

 Chalmers Publication Library

Copyright Notice

© ACM, 2012. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
PUBLICATION, {10th International Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2012), Copenhagen, 24 - 26 October 2012, s.
145-154} http://dx.doi.org/10.1145/2388936.2388960

 (Article begins on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70597786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2388936.2388960

Real-time Java API Specifications for High Coverage Test
Generation∗

Wolfgang Ahrendt
Chalmers University of

Technology
Gothenburg, Sweden

ahrendt@chalmers.se

Wojciech Mostowski
University of Twente

Enschede
The Netherlands

w.mostowski@utwente.nl

Gabriele Paganelli
Chalmers University of

Technology
Gothenburg, Sweden

gabpag@chalmers.se

ABSTRACT
We present the test case generation method and tool KeY-
TestGen in the context of real-time Java applications and
libraries. The generated tests feature strong coverage crite-
ria, like the Modified Condition/Decision Criterion, by con-
struction. This is achieved by basing the test generation on
formal verification techniques, namely the KeY system for
Java source code verification. Moreover, we present formal
specifications for the classes and methods in the real-time
Java API. These specifications are used for symbolic execu-
tion when generating tests for real-time Java applications,
and for oracle construction when generating tests for real-
time Java library implementations. The latter application
exhibited a mismatch between a commercial library imple-
mentation and the official RTSJ documentation. Even if
there is a rationale behind this particular inconsistency, it
demonstrates the effectiveness of our method on production
code.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tion; D.2.4 [Software Engineering]: Software/Program
Verification; D.2.5 [Software Engineering]: Testing and
Debugging; D.4.7 [Software Engineering]: Organization
and Design—Real-time systems and embedded systems

General Terms
Real-time Java, Test generation, Coverage

1. INTRODUCTION
The rapidly growing complexity of software deployed on

embedded systems seriously threatens the effectiveness of
traditional approaches to verification and certification. This

∗This work was funded by the Artemis Joint Undertaking
in the CHARTER project, grant-nr. 100039. See http://
charterproject.ning.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2012 October 24-26, 2012, Copenhagen, Denmark
Copyright 2012 ACM 978-1-4503-1688-0 ...$15.00.

is a huge problem in a time where effective verification and
certification of embedded software becomes ever more im-
portant, as software is increasingly used as a core building
block in almost all safety critical application areas. The
good news is, however, the growing trend in the embed-
ded software area towards using higher-level programming
languages and paradigms, for instance by partly using Java
rather than C for development. Even if the original motiva-
tion for using higher-level languages is rather increased pro-
ductivity, modularity, and maintainability, this trend also
enables more innovative, powerful verification methods.
Higher-level languages allow stronger automated analyses,
through their higher level of abstraction, and a better sep-
aration between domain related concerns (handled on the
source code level) and lower-level concerns (delegated al-
most entirely to compilers and virtual machines). Among
the powerful analysis methods, probably the strongest, but
also the heaviest, is formal verification, which statically rea-
sons about the correctness of all possible runs of a program.
This requires precise definitions of the correct behaviour in
the first place, which is the role of formal specification, writ-
ten in some mathematically precise specification language.

Even if the area of formal verification made tremendous
progress and provided powerful tools in the last decade or so,
these methods are still rather heavy for mainstream usage.
However, along with these developments there emerged var-
ious lightweight formal methods, where formal verification is
used as a base technology for a more lightweight purpose,
like automated test generation [6, 14, 11, 2]. (In the re-
mainder of the paper, we will simply say ‘verification’ when
referring to ‘formal verification’, in particular also when us-
ing the phrase ‘verification based test generation’.)

The main contributions of our work are a verification
based test case generation method and tool for real-time
Java, and the development of formal specifications for the
classes and methods in the real-time Java API. Continu-
ing the work by Engel, Hähnle, Beckert, and Gladisch [11,
2], we have developed KeYTestGen, which is based on the
KeY tool [3], a software verification system for Java. From
Java source code augmented with formal specification given
in the Java Modelling Language (JML [7]), KeY generates
proof obligations in a program logic, called ‘dynamic logic’
for Java. During verification with the KeY prover, the proof
branches over the necessary case distinctions, largely trig-
gered by Boolean decisions in the source code. On each
proof branch, a certain path through the program is exe-
cuted symbolically. KeYTestGen uses the same machinery
for a different purpose, namely generating test cases (for

the popular JUnit framework). The key idea is to let the
prover build an unfinished proof tree, to then read off from
each proof branch a path constraint, i.e., a constraint on
the input parameters and initial state for this path being
taken during execution of the source code. We generate
concrete test input data satisfying each of these constraints,
thereby achieving strong code coverage criteria, in particu-
lar the Modified Condition/Decision Criterion (MCDC, see
Sect. 3.1.1), by construction.

In addition to the source code, KeYTestGen requires for-
mal specifications, for two purposes. First of all, specifica-
tions are needed to complete the test cases with oracles to
check the test’s pass/fail status. We generate such oracles
in particular from postconditions of the methods under test.
The second, and in the context of this paper more impor-
tant, role of specifications is to allow symbolic execution of
method calls within the code under test. The prover will
use the specification, rather than implementation, of called
methods to continue symbolic execution. In particular, fre-
quently used library methods need to be specified. On our
target domain, real-time Java, the crucial library is the real-
time Java API (javax.realtime), for which we developed JML
specifications suitable for symbolic execution.

The third contribution of our work is to automatically
generate (and run) test for a commercial implementation of
the real-time Java API from the Jamaica RT virtual machine
developed by aicas. Here, KeYTestGen automatically gen-
erated a failing test, thereby detecting a mismatch between
the library implementation and the official RTSJ documen-
tation. Even if there is a rationale behind this inconsistency
(see 5.3 for a brief discussion), it demonstrates the effective-
ness of our method on production code.

This work has been performed in the frame of CHARTER
(Critical and High Assurance Requirements Transformed
through Engineering Rigour, see title footnote), a project
within the ARTEMIS Embedded Computing Systems Ini-
tiative. CHARTER provides a methodology and tool chain
designed to ease, accelerate, and cost-reduce the certifica-
tion of critical embedded systems by melding real-time Java,
Model Driven Development, rule-based compilation, auto-
mated testing, and formal verification. KeYTestGen and
the JML specifications of the real-time Java library are im-
portant cornerstones in this endeavour.

2. CODE CONTRACTS
The idea of design by contract was initially developed by

Bertrand Meyer for the Eiffel object oriented language [21],
and is very resemblant of the Hoare programming logic cor-
rectness triples [16]. In essence, a method (or procedure)
contract states, using some kind of a formal language, mu-
tual commitments between caller and callee. In method con-
tracts, ‘preconditions’ formulate conditions on the pre-state
and inputs which the caller is obliged to fulfil, and which
the callee’s implementer can rely on. In turn, the ‘postcon-
ditions’ formulate conditions on the post-state and output
which the callee is obliged to fulfil, and which the caller can
rely on. In general, no guarantees are made for method en-
try states and inputs that do not satisfy the precondition. A
contract can be viewed as a formalised natural description
of the method behaviour from the API documentation. For
example, a method that sorts an array of integers can be
informally specified as:

“The method sortArray expects a non-null array as its in-
put. The outcome of the method is that the elements of the
input array are rearranged in the ascending order according
to integer number ordering.”

This description does not say what happens if the method
is provided with a null array. A corresponding formal con-
tract for method sortArray(int[] a), using generic First Order
Logic as the formal language, is the following:

Pre : a 6= null
Post : ∀i:int i > 0 ∧ i < |a| → a[i− 1] ≤ a[i]

where | · | is the array length operator. Note that (a) we do
not state what happens for null arrays; (b) the postcondi-
tion does not state that the output array is a permutation
of the input array: in the extreme case, an implementation
filling the array with zeros would also make this formal spec-
ification valid. To fix this we use quantifiers and state the
following:

Post2 : ∀i:int i ≥ 0 ∧ i < |a| →
∃j:intj ≥ 0 ∧ j < |a| ∧ a[i] = pre(a[j])

The postcondition uses the pre operator to refer to values at
the beginning of the call. This allows to relate states before
and after the method call. Apart from pre- and postcon-
ditions, there are often conditions which should be main-
tained under all operations, like sortedness, being balanced,
or consistency constraints on redundant structures. Such
conditions are called invariants, and are required to hold
at times when no method call is active. That is, methods
can assume invariants when they start execution, may break
them temporarily, and have to re-establish them upon exit.

The practical applications of formal contracts are the fol-
lowing. The first and most obvious one is merely for stronger
documentation, in a language providing strong precision
compared to natural descriptions. Going further, after trans-
lation the formal expressions can be used to do run-time
checks of the executing code. In our example, a run-time
checker would perform the following tasks upon every call
of the sortArray method. Before the call it would (a) check
that the expression contained in the precondition evaluates
to true, and (b) record the contents of the inputs array in
a temporary storage. Upon completion of the method the
checker would evaluate the postcondition expression. In the
case of our example it would need to iterate over the contents
of the array and check the associated formulas. Simpler ex-
pressions’ checks can be also easily performed with the help
of built-in assert statements of the programming language.

The ability to perform run-time checks already hints on
the possible application of formal specification in test gener-
ation, namely to (partly) serve as a test oracle, as we explain
in Sect. 3. The ultimate application of formal contracts,
however, lays in a deep analysis technique called formal ver-
ification. Using mechanised theorem provers and associated
logic systems, programs are proven to be correct statically,
i.e., before they are run or even compiled. During this pro-
cess, execution paths of the program are analysed using sym-
bolic values which are characterised by formulas capturing
infinite or large sets of values concisely. Whenever different
parts of the data domain cannot be treated uniformly, proofs
branch into case distinctions. In particular, branching points
in the control flow (e.g., if, while, exception handlers) lead
to branches in the proof. Therefore, each path through the
source code is represented by one (or more) proof branches.

Figure 1: Specification of sortArray in JML

/∗@ public normal behavior
2 requires a != null;

ensures (\forall int i; i>0 && i<a.length ==> a[i−1] <= a[i]);
4 ensures (\forall int i; i>=0 && i<a.length ==> (\exists int j; j>=0 && j<a.length && a[i] == \old(a[j]));

assignable a[∗];
6 also public exceptional behavior

requires a == null;
8 signals (NullPointerException npe) true;

assignable \nothing; @∗/
10 public void sortArray(int[] a);

Even unfinished verification attempts still represent an anal-
ysis of all possible execution paths up to the depth of the
proof attempt. The resulting execution tree is another im-
portant building block in automated test generation to be
discussed in Sect. 3. In particular, it enables the achieving
of high coverage criteria.

Formal verification is in general considered difficult and
time consuming. This is mostly caused by the fact that com-
plete correctness proofs for complex code usually require hu-
man input and interaction with the verification tool. In turn,
deep understanding of the tool and the underlying logic from
the user is required. In this context modularisation is an im-
portant factor. The idea of reusable API libraries is lifted to
the verification process. Each method is specified and veri-
fied in separation, and when another program to be verified
calls some method only the called method’s specification is
considered, rather than the implementation that should be
already verified. This is especially important when a pro-
gram to be verified utilises proprietary APIs, for which the
source code may not be available. Lacking this verification
target, an API method is left unverified, and its specifica-
tion provides the only means to describe its behaviour in
the verification context of other programs. The benefits of
modularisation apply to other verification based techniques
as well, in particular to test generation to be described.

The lack of good quality specifications for commonly
utilised API is in fact a shortcoming for formal verification
approaches. For Java a community effort is continuously un-
der way to provide specifications for a wide range of standard
Java API [7]. The main application context of the CHAR-
TER project is the real-time Java and safety critical pro-
grams. To evaluate our test generation efforts on the associ-
ated real-time Java case studies we developed formal spec-
ifications for the classes and methods in the javax.realtime
package, which interfaces the core real-time functionality of
the JVM to Java programs. We describe the exact role of
these specifications in test generation (Sect. 3.1.2) as well as
the specifications themselves (Sect. 4).

The actual formal language used to specify method con-
tracts primarily depends on the programming language it-
self, but may be also specific to the validation tool used (pro-
gram verifier or run-time checker). The level of integration
in the programming language can also differ. In Eiffel [21]
contracts are an inherent part of the language with special
syntax devoted to specify properties of the program on the
same level as code. In Microsoft Code Contracts for C# [22]
specifications are also part of the program, however, the C#
syntax is not extended, rather contracts are embedded in

calls to special contract libraries. The Object Constraint
Language (OCL) [9] was developed to express formal prop-
erties about UML models, but here this is done externally
to the UML model. For Java the de facto standard spec-
ification language is Java Modelling Language (JML) [20],
a research community effort to provide a general, tool in-
dependent specification framework for Java. In contrast to
other examples, JML is contained in the code it specifies, but
is not part of the Java language. This is achieved by embed-
ding JML specifications in special Java comments, similar
to JavaDoc tags. We give a very brief introduction to JML
in the following.

2.1 Java Modelling Language
JML specifications reside in Java files in comments marked

with the @ sign as the first character of the comment. Thus,
comments starting with /*@ or //@ indicate that a JML
specification follows. Fig. 1 shows such a specification for
the array sorting method we discussed above, to handle
possible exceptions. A method specification is tagged with
a marker indicating whether only non-exceptional behav-
ior (normal behavior, line 1 in the example), purely excep-
tional behavior (exceptional behavior, line 6), or both (sim-
ply behavior) is specified. The core method specification can
contain preconditions (marked with the requires keyword,
lines 2&7), and normal (ensures, lines 3&4) or exceptional
(signals, line 8) postconditions. Exceptional postconditions
specify both the type of the exception that is thrown and
the condition that should nevertheless hold after this event;
in our example this is simply true.

In addition to behavioural descriptions, ‘framing condi-
tions’ are specified with the assignable keyword. They char-
acterize memory locations (object fields or array elements)
that a method may at most modify. This information about
the memory scope the method operates on is necessary for
verification tools to correctly reason about data dependen-
cies and possible object aliasing. Each method can have
a number of specification cases, separated by the also key-
word, which describe different behaviour cases under differ-
ent preconditions. However, this should be only considered
a syntactic convenience – multiple specification cases can
always be combined into one specification case tagged with
behavior. Fig. 2 shows such a combined specification case
for our array sorting method. In particular, the combined
precondition now is true, hence a trivial requires clause is
removed from the specification altogether.

The JML specification expressions themselves are side ef-
fect free Java Boolean expression extended with classical

Figure 2: Combined JML specification of sortArray

/∗@ public behavior
2 ensures a != null ==> (\forall int i;

i>0 && i<a.length ==> a[i−1] <= a[i]) && ...;
4 signals (NullPointerException npe) a == null;

assignable a[∗]; @∗/
6 public void sortArray(int[] a);

First Order Logic operators. Finally, class invariants are
specified anywhere in the scope of the class using the invari-
ant keyword. We discuss some more details of JML when
presenting the Real-time Java API specifications in Sect. 4.

3. THEOREM PROVING BASED TEST
GENERATION

In this section we introduce the usage of verification tools
in the automated generation of test cases. We put a strong
focus on test coverage, as it is one of the crucial aspects
in software certification. Then we briefly describe how the
KeYTestGen tool works and how it interfaces with other
verification tools. We also discuss the role of formal specifi-
cations in automated test case generation.

3.1 Test Coverage from Verification
Verification based automated test case generators work

with some form of symbolic execution of the code [28, 10,
11] or use model checking on models of the code [26, 29].
The goal is to guarantee that the generated test suite ful-
fils certain coverage requirements. Symbolic execution un-
winds the paths and collects the (symbolic) constraints un-
der which each path is taken. The constraints characterize
the initial state and the input arguments of the Method Un-
der Test (MUT); the constraints are solved using specific
solvers that provide concrete test values, i.e., witnesses for
the collected path constraints.

Test coverage is an important software quality metric, and
meeting specific coverage criteria is a requirement for cer-
tification of safety-critical software, like in the European/
American avionics standard ED-12/DO-178 [12]. In prin-
ciple, verification based techniques using symbolic execu-
tion can achieve logical and graph coverage criteria [1] by
construction, as the symbolic execution engine will evalu-
ate symbolically Boolean expressions (ensuring logical cov-
erage), and execute symbolically all the (feasible) paths in-
side the program (ensuring graph coverage). In practice this
is not always the case due to the trade-off between precision
and feasibility of the analysis discussed in the rest of the
paper. In any case, test case generation (with guaranteed
coverage) relieves the developer from manually constructing
the test cases (and judging their coverage).

3.1.1 MCDC coverage criterion
Modified Condition/Decision Criterion (MCDC) [15] is

a logical/graph coverage criterion mentioned in the ED-
12/DO-178 standard as the required coverage for software
whose failure may cause an air-crash of the aircraft on which
it is running (Level A software in the standard). In the
MCDC terminology, a decision is a top-level Boolean ex-
pression in the program, whereas a condition is an atomic
Boolean expression not composed of other Boolean expres-

sions. In short, a test suite fulfilling MCDC for a MUT
(a) executes each statement in the MUT at least once; (b) ex-
ercises all entry and exit points in the MUT; (c) evaluates
each non-constant decision D and condition c once to true
and once to false; (d) shows for each condition c in decision
D that c affects the evaluation of D independently of any
other condition c′ in decision D.

3.1.2 The Role of JML Specification
Formal specifications are crucial to automate the test gen-

eration process. They play a double role in the automated
testing approach, as follows.

Conjectural use: specification of MUT.
In the specification of the MUT (a) the precondition con-

strains the setup of the test, and (b) the postcondition de-
scribes expected properties of the method’s result and final
state, from which the test oracle is derived. The specifica-
tion of the MUT acts as a conjecture about its behaviour,
the property we test against.

Axiomatic use: specification for method calls in MUT.

For symbolic execution to be modular and scalable, a call
to method m from within the MUT is processed using the
specification, rather than the implementation, of m. Ex-
panding the implementation of called methods would lead
to high proof complexity, and would require full availabil-
ity of all callees’ code (including libraries, third party code,
and native methods). Also, implementation changes would
not be manageable. Specifications of called methods can
be seen as axioms during symbolic execution of the MUT,
both in the context of verification and verification based test
generation. The challenge is, however, that formal specifica-
tions for called methods must be powerful enough to allow
meaningful symbolic execution. One of the contributions
of this work lies exactly here, in JML specifications of the
javax.realtime package which are suitable for symbolic exe-
cution, see Sect. 4.

3.2 KeYTestGen
KeYTestGen uses KeY [3] as the underlying verification

technology. KeY is a Java source code verification tool which
can formally prove that program units comply with their
JML specification. The construction of proofs is dominated
by symbolic execution of the code. During test genera-
tion, KeY uses the symbolic execution not for proving any
postcondition correct, but only to collect path constraints.
Therefore, a particular strategy for manipulating the pro-
gram is implemented and specialised for test case gener-
ation. Path constraints are updated as symbolic execu-
tion proceeds, recording the location changes coming from
assignments, and the case splits corresponding to condi-
tional statements (including loops, which are unwound a
fixed number of times). The information relevant for test
case generation is filtered from the proof tree, yielding an ex-
ecution tree. Its leaves contain path constraints, characteris-
ing conditions for one path in the program to be taken. Con-
crete test inputs are generated by solving such constraints.

Along a simple example given in Fig. 3, we describe how
KeYTestGen generates test cases and achieves MCDC. The
method scan(int t, int i) iterates on calling the method read
(line 7) that returns a value between r and 2r+1. This can

Figure 3: Path constraint collection example

/∗@ public normal behavior
2 requires t>=0 && i>=0;

ensures \result > 0; @∗/
4 public int scan(int t, int i){

int r = 0, j = 0;
6 while(r<t && j<i) {

r = read(r);
8 j++;

}
10 return j;
}

12

/∗@ public normal behavior
14 ensures i <= \result && \result <= 2∗i+1; @∗/

public int read(int i);

be, e.g., a read from a file, or from a sensor. The loop ter-
minates when one of the following conditions holds: (a) the
value read equals or exceeds the threshold t; (b) the number
of iterations equals or exceeds the value i.

Execution tree: Symbolic execution.
The KeY prover symbolically executes the code and pro-

vides path constraints for every leaf in the execution tree.
The execution tree in Fig. 4 highlights a certain path by solid
arrows. It is the path where all Boolean conditions are eval-
uated to true. Note that: (1) all possible outcomes of the
decision in line 6 in Fig. 3 are considered; (2) KeYTestGen
unwinds loops a user-specified number of times, in our ex-
ample just once; (3) the method read(int i) is not expanded
but its contract is used instead.

Path constraints: SMT solving.
The path constraints are shown top-right of the return

statements in the different paths of the execution tree. Such
constraints are solved using a Satisfiability Modulo Theory
(SMT) solver. In short, it checks the satisfiability/validity
of a logical formula with respect to background theories with
equality expressed in First Order Logic. KeYTestGen uses
Simplify [27] iteratively to find concrete models for the path
constraints.

Test cases.
Test cases in the JUnit format are generated for each leaf

using the concrete values computed in solving the path con-
straint. We discuss three main aspects in the following:

Test inputs are generated from path constraints like, in
the example, π1,π2,π3,π4 (Fig. 4), by finding witnesses, sat-
isfying the constraints. In the example, these witnesses ap-
pear as arguments of scan in τ1,τ2,τ3,τ4. In the case of
primitive types (as in the example) or simple reference types
like standard objects (with certain visibility restrictions on
fields and methods), the translation is fully automatic and
consists in assignments, calls to mock object libraries [23] (to
overcome visibility modifiers) or the java.lang.reflect.* API.
When the architecture of the reference type inputs becomes
more intricate this is often hard to automate as explained
later in Sect. 6.

Oracles are generated from the MUT contract’s postcon-

Figure 4: Constraint Collection for scan().

Execution tree
Path constraint
and test cases

r=0; j=0;

r<t return j;

j<i return j;

r = read(r);
j++;

r<t return j;

j<i return j;

π1:
t ≥ 0 ∧ i ≥ 0 ∧ r = 0 ∧
j = 0 ∧ r ≥ t

τ1: scan(0,0)>0

π2:
t ≥ 0 ∧ i ≥ 0 ∧ r = 0 ∧
j = 0 ∧ r < t ∧ j ≥ i

τ2: scan(1,0)>0

π3:
t > 0 ∧ i > 0 ∧ 0 ≤ r ∧
r ≤ 1 ∧ j = 1 ∧ r ≥ t

τ3: scan(1,1)>0

π4:

t > 0 ∧ i > 0 ∧ 0 ≤ r ∧
r ≤ 1 ∧ j = 1 ∧ r ≥ t ∧
j ≥ i

τ4: scan(2,1)>0

dition, turned into executable Java code. In the example,
the oracle accounts to check if the returned value is bigger
than zero (Fig. 4, test cases τ1,τ2,τ3,τ4).

MCDC Coverage is guaranteed by construction because
of the way symbolic execution evaluates decisions; in partic-
ular, the decision in line 6 in Fig. 3 is the only decision D of
the program with two conditions q = r<t and c = j<i. To
show that c affects independently of q the value of decision
D (item (d) in 3.1.1), the test case pair (τ2,τ4) is sufficient
since in test case τ2 c evaluates to false, causing D to eval-
uate to false while q is true; and in test case τ4 c evaluates
to true, while keeping q true, causing D to evaluate to true
and enter the loop. Similar reasoning applies to condition q.

4. JAVA RT API SPECIFICATIONS
The development of the real-time Java API specifications

was driven by the needs of the corresponding tools in the
CHARTER processes, in particular the test generation we
have just described. The questions to answer first are which
parts of the API should one specify as the first priority, and
what should be the specification style and detail of the spec-
ifications. In other words, what exactly should we specify,
and how?

4.1 What to Specify
Since the main focus of our work is the application area

of real-time Java, the primary goal is to specify the core
classes in the real-time interface of the API, i.e., classes and
interfaces residing in the javax.realtime package. Further-
more, during our work we used two particular case studies
to evaluate our efforts:

• An aviation collision detector program, CDx – a free
real-time Java benchmark suite, mostly targeted at
performance evaluation of real-time virtual machine

implementations1 [18]. CDx is a relatively small ap-
plication, making it a perfect target for evaluation.

• A gaming device (light gun) driver – this case study
was developed by us as a preliminary evaluation target
for our tool. It provides two simple implementations
for detecting “target hit” events when the light gun is
fired at a game screen. One implementation is based
on tracking and timing the CRT beam, the second one
on detecting a white square on the screen during a
synchronised display of one special frame on the screen.

The analysis of both case studies confirmed that the re-
altime package should be in the centre of attention for our
formal specifications. Both applications rely almost entirely
on the real-time package, the collision detector additionally
utilises a few collection classes from the java.util package,
but these are used outside of the core real-time functional-
ity of the suite. For these utility classes it is sufficient to
reuse the existing API specifications developed by the JML
community.2 We come back to the evaluation of the test
generator and the real-time API specifications with these
two case studies in Sect. 5.

4.2 How to Specify
The first aspect of the preciseness of the specifications is

dictated by the KeY prover and the SMT solver Simplify –
the tools driving our test generation procedure. That is, the
specifications should be written in the subset of JML sup-
ported by the version of the KeY system that we use, and at
a detail level that can be easily managed by the KeY prover
and the SMT solver. In particular, overly complex specifi-
cations can cause the KeY prover to produce a proof tree
of an unmanageable size. In turn, the SMT solver will not
manage to resolve the resulting data instantiation problem.

This leads us to the second aspect of specification writ-
ing, namely the double role the specifications play in the
test generation process as described in Sect. 3.1.2. Let us
start with the conjectural use of specification. For this, the
specifications should provide assertions that can be rela-
tively easily checked during run-time. One type of speci-
fication constructs difficult to evaluate at run-time are all
sorts of quantifiers. They do not have to be avoided alto-
gether, however, one should keep in mind that in the test
oracle context they may be left unchecked, thus less effort
should be put into specifying properties that may involve
quantifications. Then, following the implementation inde-
pendence paradigm, properties should be expressed using
the public interface of objects through the getter methods,
rather than using any internal representation that objects
may have. The generated test cases based on such cleanly
expressed properties will be reusable between different API
implementations. Also, for this role the method frame con-
ditions (JML assignable clauses) are not that vital, because
again they are usually expressed in terms of the internal ob-
ject representation. Finally, the specifications should cover
a complete behaviour of the given method, to provide a wide
test oracle. In other words, the specification should account
for all possible inputs that the method may be called with,
including the ones causing any exceptional behaviour, so
that the resulting test case covers a wide range of possible
outcomes of the method.
1http://adam.lille.inria.fr/soleil/rcd
2http://formalmethods.insttech.washington.edu/specathons/

In the context of the axiomatic use of the method spec-
ification for modularisation, we need to accommodate fur-
ther elements in our formal contracts. The key concept of
modular verification is that upon method calls the symbolic
state of the verified program is modified according to the
method specification, rather than the method implementa-
tion. In this situation the reasoning provides more precise
results when the method specifications also provide framing
conditions we mentioned earlier. Such conditions enable the
prover to disregard the parts of the state of the program that
is not changed [4], this in turn allows for more precise analy-
sis of the different program branches that takes into account
only the part of the symbolic state that does change.

Hence, we would like to represent the internal state of ob-
jects without actually referring to concrete implementation
details. JML provides two mechanisms for that, very sim-
ilar to each other, called model fields and ghost fields [5].
The actual difference between the two is very fine-lined and
detailed explanations are beyond the scope of this paper.
Furthermore, the stable version of the KeY prover that our
test generator is currently based on only provides good sup-
port for ghost fields, thus this is what we used and briefly
describe next. The possibility to use model fields instead of
ghost fields is discussed later in Sect. 6 on future work.

A ghost field is a specification-only field declared in a class
with any Java type, either primitive or reference. From the
specification point of view, such a field is part of the state of
the object. In verification contexts, where the implementa-
tion code is available, special specification only @set state-
ments are placed in the method code to update the values of
ghost fields and maintain consistent state of the object ex-
tended with corresponding ghost fields. In our case the API
specifications are developed separate from any implement-
ing code, hence ghost fields are only referenced in method
pre- and postconditions as well as assignable clauses. In this
situation ghost fields can be viewed as a mock representa-
tion of the actual state of the object. The KeY prover can
then perform the client code analysis based on the symbolic
representation of this state.

Having such a representation of the object state we can
now write more detailed and accurate specifications mak-
ing case splits over the possible states of the object. This
again is important for test coverage. The more different
specification cases we provide for an API method, the more
different branches will emerge in the proof tree as a result
of discharging this API call in the client code. This can
possibly provide additional data partitioning on top of the
one that results from considering different execution paths
of the other Java statements, i.e., loops, if-statements, etc.
described in Sect. 3.

In the following section we give a few modest samples of
the real-time Java API specifications we developed. The
formal specifications are based on the documentation of the
Jamaica virtual machine API version 3.43 and the official
Real-time Specification for Java (RTSJ) documentation.4

4.3 Specification Samples
The complete set of the real-time Java API specifications

covers all of the over 70 classes in the javax.realtime pack-
age. More than 800 methods were specified with the total

3http://www.aicas.com/jamaica/3.4/doc/jamaica api/
4http://www.rtsj.org/specjavadoc/book index.html

of almost 4000 lines of JML code. The specifications are
available on the CHARTER resources web-page,5 here we
shortly discuss two examples: event handler management in
the AsyncEvent class, and a constructor for the MemoryArea
class.

4.3.1 Class AsyncEvent

This class represents events that can be triggered in the
real-time system asynchronously. Each such event has a set
of associated handlers. Upon event occurrence the handlers
are triggered to service the event. The handlers management
in the AsyncEvent class is specified in the following way:

public class AsyncEvent extends Object {

//@ public instance ghost AsyncEventHandler[] handlers;

/∗@ behavior
ensures handler != null && handledBy(handler);
signals (IllegalArgumentException iae)

handler == null;
assignable this. handlers[∗]; @∗/

public void addHandler(
/∗@ nullable @∗/ AsyncEventHandler handler)

throws IllegalArgumentException;

/∗@ normal behavior
ensures handler == null || !handledBy(handler);
assignable this. handlers[∗]; @∗/

public void removeHandler(
/∗@ nullable @∗/ AsyncEventHandler handler);

/∗@ normal behavior
ensures handler == null ==> \result == false;
ensures handler != null ==>
\result == (\exists int i;

i >= 0 && i < this. handlers.length;
this. handlers[i] == handler); @∗/

/∗@ pure @∗/ public boolean handledBy(
/∗@ nullable @∗/ AsyncEventHandler handler);

}

The nullable JML tag states that we allow the associated ref-
erence to have null values. The current semantics of JML is
that all references are by default non-null, so nullable refer-
ences have to be explicitly tagged. The ghost field handlers
represents the storage of registered event handlers using a
Java array. The specification of the methods follow the API
documentation. An attempt to add a null handler causes an
IllegalArgumentException, while adding a non-null handler
causes all subsequent calls to a corresponding handledBy()
method to return true. The handledBy() method is tagged
as pure, meaning it is a getter method and does not change
the state of the object. Its specification expresses the as-
sociation between registering a handler and the contents of
the handlers array.

4.3.2 Class MemoryArea

This class is the base class for defining the different types
of memory that the real-time Java environment supports, in
particular the scoped memory [19]. Each memory area has
a runnable logic associated with it, but this logic does not

5http://charterproject.ning.com/page/resources-3

have to be defined until the memory is actually used, i.e.,
on construction it can remain null:

public abstract class MemoryArea extends Object {

//@ public instance ghost nullable Runnable logic;
...

The very important aspect of the memory areas is that the
user defined classes cannot extend MemoryArea class, even
though it is not final, i.e., only memory areas predefined in
the real-time virtual machine are allowed as subclasses of
MemoryArea. We express this with the following specifica-
tion for the constructor:

/∗@ behavior
ensures size != null && this. logic == logic;
signals (IllegalArgumentException iae)

size == null ||
!((this instanceof LTMemory) ||

(this instanceof LTPhysicalMemory) ||
(this instanceof VTMemory) ||
(this instanceof VTPhysicalMemory) ||
(this instanceof ImmortalMemory) ||
(this instanceof ImmortalPhysicalMemory) ||
(this instanceof HeapMemory));

signals (OutOfMemoryError oome) true;
assignable this. logic; @∗/

protected MemoryArea(
/∗@ nullable @∗/ SizeEstimator size,
/∗@ nullable @∗/ Runnable logic)
throws IllegalArgumentException, OutOfMemoryError;

Following the API documentation, an IllegalArgumentExcep-
tion is thrown if an attempt to create a memory area outside
of the predefined set is made. This is expressed with the
cascade of the instanceof expressions. A null size parameter
causes the same exception. On top of that, the constructor
can throw an exception caused by memory exhaustion, in
this case no further conditions are specified.

5. EVALUATION ON CASE STUDIES
In the following we shortly describe three different use

cases for our work. The difference is not only in the par-
ticular code that was validated, but also in the validation
method itself. This shows the different ways in which for-
mal specifications can be utilised with the test generator and
the KeY verifier itself. Due to space restrictions we have to
be very modest in quoting the program code, both of the use
cases and of the generated tests. We also abbreviate some
method names.

5.1 Test Generation for Light Gun Driver
The light gun driver provides two real-time algorithms for

detecting a “target hit” event in some gaming system. The
real-time aspect of these algorithms is that in both cases the
procedure has to terminate and provide the result within
the time needed to display two frames on a CRT screen.
The following is the snippet of simple code responsible for
delegating the registration of a handler in the v-sync timer
object in a Screen class:

/∗∗ Sets the repainting behavior of this screen
@param asi the handler to run whenever the
vSync timer expires ∗/

/∗@ public behavior
ensures (asi != null) ==> vSync.handledBy(asi);
ensures (asi == null) ==> true;
signals (NullPointerException npe) vSync == null; @∗/

public void setVSyncHandler(AsyncEventHandler asi){
vSync.setHandler(asi); }

public /∗@ nullable @∗/ Timer vSync;

The API method setHandler is very similar to the addHandler
method we discussed in Sect. 4, only that when given a null
argument it empties the set of handlers of the AsyncEvent ob-
ject, and when given a non-null argument it sets the passed
argument as the only handler, removing any previously reg-
istered handlers. The symbolic execution of the setVSyn-
cHandler provides the following information to our test gen-
erator. From the specification of the API’s setHandler, two
cases for the asi parameter are provided, a null and non-
null one. Then, the symbolic execution of the API call on
the vSync field provides another case split, again, that the
field can be also null or non-null. KeYTestGen generated
four test cases for the setVSyncHandler method, all of which
follow the same pattern, like the following:

public void testScreen setVSyncHandler0 () {
Throwable exc = null;
AsyncEventHandler asi = RFL.new AsyncEventHandler();
Screen self = RFL.new Screen();
String exceptionTrace = ””;
String inputsBefore = ”Value of asi: ”+asi+

”\nValue of vSync: ”+self.vSync+”\n\n”;
try {

self.setVSyncHandler(asi);
} catch (Throwable e) {

exc=e; exceptionTrace=e.toString();
}
StringBuffer buffer = new StringBuffer();
boolean oracleResult =

TestScreen setVSyncHandler0.formula(exc,asi,self,buffer);
String inputsAfter = ”Value of asi: ”+asi+

”\nValue of vSync: ”+self.vSync+”\n\n”;
assertTrue(”\nPost evaluated to false.”+

”\nEvaluation of formulas so far: ”+buffer.toString()+
”\n\nInput values before method call: \n\n”+
inputsBefore+
”\n\nInput values after method call: \n\n”+
inputsAfter+exceptionTrace+”\n\n”, oracleResult);

}

The formula() method is an automatically generated evalu-
ator of the top-level JML specification of setVSyncHandler
and provides the actual test oracle. The class RFL is a fac-
tory responsible for generating reference type test data. The
generated test case trivially fulfils MCDC since there are no
decisions in the code. For this concrete instance we generate
test cases in a completely automated way, but the general
case where an arbitrary set of handlers is to be created is
not straightforward to automate. We address this in Sect. 6.

5.2 Verification of Collision Detector
Apart from test generation our API specifications can be

also used for full formal verification with the KeY prover.
Similarly to test generation the method in question along
with its specification is loaded into the tool and executed
symbolically. However, instead of extracting symbolic path

conditions from the proof branches, the tool attempts to
statically evaluate the methods top-level specification to es-
tablish complete correctness of the code. If the tool can
show the specification to be valid on all proof branches the
method is considered fully verified with respect to the spec-
ified property. We illustrate this with the method roundUp
from the Collision Detector benchmark:

public static AbsoluteTime roundUp(AbsoluteTime t) { ... }

This method is responsible for rounding up the provided
time to the next sampling period. The JML specification
that expresses this property for non-null input time t is the
following:

/∗@ public normal behavior
requires t != null;
ensures
1000000 ∗ \result.getMillis() + \result.getNanos() >=
1000000 ∗ t.getMillis() + t.getNanos();
ensures \result.getNanos() == 0;
ensures \result.getMillis() % Const.PERIOD == 0; @∗/

In natural language: the resulting time should be rounded to
milliseconds, should be greater than the input time, and it
should be evenly divisible by the applications sampling pe-
riod. Intuitively this is a straightforward judgement. How-
ever, because of the arithmetic involved both in the code
and the specifications, the task of establishing this property
statically for all possible inputs is rather demanding for the
KeY prover. The complete correctness proof is generated
fully automatically by KeY in about 3 minutes, and consists
of ca. 54 000 single proof steps.

This simple example also shows how complex the depen-
dencies between the code and the API methods can be in
the context of our work. The implementation of the roundUp
method makes calls to API methods, the API methods are
also used in the specifications, both of the roundUp method
and the API methods used by the code. Fig. 5 shows a com-
plete dependency tree. For fully modular test generation
or formal verification all these methods have to be formally
specified. Here, a fully modular processing of the roundUp
method requires JML specifications of 6 different real-time
API methods.

5.3 Test Generation for Jamaica RT API
Finally, the real-time API specifications were also used

to generate tests for the API implementation itself. The
particular API under test was one from the Jamaica RT vir-
tual machine, the choice of real-time VM for the CHARTER
project.

The effectiveness of the KeYTestGen was successfully
demonstrated, by it generating tests which revealed an in-
consistency for one of the methods in the commercial API
implementation with respect to the official RTSJ documen-
tation. More concretely, a test has been generated for the
method absolute in class AbsoluteTime:

public AbsoluteTime absolute(Clock clock);

The discovered point of inconsistency is the clock associa-
tion that this method should establish between the result
and the clock parameter. The RTSJ documentation states
that for a null clock parameter the resulting time object is
associated with the system’s default real-time clock, for a
non-null parameter the association is made with the clock

Figure 5: Specification dependencies for roundUp()

roundUp(...)
b method code:
b HighResolutionTime.getMilliseconds()
b HighResolutionTime.getNanoseconds()
b AbsoluteTime.AbsoluteTime(...)
b specification:
b HighResolutionTime.getMilliseconds()
b HighResolutionTime.getNanoseconds()
b HighResolutionTime.getClock()
b Clock.getRealtimeClock()
b MemoryArea.getMemoryArea()

b method specification:
b HighResolutionTime.getMilliseconds()
b HighResolutionTime.getNanoseconds()

parameter itself. This property has been specified with JML
in the following way:

ensures clock != null ==> \result.getClock() == clock;
ensures clock == null ==>
\result.getClock() == Clock.getRealtimeClock();

The running of the test generated for the first specifica-
tion case above revealed a failure, i.e., no association to the
passed clock is made in the resulting time object. Further
study of the API implementation and its internal documen-
tation showed that this behaviour is actually intended and
does not cause any dysfunction of the API implementation.
The rationale behind “ignoring” the clock parameter is that
the Jamaica VM implements only one single real-time clock,
moreover, the RTSJ specification does not declare any fac-
tory classes or methods for obtaining valid system clocks,
which probably should be the only ones allowed in the system
prohibiting user instantiated clock objects. We say probably,
because this aspect is not mentioned in the RTSJ documen-
tation, and actually opens a discussion that goes beyond
the scope of this paper about clock usage in the Java RT
API [30]. Regardless of that, this clearly shows how auto-
mated test generation through formal specifications can be
used to discover problems.

6. CHALLENGES AND FUTURE WORK
Testing is one of the means of certifying software. In

safety-critical applications white box testing coverage cri-
teria are mandated – tests are required to exercise certain
parts of the actual code. The ultimate property of a test case
generation tool is to have a test suite fulfilling the required
coverage criteria by construction. For this reason we believe
that the most appropriate tools for this kind of process are
those based on symbolic execution or similar technologies
which ensure full analysis of the code structure. Black box
testing tools, like JMLUnitNG [31], lack this feature and
cannot reach our ultimate goal. Concerning the creation of
initial (heap) states, JMLUnitNG faces similar challenges as
KeY. They also have in common the conjectural use of spec-
ification (Sect. 3.1.2), which provides partitioning of test in-

puts and an oracle function, and in the case of JMLUnitNG
this can be seen also as an approximation of path constraint.
Initial state generation has two main difficulties:

Solving path constraints with quantifiers.
Gladisch [13] explored the limitations of using SMT solv-

ing to create reference type data, by proposing a preprocess-
ing step and a search algorithm using SMT solvers. This is
implemented in an experimental version of KeY. This model
generation technique is currently interactive. The author
claims that full automation is possible.

Concrete instantiation of initial state.
Solving path constraints tells what the input is but not

how to create it, so in general the solution to the path con-
straint cannot be used directly. Suppose the analysis of the
code given in Sect. 5.1 would mandate the creation of an
AsyncEvent obj with an initialized list containing n handlers.
Setting up the test requires a sequence of n calls to addHan-
dler to fill the list of handlers. In general it is not immediate
to infer the actual sequence of method calls from its API to
build an object o of class C such that it has some property P .
Currently KeYTestGen allows, similarly to other test gener-
ation tools, manual input of test data by writing it in the
auxiliary files generated by the tool. A first approach to au-
tomate this could be to annotate appropriately methods that
can be used to generate inputs, inspired by the data genera-
tors of QuickCheck [8, 17], and let KeYTestGen reason about
them. Other improvements on this front will be to imple-
ment better integration with testing libraries (more mock
libraries, QuickCheck for Java [24]) and concepts such as
caching objects when testing constructors, as done in JML-
UnitNG [31].

Currently KeYTestGen is still at a prototypical state and is
distributed as Eclipse plugin6 which allows test case gener-
ation for projects and classes. It will also feature a com-
mand line interface, for better integration into other tools
and IDEs. Another future step is to adapt the test gen-
erator and the API specifications to the newer generation
version of the KeY system. This new version, currently also
still at the development stage, offers big improvements for
abstracting the state in specifications using model fields and
‘dynamic frames’ [25]. These mechanisms are much more
flexible and elegant than the ghost fields we discussed in
this paper. The changes in the KeY system to support this
new way of specifying contracts require revisiting our test
generation technique and implementation. Finally, we plan
to expand our collection of real-time case studies to further
evaluate our work.

Acknowledgements
We would like to thank James Hunt of aicas for many dis-
cussions, making the Jamaica API implementation available,
and for many insights concerning this implementation.

7. REFERENCES
[1] P. Ammann and J. Offutt. Introduction to Software

Testing. Cambridge University Press, New York, NY,
USA, 2008.

6http://www.cse.chalmers.se/˜gabpag/eclipse

[2] B. Beckert and C. Gladisch. White-box testing by
combining deduction-based specification extraction
and black-box testing. In B. Meyer and Y. Gurevich,
editors, Proceedings, International Conference on
Tests and Proofs (TAP), Zurich, Switzerland, volume
4454 of LNCS. Springer, February 2007.

[3] B. Beckert, R. Hähnle, and P. H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY
Approach. LNCS 4334. Springer, 2007.

[4] B. Beckert and P. H. Schmitt. Program verification
using change information. In Proceedings, Software
Engineering and Formal Methods (SEFM), pages
91–99. IEEE Press, 2003.

[5] C.-B. Breunesse and E. Poll. Verifying JML
specifications with model fields. In ECOOP workshop
on Formal Techniques for Java-like Programs
(FTfJP’03), July 2003.

[6] A. D. Brucker and B. Wolff. Interactive testing with
HOL-TestGen. In W. Grieskamp and C. Weise,
editors, Proc. Workshop on Formal Aspects of Testing,
FATES, volume 3997 of LNCS, pages 87–102.
Springer, 2005.

[7] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer,
7(3):212–232, June 2005.

[8] K. Claessen and J. Hughes. Testing monadic code with
QuickCheck. SIGPLAN Notices, 37(12):47–59, 2002.

[9] T. Clark and J. Warmer, editors. Object Modeling with
the OCL. The Rationale behind the Object Constraint
Language, volume 2263 of LNCS. Springer, 2002.

[10] X. Deng, J. Lee, and Robby. Bogor/Kiasan: a
k-bounded symbolic execution for checking strong
heap properties of open systems. In Proc. 21st
IEEE/ASM Intl. Conference on Automated Software
Engineering, pages 157–166. IEEE Computer Society,
2006.

[11] C. Engel and R. Hähnle. Generating unit tests from
formal proofs. In B. Meyer and Y. Gurevich, editors,
Proc. Tests and Proofs (TAP), Zürich, Switzerland,
volume 4454 of LNCS. Springer, February 2007.

[12] EUROCAE. Software considerations in airborne
systems and equipment certification, January 2012.
Document ED-12C.

[13] C. Gladisch. Test data generation for programs with
quantified first-order logic specifications. In
A. Petrenko, A. da Silva Simão, and J. C. Maldonado,
editors, ICTSS, volume 6435 of LNCS, pages 158–173.
Springer, 2010.

[14] W. Grieskamp, N. Tillmann, and W. Schulte. XRT —
exploring runtime for .NET architecture and
applications. In B. Cook, S. Stoller, and W. Visser,
editors, Proc. Workshop on Software Model Checking
(SoftMC 2005), volume 144(3) of ENTCS, pages 3–26,
2006.

[15] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and
L. K. Rierson. A practical tutorial on modified
condition/decision coverage. Nasa/tm-2001-210876,
Hampton NASA Langley Research Center, 2001.

[16] C. A. R. Hoare. Proof of correctness of data
representation. In F. L. Bauer and K. Samelson,

editors, Language Hierarchies and Interfaces, pages
183–193, 1975.

[17] J. Huges. Quickcheck: An automatic testing tool for
Haskell. http://www.cse.chalmers.se/˜rjmh/
QuickCheck/manual.html.

[18] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek,
B. Titzer, and J. Vitek. Cdx: a family of real-time
Java benchmarks. In Proceedings of the 7th
International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES 2009,
pages 41–50. ACM, 2009.

[19] J. Kwon and A. J. Wellings. Memory management
based on method invocation in rtsj. In Proceedings,
On the Move to Meaningful Internet Systems (OTM)
2004, volume 3292 of LNCS, pages 333–345. Springer,
2004.

[20] G. T. Leavens, A. L. Baker, and C. Ruby. JML: a
Java Modeling Language. In Formal Underpinnings of
Java Workshop (at OOPSLA ’98), 1998.

[21] B. Meyer. Applying “design by contract”. IEEE
Computer, 25(10):40–51, Oct. 1992.

[22] Microsoft Corporation. Code Contracts User Manual,
2012. http://research.microsoft.com/en-us/projects/
contracts/userdoc.pdf.

[23] The Objenesis library website.
http://code.google.com/p/objenesis/.

[24] The QuickCheck for Java website.
http://java.net/projects/quickcheck/pages/Home.

[25] P. H. Schmitt, M. Ulbrich, and B. Weiß. Dynamic
frames in Java dynamic logic. In B. Beckert and
C. Marché, editors, Revised Selected Papers,
International Conference on Formal Verification of
Object-Oriented Software (FoVeOOS 2010), volume
6528 of LNCS, pages 138–152. Springer, 2011.

[26] K. Sen and G. Agha. CUTE and jCUTE: Concolic
unit testing and explicit path model-checking tools. In
CAV, volume 4144 of LNCS, pages 419–423. Springer,
2006.

[27] The Simplify project website.
http://kind.ucd.ie/products/opensource/Simplify/.

[28] N. Tillmann and J. de Halleux. Pex-white box test
generation for .NET. In TAP, volume 4966 of LNCS,
pages 134–153. Springer, 2008.

[29] W. Visser, C. S. Pasareanu, and S. Khurshid. Test
input generation with Java PathFinder. Software
Engineering Notes, 29(4):97–107, 2004.

[30] A. J. Wellings and M. Schoeberl. User-defined clocks
in the real-time specification for Java. In A. J.
Wellings and A. P. Ravn, editors, The 9th
International Workshop on Java Technologies for
Real-time and Embedded Systems, JTRES ’11, pages
74–81. ACM, 2011.

[31] D. M. Zimmerman and R. Nagmoti. JMLUnit: The
next generation. In Revised Selected Papers,
International Conference on Formal Verification of
Object-Oriented Software (FoVeOOS 2010), volume
6528 of LNCS, pages 183–197. Springer, 2011.

	acm
	jtres2012_submission_19

