(Xh(t))Qg
∗(Xh(t))(I − Ph)D

2um(T − t, PmXh(t))
)

dt
∣

∣

∣

+
∣

∣

∣
E

∫ T

0

Tr
(

(I − Ph)g(Xh(t))Qg
∗(Xh(t))PmD

2um(T − t, PmXh(t))
)

dt
∣

∣

∣

+
∣

∣

∣
E

∫ T

0

Tr
(

(Pm + Ph)g(Xh(t))Qg
∗(Xh(t))(Pm − I)D2um(T − t, PmXh(t))

)

dt
∣

∣

∣

= Kh
1 +Kh

2 +Km.

Assumption A is treated first; B is postponed. By (2.3), (2.2) and (2.7), we have

Tr(PhQ(I − Ph)D
2um)

= Tr(PhQ(I − Ph)D
2umA

1−β
2 A

β−1
2 ) = Tr(A

β−1
2 PhQ(I − Ph)D

2umA
1−β
2 )

= Tr(A
β−1
2 PhA

1−β
2 A

β−1
2 QA

β−1
2 A

1−β
2 (I − Ph)A

−
1+β
2 +ǫA

1+β
2 −ǫD2umA

1−β
2 )

≤ ‖A
β−1
2 PhA

1−β
2 ‖L‖A

β−1
2 ‖2

L0
2
‖A

1−β
2 (I − Ph)A

−
1+β
2 +ǫ‖L‖A

1+β
2 −ǫD2umA

1−β
2 ‖L,

where we used the fact that

‖A
β−1
2 QA

β−1
2 ‖L1 = Tr((A

β−1
2 Q

1
2 )(A

β−1
2 Q

1
2 )∗) = ‖A

β−1
2 Q

1
2 ‖2L2

= ‖A
β−1
2 ‖2

L0
2
.

By (2.14) and (2.13) ‖A
β−1
2 PhA

1−β
2 ‖L . ‖A

β−1
2

h PhA
1−β
2 ‖L . ‖A

β−1
2 A

1−β
2 ‖L = 1. Using

(2.16), (3.2) and (4.2) gives us

Kh
1 . h2β−2ǫ‖A

β−1
2 ‖2L0

2
|G|C2

b

∫ T

0

(T − t)−1+ǫ dt . h2β−2ǫ.

For Kh
2 we compute similarly

Tr((I − Ph)QPmD
2u) = Tr(A−

1+β
2 +ǫ(I − Ph)A

1−β
2 A

β−1
2 QA

β−1
2 A

1−β
2 D2umA

1+β
2 −ǫ)

≤ ‖A−
1+β
2 +ǫ(I − Ph)A

1−β
2 ‖L‖A

β−1
2 ‖2L0

2
‖A

1−β
2 D2umA

1+β
2 −ǫ‖L,

where

‖A−
1+β
2 +ǫ(I − Ph)A

1−β
2 ‖L ≤ ‖(A−

1+β
2 +ǫ(I − Ph)A

1−β
2 )∗‖L = ‖A

1−β
2 (I − Ph)A

−
1+β
2 +ǫ‖L,

so that (2.16) applies. Hence,

Kh
2 . h2β−2ǫ‖A

β−1
2 ‖2

L0
2
|G|C2

b

∫ T

0

(T − t)−1+ǫ dt . h2β−2ǫ.

Term Km is treated analogously as Kh
1 . We have Km . λ−β+ǫm .

Finally, by the Lipschitz continuity of G, the Dominated Convergence Theorem and the strong
convergence of Pm → I we get

em4 (T ) ≤ |G|C1
b
E‖(Pm − I)Xh(t)‖ → 0, as m→ ∞.

We conclude that e(T ) = O(h2γ) for any γ < β, which completes the proof in case A.
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5.2. The case of white noise. Now consider the case of Assumption B. All estimates above,
except those for Ih3 , K

h
1 , K

h
2 and Km, hold under B by setting Q = I and β = 1

2 and recalling

that U0 = H and L0
2 = L2. We now complete the proof with the remaining estimates.

Using Hölder’s inequality (2.8) yields

Ih3 =
∣

∣

∣
E

∫ T

0

∫ t

0

〈

Eh(t− s)Phg(Xh(s)), AhPh(Rh − I)

× PmD
2um(T − t, PmXh(t))PmDsXh(t)

〉

L2

ds dt
∣

∣

∣

≤ E

∫ T

0

∫ t

0

‖A1−3ǫ
h Eh(t− s)Ph‖L‖g(Xh(s))‖L‖A

3ǫ
h Ph(Rh − I)A− 1

2+ǫ‖L

× sup
x∈Hm

‖A
1
2−ǫD2um(T − t, x)A

1
2−ǫ‖L‖A

− 1
2+ǫA−2ǫ

h Ph‖L1‖A
2ǫ
h DsXh(t)‖L ds dt.

First, using (2.13) and (2.9), we have

‖A− 1
2+ǫA−2ǫ

h Ph‖L1 = ‖A−2ǫ
h PhA

− 1
2+ǫ‖L1 . ‖A−2ǫ

h PhA
2ǫ‖L‖A

− 1
2−ǫ‖L1 . ‖A− 1

2−ǫ‖L1 .

Now we apply (2.15), (2.18), (4.2) with ρ = λ = 1
2 − ǫ < α = 1

2 , to get

Ih3 . h1−8ǫ|G|C2
b

∫ T

0

∫ t

0

(

E‖g(Xh(s))‖
2
L

)
1
2
(

E‖A2ǫ
h DsXh(t)‖

2
L

)
1
2 (T − t)−1+2ǫ(t− s)−1+3ǫ ds dt.

Finally using Lemma 3.2 together with (3.2) finishes the estimate of Ih3 . Indeed,

Ih3 . h1−8ǫ|G|C2
b

∫ T

0

(T − t)−1+2ǫ(t− s)−1+ǫ ds dt . h1−8ǫ.

For K1 we use Hölder’s inequality (2.6), (2.16), and Lemma 4.2 to get

2K1 ≤

∫ T

0

E‖A− 1−ǫ
2 Phg(Xh(t))g

∗(Xh(t))A
−ǫ‖L1‖A

ǫ(I − Ph)A
− 1−ǫ

2 ‖L

× sup
x∈H

‖A
1−ǫ
2 D2um(T − t, x)A

1−ǫ
2 ‖L dt

. h1−3ǫ sup
t∈[0,T ]

E‖A−
1−ǫ
2 Phg(Xh(t))g

∗(Xh(t))‖L2/(2−3ǫ)
‖A−ǫ‖L2/3ǫ

|G|C2
b

∫ T

0

(T − t)−1+ǫ dt

. h1−3ǫ sup
t∈[0,T ]

E‖g(Xh(t))‖
2
L‖A

−
1−ǫ
2 ‖L2/(2−3ǫ)

‖A−ǫ‖L2/3ǫ
|G|C2

b
.

We compute and use (2.9) to conclude

‖A−ǫ‖
3ǫ/2

L2/3ǫ
=

∑

i∈N

(λ−ǫi )
2
3ǫ =

∑

i∈N

λ
− 2

3
i = Tr(A− 2

3 ) <∞

‖A−
1−ǫ
2 ‖

(2−3ǫ)/2
L2/(2−3ǫ)

=
∑

i∈N

(λ
−

1−ǫ
2

i )
2

2−3ǫ =
∑

i∈N

λ
−

1−ǫ
2−3ǫ

i = Tr
(

A− 1
2

(

2−2ǫ
2−3ǫ

)

)

<∞.

The terms Kh
2 and Km admits the same treatment, so that

Kh
2 . h1−3ǫ, and Km . λ

− 1
2+

3ǫ
2

m .

We have e(T ) = O(h2γ) for any γ < 1
2 .
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