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Abstract—We present a decode-and-forward transmission
scheme that is based on spatially coupled LDPC codes and
applies to a network consisting of two sources, one relay, and
one destination. The relay performs network coding to achieve
full diversity. We prove analytically that the proposed scheme
achieves the Shannon limit on the binary erasure relay channel
for symmetric channel conditions. Using density evolution, we
furthermore demonstrate that our scheme approaches capacity
also for asymmetric channel conditions.

I. INTRODUCTION

The three-node relay channel was introduced by van der

Meulen in [1] and the first capacity results were presented in

[2]. While the capacity for the general relay channel is still

unknown, recent years have seen a vast amount of research

on the topic, both in the information theory and coding

communities. The decode-and-forward (DF) relaying scheme

was introduced in [2] and achieves the capacity of the relay

channel for certain special cases. With DF, the relay decodes

the source data and provides a re-encoded copy of the source

message to the destination. Several papers have considered

practical implementations of DF based on convolutional codes

[3], capacity-approaching turbo codes [4] or low-density parity

check (LDPC) codes [5]. In [6], so-called bilayer LDPC codes

were introduced and were shown to closely approach the

theoretical DF rate.

Recently, it has been proved that regular spatially coupled

(SC) LDPC codes achieve capacity on the binary erasure

channel (BEC) [7]. For this reason, SC-LDPC codes are

excellent candidates for the design of relay schemes whose

performance is close to the information-theoretic limits. In [8]

it was shown that bilayer SC-LDPC codes can actually achieve

the Shannon limit of a DF relay system with orthogonal BEC

links. Since the SC-LDPC code ensembles are regular, the

design complexity is very low compared to schemes based

on irregular LDPC code ensembles, which require extensive

optimization.

In more realistic networks, one relay is shared by multiple

users. The information-theoretic model for this scenario is the

multiple-access relay channel (MARC), first studied in [9]
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Fig. 1. Two-user relay network in which all links are modeled as binary
erasure channels (links are labeled with erasure probabilities).

and later specialized to time-division multiple-access (TDMA)

channels in [10]. While the achievable rate of the TDMA-

MARC is the same as that of two separate relay channels there

is a potential diversity gain. To exploit that gain, the relay

has to combine the information of the sources via network

coding [11]. Network coding can be achieved implicitly by

an appropriate design of the channel codes, a technique

termed joint network-channel coding. For the TDMA-MARC,

several coding schemes have been proposed based on regular

LDPC codes [12], irregular LDPC codes [13], and serially-

concatenated codes [14].

In this paper, we design bilayer SC-LDPC codes for a half-

duplex DF relaying system with two sources, one relay, and

one destination, thereby extending [8]. The code construction

implicitly provides network coding at the relay node to achieve

the maximum diversity gain. For the BEC and the case of

symmetric channel conditions, we prove analytically that the

proposed scheme achieves the Shannon limit. For asymmetric

channel conditions, we provide density evolution (DE) thresh-

olds for our scheme that show a performance close to the

Shannon limit and suggest that capacity is also achieved in

this case.

II. SYSTEM MODEL

We consider the relay network depicted in Fig. 1. There

are four nodes, sources one and two (s1, s2), relay (r) and

destination (d). One transmission block is split into three

phases in order to orthogonalize the transmission links; in

each phase one node transmits and the others listen. In phase

i (i = 1, 2 for the rest of the paper), source si transmits a

length-ni codeword xi, obtained by encoding k information

bits with a channel code of rate Ri = k/ni. The relay



receives x1 and x2 over two BECs with erasure probabilities

(EPs) ǫsir. The destination receives the same codewords over

BECs with EPs ǫsid. The relay decodes both transmissions,

generates kr additional parity bits and encodes them into a

codeword of length nr using a channel code of rate Rr. In the

third time slot, the joint network-channel-coded information

is forwarded to the destination over a BEC with EP ǫrd. The

whole transmission block consists of N = n1 + n2 + nr

bits. We define the duty cycle of each phase as θj = nj/N ,

j = {1, 2, r}. Since we assume, without loss of generality, that

each source transmits the same number of information bits, the

effective rate R = k/N is equal for both sources. The sum

rate of the system is Rsum = 2k/N = 2R.

III. THEORETICAL LIMITS

The information-theoretic limits of the TDMA-MARC with

DF relaying have been presented in [10, p. 95]. Denote by C =
1−ǫ the capacity of a BEC. Under the conditions Csir ≥ Csid

and Crd ≥ Csid, the optimal allocation of transmission time

between the three phases is

θ∗1 =
Crd

(1 + κ)Crd + 2Cs1r − Cs1d − κCs2d
, (1)

θ∗2 = κθ∗1 , θ∗r = 1− θ∗1 − θ∗2 ,

where κ =
Cs1r

Cs2r

. The achievable rate per user is

Rmax =
Cs1rCrd

(1 + κ)Crd + 2Cs1r − Cs1d − κCs2d
. (2)

To achieve Rmax, capacity-achieving codes on both source-

relay links are used in the first two transmission phases, such

that the relay can decode successfully. In the third phase, the

relay transmits additional parity bits based on the source data

to the destination. The destination effectively sees two new

overall codes with lower rates, which are capacity achieving

for the source-destination links, and decodes them based on

the channel observations of all three transmission phases.

IV. BILAYER SC-LDPC CODES

A. SC-LDPC codes

We briefly introduce SC-LDPC codes. For a detailed de-

scription of the ensemble used in this paper see [7].

A regular (l, r) SC-LDPC code with variable node degree l
and check node degree r is defined by an infinite parity check

matrix

H
T =
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(3)

where superscript T denotes the transpose. The Tanner graph

of such a code is divided into “positions” or “time instants” t,
similar to the code frames in classical convolutional codes. At

each position t ∈ (−∞,∞) there are M variable nodes, and

M l
r check nodes. This is reflected in the parity check matrix

by the fact that each submatrix H
T
j (t + j), j ∈ [0,ms], is a

sparse M × (M l
r ) binary matrix. For our application we will

consider terminated spatially coupled code ensembles, where

we assume that the codeword is restricted to t ∈ [1, L].
In this paper, we use the (l, r, L, w,M) ensemble described

in [7], where each of the l edges of a variable node at position

t is randomly connected to a check node in the range [t, t +
w− 1] using an i.i.d. uniform distribution (w = ms +1). The

randomization results in simple DE equations and thus renders

the ensemble accessible to analysis. For transmission over the

BEC, the code rate of the (l, r, L, w,M) ensemble tends to

the one of the underlying block code ensemble (whenever we

omit M in the rest of the paper, we assume M → ∞)

lim
w→∞

lim
L→∞

R(l, r, L, w) = 1−
l

r
.

Furthermore, its belief propagation (BP) threshold ǫBP tends

to the MAP threshold ǫMAP of the underlying ensemble,

lim
L,w→∞

ǫBP(l, r, L, w) = lim
L,w→∞

ǫMAP(l, r, L, w) = ǫMAP(l, r),

when letting L and w go to infinity (in that order). On the BEC,

the Shannon limit for transmission at rate R is given by the

EP ǫSh = 1−R below which reliable (error-free) transmission

is possible. The MAP threshold of a regular LDPC block code

ensemble tends to the Shannon limit exponentially fast in l if

the design rate R(l, r) is kept fixed (cf. [7, Lemma 8]):

lim
l→∞

ǫMAP

(

l, r =
l

1−R(l, r)

)

= 1−R = ǫSh. (4)

B. Two-user bilayer SC-LDPC code

The sources use codes from the ensembles

C1(l1, r1, L1, w1,M1) and C2(l2, r2, L2, w2,M2), respectively,

with design rates Ri ,
k
ni

= k
LMi

= Csir, and parity check

matrices H
1 and H

2. They comprise the first layer of the

bilayer structure. Assuming perfect transmissions on the si-r
links, the relay recovers the codewords x1 and x2 transmitted

by the sources. It generates kr additional syndrome bits

according to

s =
[

H
1
synd H

2
synd

]

[

x1

x2

]

, (5)

using parity check matrices from the code

ensembles C1
synd(l

1
synd, r

1
synd, L1, w1,M1) and

C2
synd(l

2
synd, r

2
synd, L2, w2,M2). These codes constitute the

second layer of the bilayer code.

The syndrome bits are transmitted to the destination pro-

tected by a code of rate Rr = Crd. Assuming that the

destination can recover the syndrome bits perfectly, it can now

decode the source bits using the parity check matrix H of the

overall code according to

H

[

x1

x2

]

=





H
1

0

0 H
2

H
1
synd H

2
synd





[

x1

x2

]

=





0

0

s



 .



For simplicity, we assume L1 = L2 and w1 = w2 without loss

of generality. This means that to achieve different block sizes

for s1 and s2, we choose a different number of variables per

time instant for each user, M1 6= M2. We note that the overall

matrix H does not have the band structure of an SC-LDPC

code (cf. (3)); rather, it consists of four concatenated band

matrices. Nevertheless, we will analytically prove capacity-

achieving performance for symmetric channel conditions be-

low and we conjecture that capacity is achieved under general

channel conditions.

From (5) we see that the syndrome bits in general depend

on code bits from both sources. Of the total number kr
of syndrome bits, effectively k1r and k2r bits are used to

respectively decode s1 and s2 at the destination (kr = k1r +k2r ).

The number of bits from source si involved in one of the kr
checks is given by the check node degree risynd. The effective

number of syndrome bits for source si is therefore

kir = krµi, with µi ,
risynd

r1synd + r2synd

. (6)

The design rules for bilayer LDPC codes require

kir = ni(Csir − Csid). (7)

This choice results in rates of the bilayer codes that are equal

to the capacities of the si-d channels,

Ri
bl ,

ni − (ni − ki + kir)

ni
=

ki − kir
ni

= Csid. (8)

The destination will therefore be able to successfully decode

both users’ messages if capacity-achieving codes are used.

The design rates for Ci
synd(l

i
synd, r

i
synd, L, w,Mi) follow from

(7) and the optimum time allocation (1),
θ∗

2

θ∗

1

=
n∗

2

n∗

1

=
Cs1r

Cs2r

:

R1
synd , 1−

kr
n1

= 1−

(

Cs1r

(

2−
Cs2d

Cs2r

)

− Cs1d

)

, (9)

R2
synd , 1−

kr
n2

= 1−

(

Cs2r

(

2−
Cs1d

Cs1r

)

− Cs2d

)

. (10)

Combining (6) and (7) gives the design goal for the ratio of

r1synd and r2synd,

µ ,
r1synd

r2synd

=
k1r
k2r

=
Cs2r (Cs1r − Cs1d)

Cs1r (Cs2r − Cs2d)
. (11)

Finally, combining (8)-(11) allows to obtain the resulting

bilayer code rates when R1, R2, R1
synd, R2

synd and µ are given:

R1
bl = R1 −

1−R1
synd

1 + µ−1
, R2

bl = R2 −
1−R2

synd

1 + µ
.

V. DENSITY EVOLUTION ANALYSIS

In the following we show that for symmetric channel

conditions, defined as ǫs1r = ǫs2r = ǫsr, ǫs1d = ǫs2d =
ǫsd, the proposed scheme achieves the highest possible DF

rate on the TDMA-MARC with BEC links. We call the

two-user bilayer ensemble consisting of Ci(l, r, L, w) and

Ci
synd(lsynd, rsynd, L, w) the Cbl(l, lsynd, r, rsynd, L, w) ensemble.

Lemma 1. For the case of symmetric channel conditions and

rsynd = r/2, the two-user bilayer code Cbl(l, lsynd, r, r/2, L, w)
achieves the same DE threshold for each source-destination

link as the single-layer code C(l + lsynd, r, L, w).

Proof: First note that the choice rsynd = r/2 allows us to

write the DE equations in a form that we need to proof the

capacity-achieving property. However, this does not restrict the

possible rates available in the system and therefore the result

is general. For source si, we denote the messages (erasure

probabilities) sent from a variable node at position t in iteration

I to a check node in the first and the second layer as p
(t,I)
i

and p
(t,I)
synd,i, respectively. The messages from check nodes at

position t in iteration I to variable nodes are called q
(t,I)
i and

q
(t,I)
synd,i. For t /∈ [1, L], we have p

(t,I)
i = p

(t,I)
synd,i = 0. The DE

update equations for user 1 for t ∈ [1, L] are given as (cf. [7])

p
(t,I+1)
1 = ǫs1d

(

1

w

w−1
∑

j=0

q
(t+j,I)
1

)l1−1(
1

w

w−1
∑

j=0

q
(t+j,I)
synd,1

)l1synd

q
(t,I+1)
1 = 1−

(

1−
1

w

w−1
∑

k=0

p
(t−k,I+1)
1

)r1−1

(12)

p
(t,I+1)
synd,1 = ǫs1d

(

1

w

w−1
∑

j=0

q
(t+j,I)
1

)l1( 1

w

w−1
∑

j=0

q
(t+j,I)
synd,1

)l1synd−1

q
(t,I+1)
synd,1 = 1−

(

1−
1

w

w−1
∑

k=0

p
(t−k,I+1)
synd,1

)r1synd−1

·

(

1−
1

w

w−1
∑

k=0

p
(t−k,I+1)
synd,2

)r2synd

. (13)

The equations for user 2 are analogous. The coupling of the

two users’ codes in the decoding process manifests itself in

the messages sent from the second layer check nodes (13).

Assuming symmetric channel conditions, both users can use

codes Ci from the same ensemble (l, r, L, w), and the relay

can generate the syndrome bits using two codes Ci
synd from

the same ensemble (lsynd, rsynd, L, w). This means l1 = l2 = l,
r1 = r2 = r, l1synd = l2synd = lsynd and r1synd = r2synd = rsynd.

The initial variable-to-check messages in the first iteration are

equal for both users and both layers p
(t,1)
1 = p

(t,1)
synd,1 = p

(t,1)
2 =

p
(t,1)
synd,2 = ǫsd. With rsynd = r

2 , (13) becomes equal to (12), i.e.,

the check-to-variable messages of the users in both layers are

equal. This means that in the second iteration the variable-

to-check messages will be equal again, and via induction, the

same will happen in all the following iterations. Due to the

assumed symmetry, the equations for the second user are the

same as for the first user. The DE for each user can therefore

be written as

p
(t,I+1)
i = ǫsd

(

1

w

w−1
∑

j=0

q
(t+j,I)
i

)l+lsynd−1

= ǫsd

(

1−
1

w

w−1
∑

j=0

(

1−
1

w

w−1
∑

k=0

p
(t+j−k,I)
i

)r−1)l+lsynd−1

,



which is the update equation for a single-layer SC-LDPC code

ensemble (l + lsynd, r, L, w). The bilayer code ensembles for

both users will therefore have the same DE thresholds as the

single-layer ensemble.

Lemma 2. For symmetric channel conditions and rsynd =
r/2, the design rate of the two-user bilayer code

Cbl(l, lsynd, r, rsynd, L, w) for each source-destination link ap-

proaches that of the C(l+ lsynd, r, L, w) single-layer ensemble

as w grows large.

Proof: The design rate of an SC-LDPC code is [7] R =
1−NC

NV
, where NV and NC denote the number of variable nodes

and check nodes, respectively, in the graph. The number of

variable nodes per user is NV = ML. The number of checks

per user in the first layer is

NC = M
l

r

[

L+ 1 + w − 2

w−1
∑

j=0

(

j

w

)r ]

,

and the number of checks (which are shared by both users) in

the second layer

NC,synd = M
2lsynd

r

[

L+ 1 + w − 2
w−1
∑

j=0

(

j

w

)
r

2

]

.

Since the checks in the second layer are shared equally

between the two users, the effective number of checks per

user is N eff
C,synd = NC,synd/2 (cf. (6)). The rate of the bilayer

code for each user is therefore Rbl = 1 −
NC+NC,synd/2

ML . For

large enough w, this can be approximated as

Rbl ≈ 1−
l + lsynd

r

(

1 +
w

L

)

,

which is the same expression as for the rate of an (l +
lsynd, r, L, w) code ensemble for large w.

Corollary 1. For symmetric channel conditions, the two-user

bilayer SC-LDPC code Cbl(l, lsynd, r, r/2, L, w) has the rate of

the single-layer (l + lsynd, r, L, w) code,

lim
w→∞

lim
L→∞

R(l, lsynd, r, r/2, L, w) = 1−
l + lsynd

r
,

and for fixed (l+lsynd)/r, its BP threshold tends to the Shannon

limit of that code,

lim
(l+lsynd)→∞

lim
w→∞

lim
L→∞

ǫBP(l, lsynd, r, r/2, L, w) =
l + lsynd

r
.

Proof: From Lemmas 1 and 2 we know that in the limit

of large w and L, the bilayer code ensemble has the same rate

and DE threshold as the single-layer (l + lsynd, r, L, w) code

ensemble. Therefore, the corollary follows from [7, Theorem

10 and Lemma 8].

Theorem 1. For a binary erasure relay channel with two

sources, one relay, and one destination with symmetric channel

conditions, there exists an SC-LDPC code C and an associated

two-user bilayer code Cbl such that C achieves the capacity

for both source-relay link and Cbl achieves capacity for both

source-destination links. In addition, this code construction

achieves the highest possible rate with DF relaying (cf. (2)).

Proof: The capacities of the source-relay links are Csr =
1− ǫsr. We use capacity-achieving SC-LDPC codes from the

ensemble C(l, r, L, w), with

l

r
= ǫsr, (14)

which are known to be asymptotically capacity achieving (cf.

(4)), and therefore the relay will be able to decode successfully.

Let NV be the number of variable nodes in C. In the

limit L → ∞ there are NC = l
rNV check nodes. The

effective number of additional bits needed by the destination

and provided by the relay is (cf. (6), (7), µi = 1/2)

N eff
C,synd = NC,synd/2 = NV(Csr−Csd) = NV(ǫsd− ǫsr). (15)

Remember that we chose rsynd = r/2. The additional effective

N eff
C,synd check nodes from the second layer add NC,syndr/2 =

rN eff
C,synd edges. The variable node degree lsynd is

lsynd = rN eff
C,synd/NV = r(ǫsd − ǫsr). (16)

From Corollary 1 together with (14) and (16) it follows that

lim
w→∞

lim
L→∞

R(l, lsynd, r, r/2, L, w) = 1−
l + lsynd

r
= 1− ǫsd

and for fixed (l + lsynd)/r,

lim
(l+lsynd)→∞

lim
w→∞

lim
L→∞

ǫBP(l, lsynd, r, r/2, L, w) = ǫsd,

therefore we see that Cbl achieves the capacity on the source-

destination links Csd = 1 − ǫsd for both users. The number

of channel uses in the first two transmission phases is n1 =
n2 = NV. A capacity-achieving SC-LDPC code is used to

transmit the NC,synd syndrome bits in the third phase, using

nr = NC,synd/Crd channel uses. Therefore we have (with (15))

ni

n1 + n2 + nr
=

Crd

2Crd + 2(Csr − Csd)
= θ∗i ,

the optimum time allocation (1) which maximizes the achiev-

able rate.

VI. NUMERICAL RESULTS

The performance of a bilayer code can be assessed by

comparing the DE thresholds of the first-layer code and of

the overall bilayer code, respectively, to the Shannon limits

[6]. Clearly, the overall system performance depends also on

the code used on the relay-to-destination link, but that one is

designed independently.

For the case considered, there are two first-layer codes and

two bilayer codes in the system, one for each user. Tables I

and II show a number of two-user bilayer SC-LDPC code

ensembles and their thresholds. For all results, L = 100. In

Table I, the same code ensemble was used for the first layer of

both users, Ci(3, 10, 100, w), which is a design for equal EP

on both source-relay links. The first row in the table shows

the symmetric case. We have confirmed that the DE threshold



TABLE I
DE THRESHOLDS OF SOME TWO-USER SC-LDPC BILAYER CODES FOR THE CASE OF SYMMETRIC SOURCE-RELAY LINKS.

(l1
synd

, r1
synd

) (l2
synd

, r2
synd

) w µ R1

bl
ǫSh
s1d

ǫBP
s1d

Gap R2

bl
ǫSh
s2d

ǫBP
s2d

Gap Rsum

(2, 5) (2, 5) 3 1 0.4907 0.5093 0.4989 0.0104 0.4907 0.5093 0.4989 0.0104 0.7417

(2, 5) (4, 10) 3 0.5 0.5585 0.4415 0.4268 0.0147 0.4222 0.5778 0.5631 0.0147 0.7488

(2, 5) (6, 15) 3 0.33 0.5924 0.4076 0.3792 0.0284 0.3882 0.6117 0.5835 0.0282 0.7524

(2, 5) (8, 20) 3 0.25 0.6128 0.3872 0.3357 0.0515 0.3678 0.6321 0.5807 0.0514 0.7546

(2, 5) (8, 20) 4 0.25 0.6094 0.3906 0.3653 0.0253 0.3618 0.6382 0.6129 0.0253 0.7535

TABLE II
DE THRESHOLDS OF SOME TWO-USER SC-LDPC BILAYER CODES FOR THE CASE OF ASYMMETRIC SOURCE-RELAY LINKS.

(l1
synd

, r1
synd

) (l2
synd

, r2
synd

) w µ R1

bl
ǫSh
s1d

ǫBP
s1d

Gap R2

bl
ǫSh
s2d

ǫBP
s2d

Gap Rsum

(2, 5) (3, 10) 4 1 0.6574 0.3426 0.3157 0.0269 0.3823 0.6177 0.5908 0.0269 0.8616

(2, 5) (6, 20) 8 0.5 0.7021 0.2979 0.2646 0.0333 0.3161 0.6839 0.6506 0.0333 0.8717

obtained in this case is the same as for the single-layer (l +
lsynd = 5, 10, 100, w) ensemble, as predicted by Lemma 1.

The next rows show codes for increasingly different EP on

the source-destination links. This is achieved by increasing

the node degrees of the C2
synd ensemble while keeping C1

synd

fixed, thereby changing the ratio µ of effective syndrome bits

generated for each source. The first four rows in the table

use w = 3. This gives the design rate of the first layer codes

Ri = 0.6941, a Shannon limit of ǫSh = 0.3058, and a DE

threshold of ǫBP = 0.2865, which corresponds to a gap of

0.0193. The gaps of the bilayer codes to the Shannon limit

are very low, starting with 0.0104 for the symmetric case,

increasing slightly with stronger asymmetry, up to 0.0514 for

µ = 0.25. It is shown in the fifth row of the table that the

gap can be reduced to 0.0253 by using w = 4. For the first-

layer code we have then Ri = 0.6914, a Shannon limit of

ǫSh = 0.3086, and a DE threshold of ǫBP = 0.2865, which

corresponds to a gap of 0.0221.

Table II shows DE results for the case of asymmetric

source-relay and source-destination links. Source one uses

C1(4, 20, 100, w) and source two C2(8, 20, 100, w). For the

first row, w = 4, which leads to R1 = 0.7941, R2 = 0.5881.

The gaps to the Shannon limit have been found to be 0.0089
and 0.0142, respectively. The second row uses w = 8, where

we have R1 = 0.7863, R2 = 0.5726, and gaps to the Shannon

limit of 0.0166 and 0.0275, respectively. The bilayer codes

exhibit gaps to capacity that are again very low (0.0269 and

0.0333). In the light of this good performance, we conjecture

that our design has the potential to achieve capacity also in

the case of asymmetric channel conditions.

The tables also state the system sum rate, assuming a

capacity of the relay-to-destination link of Crd = 0.8. The

sum rate is given by

Rsum = 2
RrR1

Rr (1 +R1/R2) + 2R1 −R1
bl −R2

blR1/R2
.

VII. CONCLUSIONS

In this paper, we presented two-user bilayer SC-LDPC

codes for the time-division multiple access relay channel. We

proved that the coding scheme achieves the maximum possible

decode-and-forward rate for the TDMA relay channel with

symmetric binary erasure channel links. Capacity approaching

performance was demonstrated for asymmetric scenarios using

density evolution. Future extensions of this work include

the proof that capacity can be achieved in scenarios with

asymmetric channel conditions and consideration of more

general channel models like AWGN and fading channels.
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